Department of ZOOLOGY

Programme Specific Outcome (M.Sc. in Zoology)

The programme specific outcome of the syllabus prescribed for the post graduate students of 'Zoology' is mentioned below:

At the end of the program the student will be able to –

PSO1: Gain knowledge on key concepts of life sciences including biodiversity, biochemistry, molecular cell biology, physiology, reproductive biology, immunology, biostatistics, computational biology, evolutionary biology, ecology and environmental biology, animal behavior, integrative biology, fisheries, entomology, parasitology, microbiology and analytical techniques

PSO2: Identify and describe of animal-plant-microbe interactions

PSO3: Understand phenotypic expression of genomes, their regulatory pathways, phenotypes, genotypes and relationship with environment

PSO4: Describe different metabolic and regulatory pathways from organismic level to individual level

PSO5: Compare and contrast different ecological, physiological, morphological, and anatomical systems in animal

PSO6: Develop an understanding of zoological science for its application in parasitology, pathology, medical entomology, fisheries, drug design, environmental policies, ecosystem conservation and management plans

PSO7: Develop theoretical and practical knowledge in animal handling and using them as model organism to formulate, modify, design, review, validate different hypothesis and test those hypothesis using statistical tools

PSO8: Prepare research plan to discover, design, develop and contribute towards the enrichment of science

COURSE OUTCOME

MSc in Zoology syllabus

M.Sc. 1st Semester

Paper Name: Biosystematics and Biostatistics Paper Code: ZOO-1014

Course Outcome	Unit/ Topic	Bloom's
		Taxonomy
		Level
After the completion of this course, the students will be able to: CO1: Define species CO2: Understand the basic concepts of speciation, types of species concept CO3: Elaborate and explain different types of species	 Unit I: 1. Concept of species: Species, Polytypic species, Importance of recognition of Polytypic species taxa. 2. Infraspecific categories, subspecies, temporal subspecies, race and cline 3. Population taxonomy, the new systematics and superspecies. 4. Speciation: Sympatric, Parapatric and 	Knowledge, Understand, Apply, Create
CO4: Understand and explain taxonomic characters, concepts of measurement of variations and statistical tests CO5: Remember and apply important rule of Zoological Nomenclature CO6: Develop concept on intra-population variations CO7: Apply sampling methods	 allopatric speciation, Speciation in time, sibling species. 5. Taxonomic characters: Molecular, Behavioural, Ecological and geographical characters, weighing of characters, characters with low and high taxonomic weight. 6. Intrapopulation variations: Non-genetic and Genetic variations. 7. Interpretation and application of important rules. 	
and statistical knowledge in the field of biology	 Unit II: 1. Applications of Biostatistics, Sampling methods: Random sampling, Stratified sampling and Sub-sampling 2. Measurement of variations: Standard error, standard deviation and co-efficient of variation, Quartile and percentiles, probability and distribution, Binomial, poison and normal distributions. 3. Correlation and regression: Linear regression equation and line of best fit, Coefficient of correlation, Coefficient of regression 4. Chi-square test value of statistics, Confidence limit, t-test, Introduction to one way and two ways Anova and F-test. 5. Kruskal-Wallis test, Man-Whitney U test 	Knowledge, Understand, Apply, Create

Paper Name: Bioinformatics and Instrumentation Paper Code: ZOO-1024

Course Outcome	Unit/ Topic	Bloom's
		Taxonomy
		Level
After the completion of this course, the students will be able to: CO1: Remember, theoretical knowledge of sequence analysis,	 Unit I: 1. Theoretical aspects of sequence analysis. Needleman-Wunsch and Smith-Waterman methods of global and local alignments for a pair of sequences. 2. Molecular phylogeny and evolution: Properties and types of phylogenic trees; Tree building methods. Distance based: LIPGMA (Unweighted) 	Knowledge, Understand, Apply
molecular phylogeny and evolution CO2: Identify different types of microscopes, remember the principles of microscopy	pair group method using arithmetic mean), Neighbor-joining, minimum evolution and least square methods; Character-based: Maximum parsimony, maximum likehood. 3. Levels of protein structures and visualization: Protein secondary and tertiary structures prediction methods (Description of machine learning methods for secondary structures.	
CO3: Understand and explain theoretical knowledge of sequence analysis, molecular phylogeny and evolution	homology/comparative modeling, fold recognition or threading and abinfitio methods for tertiary structure prediction) 4. Overview of protein-protein and protein-ligand interactions (use of Cluspro and Autodock)	
CO4: Understand the concept, principles and applicationsof microscopy, autoradiography, immunological techniques, centrifugation, molecular separation techniques, cryopreservation, Chromosome banding, FISH-chromosome painting techniques.	 Unit II: 1. Microscopy: Principles and applications of phase contrast, Fluorescence and confocal Microscopy. 2. Principles and application of tracer techniques-autoradiography and radio immunoassay. 3. Immunological techniques: Immunodiffusion, Immunoelectrophoresis, Enzyme linked Immuno-absorbant assay (ELISA) 4. Centrifugation: Density gradient and unit gravity centrifugation, tissue processing and separation of various sub-cellular organelles by centrifugation 	Knowledge, Understand, Apply
 CO5: Explain theoretical knowledge of sequence analysis, molecular phylogeny and evolution CO6: Compare different levels of protein structures, of protein-protein and protein-ligand interactions 	 Exchange, Absorption, partition, gel filtration, and affinity chromatography, and HPLC. Electrophoresis- Principle and applications, Agarose, SDS, SDS-PAGE, Pulsed gel and Disc electrophoresis, determination of molecular weight by SDS-gel electrophoresis Cryopreservation: Methods and applications Southern, Northern and Western Blotting 8. Principle and application of Nick-translation, in situ-hybridization Chromosome banding, FISH-chromosome painting technique 	

Paper Name: Evolution and Chronobiology Paper Code: ZOO-1034

Course Outcome	Unit/ Topic	Bloom's
	Ĩ	Taxonomy Level
After the completion of this course, the students will be	Unit I: 1 Theories of organic evolution Prebiotic	Knowledge,
able to:	molecules (Amino acid and Nucleic acid bases).2. Evolution of Prokaryotes and Eukaryotes.	Apply, Evaluate
CO1: Remember theories of organic evolution, prokaryotes, eukaryotes, modern theories for origin of life, Darwinism, Neo-darwinism and molecular evolution	 Origin of life: Modern theories, Changes in hereditary instructions in relation to evolution. Notion of selectively neutral mutations, evolutionary gene duplication, the founder principle, bottleneck effect of genetic drift. Evolutionary history of natural integration, evolution of man. 	
CO2: Define and understand biological clock, biological rhythms, molecular bases of circadian rhythms, methods of measurement of circadian rhythm	 6. Factors and forces of evolution: Mutation, Genetic variation, Isolation mechanisms and their role in speciation. 7. Emergence of the theory of Neo-Darwinism. 8. Molecular evolution : Concept of neutral evolution (Kimura), molecular divergence and molecular clock, molecular tools in phylogeny, classification and identification, Origin of new genes and proteins, gene duplication and 	
the different concepts, forces and factors evolution	divergence Unit II: 1. Biological clocks	Knowledge, Understand,
CO4: Use the theories of evolution and chronobiology	 Significance of Biological time keeping Biological rhythms: Types of rhythms- Circadian, Circatidal, Circalunar, Circannual; Centres of biological rhythms- Suprachiasmatic nuclei, Pineal gland, Optic lobes; Factors influencing biological rhythms- Environmental, Photoperiod, Temperature, Other Zeitgebers. Methods of measurement: Entrainment, Re- entrainment, Phase angle difference, Freerun, Phase shift, Phase response curve, Arrhythmia. Molecular bases of circadian rhythms: Clock genes: <i>Drosophila</i> and Mouse. Applied Chronobiology: Human circadian rhythms, Application of circadian rhythms and principles; Jet-lag 	Apply, Evaluate

Paper Name: Genetics and Cytogenetics Paper Code: ZOO-1044

Course Outcome	Unit/ Topic	Bloom's
	l	Taxonomy Level
After the completion of this	Unit I:	Knowledge.
course the students will be able to:	1. Eukaryotic chromatin structure and	Understand
course, the students will be uble to.	chromosome organization: Classes of DNA	Apply Applyzo
CO1. Describe and evaluin the	Chromosomal proteins: histones and their	Appry, Anaryze
COT: Describe and explain the	modifications, non-histone proteins, scaffold/	
structure of Eukaryotic chromatin,	matrix proteins, levels of chromatin condensation	
types of DNA, chromosomal	at interphase and metaphase stage.	
proteins, giant chromosome,	2. Organization and functions of mitochondrial	
bacteriophage, and methods of sex	DNA 2 Microphial constiant hastorial shramosomes	
determination	5. Microbial genetics: bacterial chromosomes,	
	4 Bacterionhage: Type structure and	
CO2. Remember function and	mornhology	
co2. Remember function and	5. Chromosome anomalies and diseases:	
organization of mitochondrial	chromosomal anomalies in maligancy(chronic	
DNA	myeloid leukemia, Burkitt's lymphoma,	
	retinoblastoma and Wilm'stumor)	
CO3: Understand and contrast	6. Genetics and cancer: oncogenes-tumour	
Chromosomal anomalies, genetic	inducing retroviruses and viral oncogenes,	
diseases	chromosome rearrangements and cancer, tumour	
	suppressor genes, cellular roles of tumour	
CO4: Explain game interaction	suppressor genes, PRB, P53, PAPC, genetic	
co4. Explain gene interaction,	pathways to cancer.	
nature of gene and its function	7. History of organization, goals and values of	
	distribution of human gapas	
CO5: Apply and illustrate	alstribution of numan genes.	
concepts of genetics for gene	benetrance and expressivity gene interaction	
mapping	epistasis, pleiotropy.	
	9. Nature of gene and its function, fine structure	
	of gene (r11 locus)	
	10. Methods of gene mapping: 3 point test cross	
	in Drosophila, gene mapping in human by	
	Linkage analyses in pedigrees. 11. Basic concept	
	of molecular disorders and gene therapy.	
	Unit II:	Knowledge,
	1. Giant chromosome: models for studies on	Understand,
	chromosome organization and gene expression.	Apply, Analyze
	2. Sex determination: Role of Y chromosome, sex	11 5/ 5
	influenced alleles sex limited genes and	
	hormonal influence 3 Sex determination and	
	dosage compensation gap of X-linked genes	
	hyperactivation of X linked genes in Drosophila.	
	Inactivation of X-linked gene in female mammas.	
	Hypoactivation of X-linked genes in	
	Caenorhabditiselegans.	
	4. Human genetics: Karyotype and nomenclature	
	of metaphase chromosome bands.	

Paper Name: Ecology and Environmental biology Paper Code: ZOO-1054

Course Outcome	Unit/ Topic	Bloom's Taxonomy
		Level
After the completion of this course, the students will be able to: CO1: Define population ecosystem, homeostasis, community, tropic structure and biogeochemical cycles CO2: Remember and understand the impact of human on environment, major drivers of environmental change and environmental regulations CO3: Explain features of aquatic and terrestrial ecosystem, community development, niche concept, energy flow models, and life history strategies CO4: Understand, analyze and	 Unit I: Structure of ecosystem-variations in physical environment and adaptations, Homeostasis, stability concept Biodiversity of ecosystem – Salient features of aquatic and terrestrial ecosystem and their biotic communities Biotic community concept and community analysis – organization, population density, relative abundance, frequency, dominance, carrying capacity, species richness and species diversity Community development: Types of community changes, causes and examples of ecological succession, Climax community and stability The Niche concept, ecological niche, niche overlap and separation Population ecology- growth pattern, life tables & survivorship curve and density dependent & independent factors. Life history strategies: K- or r-selection, Age and sex ratio. Trophic structure, food chain and food webs, energy flow and Lindeman's trophic dynamics concept, Food web pattern and measurement in ecosystem energy flow model, concept of productivity and measurement of primary 	Knowledge, Understand, Apply, Analyze, Create
create environmental assessment and monitoring plans CO5:Conceptualize productivity and measure of primary productivity. CO6: Solve problems related to life table, survivorship curve, environmental issues and concerns	 productivity. Unit II: 1. Environmental issues, environmental regulations and biodiversity management approaches. 2. Environmental concerns–green house effect, global warming and environmental pollution. 3. Biogeochemical cycles- carbon, nitrogen and sulphur cycles; impact of human activity on nutrient cycles. 4. Human and Environment: Anthropogenic Impact on Environment, Environmental Impact assessment. 5. Environmental monitoring and documentation. 6. Major drivers of biodiversity changes in environment and principles of biodiversity Conservation. 	Knowledge, Understand, Apply, Analyze, Create

Paper Name:Biochemistry Paper Code: ZOO-1064

Unit/ Topic	Bloom's Taxonomy Level
Unit I:1. Energy rich compound, role of ATP/ADP cycle in transfer of high energy phosphate2. Important respiratory complex of ATP synthesis	Knowledge, Understand, Apply, Analyze, Create
 and oxidative phosphorylation, enclinositione hypothesis 3. Secondary structure: α-helix, β-pleated sheet & bends, Prediction of secondary structure, Ramachandran plot 4. Tertiary structure: Forces stabilizing tertiary structure, Domains and motifs, Quaternary Structure of proteins. 5. Enzyme kinetics, lowering of activation energy, Derivation of Michaelis-Menten equation and determination of Km and Vmax using MM & LB 	
plots, Concepts of regulation of enzyme activity.6. Concept of metabolic pathways, Glyolysis andGluconeogenesis,Glycogenolysis; Kreb cycle.	
 Unit II: 1. Hexose monophosphate shunt pathway and its significance; β-oxidation of fats and synthesis of fatty acids. 2. Intermediary metabolism: inter-conversion between lipids, carbohydrate and proteins. 3. Amino acid: Structure and chemistry of amino acid, Amino acid catabolism 4. Transamination, Transdeamination and oxidative deamination, Urea cycle 5. Nucleic acids : Structure, folding motifs, conformational flexibility and supercoiling, 6. DNA replication, DNA polymerases, Origin of replication and formation of primosome, 7. Replication fork and replisome, Termination of replication, Transcription unit, split genes 8. Mechanism of transcription: RNA polymerases , Formation of pre-initiation complex 9. RNA pol II promoter, Capping , Poly (A) tailing , Splicing Mechanism of translation: Role of ribosomes and tRNA, Formation of initiation complex. 10. Elongation and termination. 	Knowledge, Understand, Apply, Analyze, Create
	Unit/ Topic Unit I: 1. Energy rich compound, role of ATP/ADP cycle in transfer of high energy phosphate 2. Important respiratory complex of ATP synthesis and oxidative phosphorylation, chemiosmotic hypothesis 3. Secondary structure: <i>α</i> -helix, β-pleated sheet & bends, Prediction of secondary structure, Ramachandran plot 4. Tertiary structure: Forces stabilizing tertiary structure, Domains and motifs, Quaternary Structure of proteins. 5. Enzyme kinetics, lowering of activation energy, Derivation of Michaelis-Menten equation and determination of Km and Vmax using MM & LB plots, Concepts of regulation of enzyme activity. 6. Concept of metabolic pathways, Glyolysis and Glycogenolysis; Kreb cycle. Unit II: 1. Hexose monophosphate shunt pathway and its significance; β-oxidation of fats and synthesis of fatty acids. 2. Intermediary metabolism: inter-conversion between lipids, carbohydrate and proteins. 3. Amino acid catabolism 4. Transamination, Transdeamination and oxidative deamination, Urea cycle 5. Nucleic acids : Structure, folding motifs, conformational flexibility and supercoiling, 6. DNA replication, DNA polymerases, Origin of replication fork and replisome, Termination of replication, Transcription unit, split genes 8. Mechanism of transcription: RNA polymerases , Formation of pre-initiation complex 9. RNA pol II promoter, Capping , Poly (A) tailing , Splicing Mechanism of translation: Role of ribosomes and tRNA, Formation of initiation complex. 10. Elongation and termination.

Paper Name: Biosystematics, Biostatistics and Bioinformatics Paper Code: ZOO-1072

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Unit I:	Knowledge, Understand,
course, the students will be	1. Identification of invertebrates,	Apply, Analyze, Evaluate
able to:	larval forms of invertebrates,	Create
	protista, and vertebrates.	
CO1: Identify and contrast	2. Determination of biodiversity	
different larval forms of	indices: Shannon-Weiner Index,	
animals	Similarity and Dissimilarity index	
	and association index.	
CO2: Test hypothesis using	3. Graphical representation of data.	
bio-statistical test	4. Calculation of Standard error,	
	standard deviation, analysis of	
CO3: Estimate presence of	variation, Coefficient of variation, t-	
biomolecules using	test, chi-square test and two way	
biochemical tests	ANOVA.	
	5. Extraction of biomolecules	
CO4: Determine molecular	(carbohydrates, proteins, lipids)	
mass of protein, and effect of	from fish liver.	
enzyme activity	6. Estimation of protein extracted	
	from fish liver by	
CO5: Solve numerical on	Biuret/Lowry/Bradford method.	
biodiversity	7. Estimation of glycogen extracted	
	from fish liver by Anthrone reagent	
CO6: Create graphical	method.	
representation of data	8. Estimation of blood glucose by	
	Folin-Wu method.	
	9. Effect of substrate concentration	
	on enzyme activity and	
	determination of Km and Vmax by	
	plotting Michaelis-Menten and LB	
	plot.	
	10. Estimation of DNA	
	11. Estimation of RNA	
	12. Determination of Pka& PI value	
	of glycine using Titration method.	
	13. Determination of molecular mass	
	of proteins by SDS-PAGE.	

Paper Name: Genetics, Cytogenetics, Evolution and Chronobiology Paper Code: ZOO-1082

Course Outcome Unit/ Topic Bloom's Taxonom	V
Level	5
After the completion of this Unit I: Knowledge,Understa	ınd,
course, the students will be Apply, Analy	vze.
able to:	, ,
Drosophila.	
2. Study of sex chromatin in buccal	
corr. Identify and contrast sinear and nail bud cens (Human).	
chromosomes from mouse bone marrow	
Drosophila 4 Chromosome banding (C- and G-	
banding).	
CO2: Understand and use 5. Study the difference in number, shape	
protein sequence database, and size of chromosomes in normal vs.	
search engines tumor cells and normal vs. irradiated	
cells.	
CO3: Prepare smears to study 6. Preparation of human karyotype and	
study of chromosomal aberrations with	
abromatin abromosomel	
deletion, etc. from the pictures provided.	
banding, chromosomal /. Study of Hardy- weinberg equilibrium	
aberrations in indian population by taking the example of blood group system (ABO)	
8. Use of search engines like Scopus.	
CO4: Contrast between Science Direct for reference material	
normal, tumor ad irradiated collection management.	
cells 9. Nucleic acid and protein sequence	
databases	
CO5: Construct phylogentic 10. Data mining for sequence analysis	
trees using softwares 11. Web based tools for sequence	
searches and homology screening	
12. Construction for phylogenetic trees	
COO: Prediction of protein loi proteins using OPOMA of Neighbor	
structure and use homology 13 Reproduction of the same phylogeny	
modelling, data mining and using MEGA software for the given set	
Autodock of sequences	
14. Finding possible genes in a given	
CO7: Solve numericals on nucleotide sequence(ORF finder)	
Hardy Weinberg Equilibrium ^{15.} Prediction and validation of protein	
structure using homology modeling (use	
of Swiss model)	
15. Determination of binding modes of a given ligend in the estive site of a	
protein(use of Autodock)	

M.Sc. 2nd Semester

Paper Name:Biodiversity Paper Code: ZOO-2014

Course Outcome	Unit/ Topic	Bloom's Taxonomy
	_	Level
After the completion of this	Unit I:	Knowledge,
course, the students will be	1. Major elements of global	Understand, Apply,
able to:	diversity, Evolution and	Analyze, Create
	distribution	-
CO1:Remember elements of	2. Biodiversity in different levels	
biodiversity, distribution,	(Country, Global, Regional)	
evolution values of	3. Components of Biodiversity	
biodiversity	(Genetic, Organismal and	
	Ecological)	
CO2: Define carrying capacity	4. Magnitude and pattern of	
	Biodiversity	
CO3: Understand and analyze	5. Carrying capacity, land use and	
the magnitude and patterns of	population pressure on	
biodiversity, impact of climate	Biodiversity	
change, conservation of	6. Impact of climate Change,	
biological diversity and the	Global health and diseases on	
role of men and women in	Biodiversity	
biodiversity conservation	Unit II:	Knowledge,
	7. Value of Biodiversity (Species	Understand, Apply,
CO4: Apply tools for	and Ecosystems), Utilization of	Analyze, Create
biodiversity conservation	Biodiversity	2
	8. Methods and tools for	
CO5: Analyze the legal	biodiversity conservation (ex-situ,	
instruments related to	in-situ, Restoration and	
environmental sustainability,	Rehabilitation, land use)	
benefit sharing, and	9. Priority setting: Criteria for	
biodiversity conservation	conservation	
	10. Women, gender and	
CO6: Create environment	biodiversity conservation	
awareness from the concepts	11. Legal instruments for	
learnt	Biological diversity conservation	
	12. Sustainability, Harnessing and	
	benefit sharing	

Paper Name:Endocrinology Paper Code: ZOO-2024

Course Outcome	Unit/ Topic	Bloom's Taxonomy
		Level
After the completion of this	Unit I:	Knowledge.
course, the students will be	1. Hormone and target organs: hormone	Understand. Apply.
able to:	receptors and their characteristics.	Analyze
	neurocrine endocrine and paracrine	1 2000 1 200
CO1: Remember different	transduction	
types of hormones and their	2. Hypothalamus: Hypothalamic	
target organ their	neurosecretory centres, Hypothalamic	
characteristics and functions	hormones, hormonal feedback.	
characteristics and functions	3. Pituitary: Pituitary hormones and their functions	
CO2: Understand feedback	4. Thyroid: Thyroid hormones	
mechanisms	biosynthesis and their functions	
	5. Comparative anatomy of adrenal	
CO3: Understand	glands in vertebrates, Biosysnthesis of	
neuroendocrine system of	adrenal hormones and their functions,	
insects	Adrenal Medulla: Catecholamine	
mseets	functions	
	6. Parathyroid: Calcitonin and vitamin D	
CO4: Apply the concepts of	in calcium Homeostasis	
role of insect hormone in post	7. Endocrine Pancreas: Glucose	
control	homeostasis and physiological functions	
control	of Insulin and Glucagon	Vaculadaa
CO5. Commence de crime	8 Neurosecretory hormones in insets and	Knowledge,
COS: Compare endocrine	crustaceans and their functions	Understand, Apply,
glands in vertebrates	9. Neuroendocrine system of Insect :	Analyze
	Neurosecretory cells of brain and ventral	
CO6: Elaborate and explain the	nerve cord, synthesis and assemblage of	
structure of different types of	release and transport of neurohormones to	
endocrine glands and their	targets, long distance axonal transport.	
functions in vertebrates and	Hormones produced by Neurosecretory	
insects	cells and their function	
	10. Prothoracicotropic hormone,	
	Allatotropin, Allatostanin, Diapause	
	Proctolin Diuretic hormone and Heart	
	beat accelerating factor	
	11. Corpus cardiacum : Structure ,	
	Hormones produced by Corpus	
	Cardiacum and their functions, Corpus	
	anatum : structure and functions of JH, IH as a gonadotropin	
	12. Prothoracic gland and ring gland	
	ecdysone and its functions; Ovarian	
	ecdysonesstructure and function,	
	synthesis of ecdysone. Role of Juvenile	
	hormone analogues and ecdysteroids in	
	pest control	

Paper Name: Developmental Biology

Course Outcome	Unit/ Topic	Bloom's Taxonomy
	-	Level
After the completion of this	Unit I:	Knowledge,
course, the students will be	1. Principles of experimental embryology:	Understand, Apply,
able to:	the developmental dynamics of cell	Analyze
CO1: Remember the	specification stem cells and developmental	
Principles of experimental	2. Morphogenesis and cell adhesion-the	
embryology	thermodynamic model of cell interactions,	
children berogg	concept of morphogen gradients and	
CO2: Understand cell	morphogenetic fields, cell adhesion	
specification morphogenesis	molecules	
cell adhesion	3. Fertilization-pre and post fertilization	
thermodynamics fortilization	and prevention of phylogeny	
aventa nucleo extenlegmio	4. Nucleo cytoplasmic interaction in	
events, nucleo-cytoplasinic	development of unicellular organisms and	
interactions, cen-cen	in early development and differentiations	
communication,	of multi cellular organisms, Importance	
organogenesis, regeneration	and role of cytoplasm, hybridization	
and the role of maternal genes	cell hybridization and nuclear	
in development	transplantation experiments.	
	5. Cell to cell communications in	
CO3: Differentiate between	development: Induction and competence,	
stem cells and their roles	Reciprocal and sequential inductive events,	
	Instructive and permissive interactions,	
	Epithelial and mesenchymal interactions,	
CO4: Apply the concepts	Factors: the inducer molecules.	
learnt in experimental	Unit III:	Knowledge
embryology	6. Role of maternal contribution in early	Understand Apply
	embryogenic development in Drosophila:	Δnalyze
CO5: Analyze the role of	Maternal effect genes, gap genes, pair rule	7 Maryze
environment in animal	genes, segment polarity genes, homeotic	
development	7 Organogenesis: vulva formation in	
Ĩ	Caenorhapditiselegans.	
	8. Regeneration: Epimorphic regeneration	
	of Salamander limbs, Morphallactic	
	regeneration in hydra, Compensatory	
	regeneration in Mammalian liver.	
	9. Different types of stem cells and their applications. Regeneration therapy	
	10. Role of environment in animal	
	Development: Gravity and pressure,	
	Developmental symbiosis , Larval	
	settlement. Diapause: suspended	
	development.	

Paper Name: Animal cell Culture and Genetic Engineering

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Unit I:	Knowledge, Understand,
course, the students will be	1. Cell culture: Basic techniques of	Apply, Analyze, Create
able to:	cell culture. Development of	
	primary cell cultures; cell	
CO1. Remember the basic	maintenance of cell lines:	
techniques of cell culture. Cell	Transformation and differentiation	
culture media concept of DNA	of cell cultures, types of cell	
nolumentalism	culture: monolayer, suspension,	
porymorphism	clonal and stem cell culture,	
	cryopreservation cell lines.	
CO2: Understand cell culture	2. Cell culture Media: Primary and	
media preparation, cloning	established cell line cultures;	
vectors, RNA interference,	metabolic functions: Serum and	
gene and somatic cloning	protein-free defined media and	
techniques, and transgenic	their applications.	
technology	3. Measurement of viability and	
	parameters of growth. Cell cycle	
CO3: Make use of Cell culture	analysis and synchronization of	
Bioassays	cultures; Assessment of cell	
	culture contaminants, safety	
CO4: Analyzeviability and	parameters. A Call culture Bioassays: Call	
parameters of growth of cells	proliferation assays	
in cell culture	Unit II:	Knowledge Understand
in cen culture	5. Automated sequencing methods;	Apply Applyze Create
	Sanger's dideoxynucleotide	Appry, Maryze, Create
COS: Compare between	method; Shotgun DNA DNA	
different sequencing methods	sequencing method; Polymerase	
	chain reaction and its advantages.	
CO6: Create cell lines and	6. DNA polymorphism: Basis of DNA typing/fingerprinting:	
cloning vectors from the	Expressed sequence tags and their	
concepts learnt	use for developing STSs, SSRs	
	and SNPs	
	7. Basic biology of cloning	
	vectors: plasmids, phages, single	
	stranded DNA vectors, high	
	capacity vectors, retroviral vectors,	
	advanced vectors in use: genomic	
	library and cDNA library	
	8. RNA interference: History,	
	molecular mechanisms and	
	applications of antisense RNA,	
	microRNA, siRNA, and	
	ribozymes.	
	y. Gene and somatic cioning	
	10. Transgenic technology-animals	
	as hioreactors	

Paper Name: Animal behavior

Course Outcome	Unit/ Topic	Bloom's Taxonomy
After the completion of this course, the students will be	Unit I: 1. Patterns of animal behavior a. Objectives and mechanism of behaviours b. Types of	Level Knowledge, Understand,
able to:	reflexes, characteristics of reflexes and complex behaviour. c. Orientation: Primary	Apply,Analyze, Evaluate
animal behavior, objectives, reflexes,	Orientation, d. Kinesis: Orthokinesis and Klinokinesis. e. Taxis: Different kind of	
orientation and kinesis CO2: Define learning,	taxis.2. Development of behaviour: Genetic basis of behaviour, Hormone brain relationship	
motivation, sociobiology CO3:	3. Neural basis of behaviour: Key stimuli, Stimulus filtering, Supernormal stimuli, Open and closed IRM, Biological rhythms.	
Understanddevelopment of behaviour, neural basis of behaviour, reproductive	 4. Learning Definition, Types of learning, Neural mechanism of learning 5. Communication : Types of communications-Auditory communication : 	
strategies, parental behaviour, altruism and kin	Infrasound communication among Elephants and Whales; Sonar,Navigation,and communications: Vocalization in nonhuman	
selection	primates;Ecolocation in Bats; Visual communication; Chemical signals;Functions	
genes, environment, brain	communications.	
and hormone with behaviour	Unit II: 6. Motivational system: Physiological basis of motivation, control of hunger drive and thirt drive in animals. Mativational conflict	Knowledge, Understand, Apply, Analyze, Evaluate
CO5: Analyzephysiological basis of motivation	and decision making, displacement activity, models of motivation, measuring motivation, hormones and pheromones influencing	
CO6: Compare between types of learning,	behaviour of animals. 7. Sociobiology:Units of Sociobiology; major social behaviours: Alturism:	
communication, reproductive strategies and	Reciprocal altruism, group selection, kin selection and concept of inclusive fitness, cooperation . /reciprocation: Selfishness:	
CO7: Measure motivation	Eusociality. 8. Reproductive strategies: Sexual selection, intrasexual selection (male rivalry),	
	intersexual selection (female choice), infanticide, mate guarding. 9. Parental Behaviour:Care before birth:Care	
	after birth; Early parental care; Types of parental care; Factors affecting parental care; Care and attachment: Parent offspring	
	conflict.	

Paper Name: Animal Physiology Paper Code: ZOO-2064

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Unit I:	Knowledge, Understand,
course, the students will be	1. Body Fluid: Blood, Lymph,	Apply, Analyze
able to:	Hydrolymph, Hemolymph: Chemical	
	2. Cardiac Cycle. Specialized	
CO1. Demember different	conducting system of heart, generation	
COT: Remember different	and conduction of cardiac impulse,	
types of body fluids, cardiac	neurohomonal regulation of cardiac	
cycle, parts of respiratory	amplitude and frequency.	
system, nervous system and	2. Respiratory system in vertebrate. Pulmonary ventilation alveolar	
sensory system	ventilation, diffusion and transport of	
5 5	gases, Basal metabolic rate.	
CO2. Understandgeneration	Respiratory centers: organization and	
regulation and conduction of	function	
	4. Counter current mechanism of urine formation PAS and hormonal	
cardiac impulse, counter	regulation of urine formation. Acid-	
current mechanism of urine	base balance and homeostasis	
formation, hormonal regulation	5. Nutrition: Gastro intestinal	
of urine formation and	hormones and digestive enzymes:	
homeostasis, nerve imulse	chemical nature and functions.	
transmission, generation and	Unit II: 6 Nervous system: Neurons and types	Knowledge, Understand,
processing of visual and	of neurons, Types of synapses and	Apply, Analyze
auditory impulse and muscle	synaptic knobs, Axonal transmission.	
auditory impulse and muscle	7. Membrane potential and generation	
contraction	of action potential. Sodium-potassium	
	pump, Synaptic transmission,	
CO3: Compare different types	inhibitory post-synaptic potential.	
of body fluids, impulse	Chemical transmission,	
generation in different types of	neurotransmitters	
nerves	(acetylcholine,orcatecholamines,	
	service system (Sympathetic and	
CO4: Explain different types	parasympathetic)	
of physical grades from	8. Special sensory system: Eye:	
of physiological process from	Anatomical Organisation of retina,	
the concepts learnt	Photoreceptors: Processing of visual	
	impulses Ear: Cochlea, basilar	
	Generation of endochochlear potential	
	Processing of auditory impulses.	
	9. Muscle: Contractile proteins,	
	Ultrastructure of skeletal muscles,	
	Properties of muscle: muscle twist,	
	Summation, tetanus and latigue,	
	contraction and regulation.	

Paper Name: Biodiversity, Animal behavior, Developmental Biology Paper Code: ZOO-2072

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Unit I:	Knowledge, Understand,
course, the students will be	1. Collection and identification	Apply, Analyze, Create
able to:	of egg (at least six different	
	types)	
CO1: Identify different	2. Study of life cycle of	
types of eggs,	Drosophila melanogaster.	
Drosophilaimaginal disc,	3. Dissection and study of larval	
developmental stages of	pre pupal wing, leg, eye, and	
fish	antennal imaginal disc in D.	
	melanogaster.	
CO2: Remember life cycle	4. Preparation and study of	
of Drosophila	frog/mice sperm smear.	
melanogaster	5. Detection of SH proteins	
	during various stages in the early	
CO3: Prepare smears and	development of amphibian	
study sperm cells	embryo.	
	6. Study of developmental stages	
CO4: Experiment with fish	of fish from egg to hatchling.	
to study the effects of	7. In vitro culture of chick	
toxicants	embryo.	
	8. Study of chick embryo using	
CO5: Detect SH	vital staining.	
proteinsstages in the early	9. Study of cell death during	
development of amphibian	development.	
embryo.	10. Activity budgeting of	
	bird/mammal	
	11. Effect of toxicant on	
CO6: Create and Evaluate	opercular movement and	
activity budgeting of	surfacing in fish.	
animals	12. Effect of toxicant on	
	movement of fish.	

Paper Name:Endocrinology, Animal Physiology, Animal cell Culture And Genetic Engineering Paper Code: ZOO-2082

Course Outcome	Unit/ Topic	Bloom's Taxonomy
		Level
After the completion of this	Unit I:	Knowledge,
course, the students will be	1. Neuroendocrine system of	Understand, Apply,
able to:	cockroach – Dissection and display	Analyze, Create
	2. Prothoracic gland of cockroach –	
CO!: Identify endocrine glands	Dissection, display and mounting	
of vertebrates from histological	3. Mounting of prothoracic gland	
slides	4. Thyroid and parathyroid gland of	
	mouse/chicken - dissection and	
CO2: Dissect, mount and	display and slide preparation	
explain Neuroendocrine	5. Pituitary gland of mouse /fish -	
system, Prothoracic gland of	Dissection, display and permanent	
cockroach	slide preparation using	
	metachromatic stains.	
CO3: Prepare slides of Thyroid	6. Steroid and thyroid hormone	
and parathyroid gland of	assay by ELISA	
mouse/chicken, and Pituitary	7. Histological study of endocrine	
gland of mouse /fish	glands of vertebrates	
	8. Detection of uric acid in	
CO4: Detect uric acid in	malpighian tubules	
malpighian tubules	9. Hemocyte count and estimation	
	of protein in hemolymph.	
	10. Total RBC and WBC count in	
CO5: Analyze and estimate	human blood.	
blood cells from a given	11. Isolation of genomic DNA from	
sample, MTT cell proliferation	mammalian tissue.	
assay, cell viability assay	12. Restriction-digestion of DNA	
	sample and separation of fragments	
CO5:Isolate of genomic DNA	by performing agarose gel	
and perform agarose gel	electrophoresis. Interpretation of	
electrophoresis	the results by comparing with the	
	standard digests.	
CO6:Comapre Restriction-	13. MTT cell proliferation assay,	
digestion of DNA samples	cell viability assay.	

M.Sc.3rd Semester

Paper Name:Cell Biology Paper Code: ZOO- 3014

Course Outcome	Unit/ Topic	Bloom's Taxonomy
		Level
After the completion of this course, the students will be able to:	Unit I: 1. Chemical complexity and organization : distinctive structural and molecular features of prokaryotic and eukaryotic calls	Knowledge, Understand, Analyze
CO1: Rememberstructural and molecular features of prokaryotic and eukaryotic cells, models of plasma membrane, structure and dynamics of cytoskeleton, functions and assembly of peroxisomes, and apoptosis CO2: Understand how cells adhere to each other, biogenesis of cell organelles, regulation of gene expression, protein import and mitochondrial	 2. Models of plasma membrane structure , membrane lipids, proteins and carbohydrates, organizational and functional features of plasma membrane 3. Cytoskeleton, microfilament, microtubules and intermediate filaments – structure and dynamics 4. Cell movement, intracellular transport, role of kinesin and dyenin, cilia and flagellastructure and function 5. Cell to cell adhesion :Ca++ dependent and CA++ independent homophilic cell- cell adhesion, Gap junctions and connexins, cell matrix adhesion – intrigrins, collagen 6. Cell cycle :cyclins and cyclin dependent kinases; regulation of cdk-cyclinactivity,cell cycle checkpoints. 	
assembly, and mechanism and significance of apoptosis CO3: Analyzetranscriptional modifications and trafficking mechanism.	 Unit II: Biogenesis of membrane bound organelle: Mitochondria and nucleus. Protein import and mitochondrial assembly. Peroxisomes, functions of peroxisomes. Peroxisome assembly. Regulation of gene expression in prokaryotes and Eukaryotes, and RNA editing Intracellular protein traffic: Protein synthesis on bound and free polysomes, membrane proteins, golgi sorting uptake into ER; Post-transcriptional modifications and trafficking mechanism. Apoptosis: definition, mechanism and significance 	Knowledge, Understand, Analyze

Paper Name:Immunology, Microbiology and Parasitology **Paper Code:** ZOO-3024

Course Outcome	Unit/ Topic	Bloom's Taxonomy
		Level
After the completion of this	Unit I:	Knowledge,
course, the students will be	Innate and acquired immunity –	Understand, Apply,
able to:	components and characteristic features,	Analyze
	primary and secondary responses	
CO1: Remembercomponents	Cells of the immune system : Types of	
and characteristic features of	cells and their subsets responsible for	
innate and acquired	immune response- WBC, macrophages,	
immunity, cells of the	dendritic cells, B,T and NK cells; Basic	
immune system, different	concept of B and T cell antigen receptors	
types of microbial products,	and CD markers, Cell cooperation in	
and hosts and their common	immune response Lymphoid organs –	
parasites.	primary and secondary lymphoid organs	
r	and their functions, their micro and macro	
CO2: Differentiate between	structures vascular and lymphatic	
cells of immune system	connections	
microbial diversity	Immunoglobulins: Structure and domain	
interoblar arversity	of Ig molecule. Ig classes, subclasses and	
CO3: Understandconcept of	types: Myelema protein monoclonal	
B and T cell antigen	antibody. In superfamily Antigen antibody	
receptors and CD markers	reaction: antibody affinity and avidity	
structure and function of	cross reactivity acquitination reaction	
immune alekulin	cross reactivity, aggrutilation reaction,	
Innunogiobuini		IZ 1 1
		Knowledge,
CO4: Apply concepts of	Microbial diversity:Prokaryotic microbes-	Understand, Apply,
microbiology to study	Bacterial and archea;	Analyze
pathogenesis, microbial	Eukaryotic microbesAnaerobic and	
products, wastewater	aerobic Protozoa. Microbial pathogenesis:	
treatment	Invasiveness and Toxigenicity; pure	
	culture techniques of microbes.	
CO4: Analyzelife cycle of	Applied microbiology: Microbial	
economically important	products; Food microbiology; Biocontrol;	
helminth parasites of man	Biological weapons; Wastewater	
	treatment.	
	Parasitism: General consideration, Types	
	of parasites, Types of Hosts, symbiosis	
	and Commensalism Distribution, habit and	
	habitat, structure and life cycle of	
	economically important helminth parasites	
	of man and domesticated animals:	
	Echinococcusgranulosus, Hymenolepis	
	nana, Scistosomahaematobium,	
	$\label{eq:transformation} Trichinellas piralis and Wuchereria bancrofti$	

Paper Name: Reproductive Biology Paper Code: ZOO-3034

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Unit I:	Knowledge, Understand,
course, the students will be	1. Development of gonads	Analyze
able to:	and Disorder of gonadal	
	development	
CO1: Remember the hormones	2. Sexual differentiation	
that play role in puberty and	within the gonads	
adolescence, reproductive	Anatomical organization of	
cyclesfertilization, pregnancy,	male and female	
lactation, placental hormones	reproductive system	
	3. Reproductive life cycle	
CO2: Understandsexual	4. Puberty and adolocence,	
differentiation, follicular	role of hormones	
development in mammals,	5. Reproductive cycles in	
spermatogenesis, implantation	animals and human: Estrous	
	and menstrual cycle	
CO3: Understand	6. Ovarian Follicular	
environmental endocrine issues	development:	
	Folliculogenesis, mechanism	
CO4: Analyzeassisted	of ovulation In mammals	
reproductive techniques	7. Testicular organization,	
	seminiferous epithelium	
	cycle, Spermatogenesis	
	Unit II:	Knowledge, Understand,
	8. Role of hormones in	Analyze
	fertilization,	
	9. Placenta and Placental	
	hormones	
	10. Implantation and role of	
	hormones	
	11. Pregnancy and hormones	
	of pregnancy.	
	12. Development of breast,	
	Lactation and hormonal	
	regulation	
	13. Parturition in mammals	
	14. Assisted reproductive	
	Techniques: IVF-ET	
	Environmental endocrine	
	issue: environmental	
	estrogens, endocrine	
	disruptors	

Paper Name: Entomology and Aquatic Biology

Course Outcome	Unit/ Topic	Bloom's Taxonomy
	_	Level
After the completion of this	Unit I:	Knowledge,
course, the students will be	1. Classification of class of Insect up	Understand, Apply,
able to:	to Orders with salient features and	Analyze, Create
	common example.	
CO1: Identify and Remember	2. Useful insects: Insects and Insect	
different types of insects with	products, Pollinating insects, insect	
examples	used as food and medicine.	
CO2: Define limnology and	3. Harmful insects: insect pests,	
aquatic resources	A Insect's role in ecosystem and	
1	nutrient cycle	
CO3: Understand the	5. Insects as environmental indicator.	
importance of insects, their	6. Concept of Pest management	
role in the ecosystem.	Unit II:	Knowledge,
characteristic features of	7. Limnology: Introduction,	Understand, Apply,
aquatic resources, and major	Definition of limnology, Essential	Analyze, Create
threats to freshwater ecosystem	nature of limnology.	5
	8. Aquatic Resources: Characteristic	
CO4. Differentiate between	features of fresh water, brackish	
lotic and lentic aquatic systems	water and marine water environment.	
Totie und Tentre aquaite systems	9. Freshwater Environment: Extent	
CO5: Apply the concepts learnt	and distribution of freshwater. Louc	
for pest management breeding	classification of fresh water biota	
techniques of ornamental	Freshwater communities	
fishes	10. Rivers: Origin and characteristics	
	of Rivers. Function and Biological	
CO6 · Analyze and make use of	productivity	
fish germplasm diversity of	11. Major threats to freshwater	
North East India	ecosystem including pollution and	
North East India	sand mining, impact of large dams.	
CO7: Formulate pest	12. Fish germplasm diversity of	
management techniques, and	North East India — their prospects,	
conservation strategies for	problems & conservation strategy.	
conserving fish diversity	13. Urnamental fishes of North-East	
conserving fish diversity	their oulture & breading techniques	
	then culture α breeding techniques.	

Paper Name: Integrative Biology

Paper Code: ZOO-3056 (Open I)

Course Outcome	Unit/ Topic	Bloom's Taxonomy
		Level
After the completion of this course, the students will be able to:	Unit I: Molecules and their interactions: Structures of atoms, molecules and chemical bonds, Stabilizing interactions (van der waal's, Electrostatic, Hydrogen hending Hydrogen the	Knowledge, Understand, Apply, Analyze
molecules and their interactions, enzyme kinetics, Conformation of Nucleic acids, Microbial Physiology, Cell signalling, Cellular communication	Growth, yield and Principles of catalysis, enzymes and enzyme kinetics, enzyme regulation, mechanism of enzyme catalysis, isozymes. Conformation of Nucleic acids (A-, B-, Z- DNA), t-RNA and micro RNA.	
CO2: UnderstandHomologous and non-homologous recombination, Polygenic	Microbial Physiology: Growth, yield and characteristic, strategies of cell division, Stress response.	
inheritance	Cell signaling: Hormones and their receptors, signaling through G protein coupled receptors, signal transduction	
Population genetics to understand the rate of change in gene frequency through	pathways, second messengers, and regulation of signaling pathways, bacterial chemotaxis and quorum sensing.	
CO4: AnalyzeGene mapping methods Pedigree OTL	Cellular communication: Regulation of haematopoeisis, Neurotransmission and its regulation	
mapping, lod score for linkage testing	Gene mapping methods: Linkage maps, tetrad analysis, Mapping by using somatic somatic cell hybrids Human genetics: Pedigree analysis, lod score for linkage testing, karyotypes, genetic disorders.	
	Quantitative genetics: Polygenic inheritance, heritability and its measurements.QTL mapping.	
	Recombination: Homologous and non- homologous recombination including transposition, site specific recombination.	
	Population genetics: population, gene pool, gene frequency; concepts and rate of change in gene frequency through natural selection.	

Paper Name:Cell Biology, Histology, Histochemistry, Immunology and Reproductive Biology Paper Code: ZOO- 3063

Course Outcome	Unit/ Topic	Bloom's Taxonomy
		Level
After the completion of this	Unit I:	Knowledge,
course, the students will be	1. Isolation of mitochondria	Understand, Apply,
able to:	from mouse liver by differential	Analyze, Evaluate
	centrifugation and staining.	
CO1: Observe and identify	2. Microtubules in vesicle	
different stages of estrous cycle	transport in fish chromatophore.	
CO2: Prepare histological	3. Observation of DNA	
sections testis, ovary and	fragmentation in apoptotic cell	
lymphoid organs	4. Dissection and histology of	
	lymphoid organs in rat/mouse.	
	5. Differential WBC count in	
CO3: Apply differential	mammalian blood.	
centrifugation and staining for	6. Isolation of B lymphocytes.	
Isolation of mitochondria from	7. Cell viability and count using	
mouse liver, cytochemical	trypan blue stain from bone	
technique for detection of	marrow and spleenocytes.	
DNA, glycogen and protein,	8. Detection of DNA, glycogen	
	and protein using cytochemical	
CO4: Analyze viability of cells	technique.	
from bone marrow and	9. Preparation of histological	
spleenocytes.	slides from testis and ovary.	
	10. Study of estrous cycle.	
CO5: Analyze and Estimate		
WBC in mammalian blood.		

Paper Name: Aquatic Biology, Fishery, Entomology, Parasitology Paper Code: ZOO-3073

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Unit I:	Knowledge, Understand,
course, the students will be	1. Estimation of soil	Apply, Analyze, Evaluate
able to:	parameters: pH, Organic	
	Carbon, phosphate.	
CO1: Identify Plankton,	2. Estimation of primary	
Aquatic Insects, Aquatic	productivity by LB-DB	
Macrophytes, indigenous and	Method.	
exotic ornamental fishes	3. Collection and	
	Identification of Plankton,	
CO2:Identify insects belonging	Aquatic Insects, Aquatic	
to different orders, protozoans,	Macrophytes.	
parasites, helminths,	4. Estimation of turbidity	
arthropods, different types of	using Secchi-Disc method.	
insect mouth parts, antennae	5. Identification of	
and legs, rectal ciliates in frog	indigenous and exotic	
	ornamental fishes under	
CO3: Understand the	different families.	
procedure to dissect and	6. Identification of insects	
display Salivary gland of	belonging to different orders.	
honey bee, sting apparatus in	7. Identification of different	
honey bee	types of insect mouth parts,	
	antennae and legs.	
CO4: Apply concepts learnt to	8. Salivary gland of honey	
culture insect parasitoid on an	bee — dissection and	
insect host	temporary mounting.	
	9. Dissection of sting	
CO5: Analyze water and soil	apparatus in honey bee.	
quality, and Estimate turbidity,	10. Study of prepared slides	
primary productivity and soil	and museum specimens of	
parameters	selected parasites of	
	representative groups of	
	protozoans, parasites,	
	helminthes and arthropods.	
	11. Preparation and	
	identification of permanent	
	slide of rectal ciliates in frog.	
	12. Culture and study of	
	insect parasitoid on an insect	
	host.	

M.Sc. 4th semester Specialization Paper: FISH BIOLOGY & FISHERY SCIENCE

Paper Name: Fish Taxonomy & Study of Fish Growth & Population PAPER Code: Z -4014

Course Outcome	Unit/ Topic	Bloom's Taxonomy
	1	Level
After the completion of this course, the students will be able to:	Unit I: 1. Taxonomic characterization: taxonomic keys; Taxonomic	Knowledge, Understand, Apply, Analyze, Evaluate
CO1: Remember taxonomic characters and keys for identification, biogeographic units of Freshwater Biodiversity	 methods for identification of fresh water fishes. 2. Methods employed for phylogenetic studies and fish identification. 3. Modern Trends in Fish Taxonomy; Fish Barcoding. 	
CO2: Understand the modern Trends in Fish Taxonomy, Study of Growth curve, condition factor, growth rate and ageing, concept of Index of	 Fish skeleton as a tool for identification of fresh water fishes. Biogeographic units of Freshwater Biodiversity: Status and distribution of freshwater fish diversity in North East India 	
Biotic Integrity CO3: Apply the concept learnt for stock assessment and	Unit II: 1. Study of Growth curve: Absolute and relative Growth, Length-weight relationships, Condition factor, Relative condition factor — their	Knowledge, Understand, Apply, Analyze, Evaluate
managementCO4:Analyzemethodsemployedforphylogeneticstudies and fish identification.	 significance. Hepatosomatic index, Gonadosomatic index, Index of fullness, Ponderal index, Index of propagation — their estimation. Growth rate and ageing. 	
CO5: Evaluatenatural markers and applied markers for morphological analysis, environmental signals, genetic analysis	 4. Study of Species Diversity Indices, Fish Species Richness, Relative abundance. 5. Concept of Index of Biotic Integrity (IBI); Jaccard index. 6. Stock assessment and management — Stock composition analysis, fecundity analysis. 7. Natural markers — morphological analysis, environmental signals, genetic analysis. 8. Applied Markers — marking and tagging 	

Paper Name: Fish Physiology & Fish Genetics PAPER Code: Z -4024

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Unit I:	Knowledge, Understand,
course, the students will be	1 Dhysiology of disastion in	Apply, Analyze, Evaluate
able to:	1. Physiology of digestion in teleost — Digestive system:	
	anatomical differentiation and	
CO1: Gain knowledge on the	modifications. Feeding behavior	
different types of physiological	and feeding adaptation in fishes.	
systems in fishes	2. Respiratory system in Fishes — Gill structure, Mechanism of respiration — Counter-current	
CO2: Understand the	principle, Exchange of gases.	
functioning of Digestive	Accessory respiratory organs and	
system, Respiratory system,	respiratory epithelium,	
swim bladder, excretion,	Physiological adaptation in air	
osmoregulation, endocrine	breathing fishes.	
system	3. Forms and Functions of swim	
CO3: Understand the concepts	bladder and Weberianossicles in	
Population Genetics, Hardy-	teleosts.	
Weinberg principle, Selection	4 Excretion in fishes — Excretion	
	of nitrogenous wastes, Urea cycle.	
CO3: Apply the concepts learnt	5. Principles of osmoregulation in	
for stock management	Freshwater and Marine Teleosts —	
	Processes and functional aspects.	
CO4: Analyze the current	6 Endocrine system in Fish —	
scenario of selective breeding	Hypothalamo-hypophysial system;	
programmes in fish	Neurosecretory system and Neuro-	
	hypophysial hormones; Functional	
CO5: Test the Hardy Weinberg	morphology of Pituitary gland;	
equilibrium and apply in the	and Pancreas	
population	Unit II:	Knowledge Understand
	1. Population Genetics: Individual	Apply, Analyze, Evaluate
	vs. population; genetic structure of	
	random mating populations.	
	2. Hardy-weinberg principle: Test of equilibrium application and	
	properties of equilibrium	
	populations.	
	3. Selection: Scope, application,	
	role of genetics in fish selection	
	and breeding; National and International scenario of selective	
	breeding programmes in fish.	
	4. Stock improvement: sex-	
	reversal, Hybridization,	
	Gynogenesis, Polyploidy, hybrid	
	vigour, introgression.	

Paper Name: Capture Fisheries & Ecosystem management PAPER Code: Z -4034

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	UNIT I:	Knowledge, Understand,
course, the students will be	1. Types of capture fisheries	Apply, Analyze
able to:	resources. 2 Fishery resources of the	
CO1. Identify and remember	major river systems of India;	
different types capture fisheries	Fish and Fisheries of River	
resources Coldwater Fish &	Brahmaputra.	
fisheries, Floodplain wetland	3. Coldwater Fish & fisheries	
(beel) fisheries, Coastal	of North East India: Mahseer	
fisheries, Estuarine fisheries	fisheries: prospects and	
	problems with special reference	
CO2: Understandprinciples of	to NE India.	
preservation, handling and	4. Floodplain wetland (beel)	
packaging of fish for	fisheries: Fish resources,	
marketing, Importance and	approaches	
methods of Fish preservation	5. Coastal fisheries of India	
CO2: Make use of Fishing	(Sardine & Mackerel fisheries).	
crafts and gears used in inland	6. Fishing crafts and gears used	
capture fisheries	in inland capture fisheries.	
cupture insiteries	on fish diversity	
CO4: Study and analyzefishery	7. Estuarine fisheries (estuarine	
bi-products	fisheries resources, problems	
-	confronting brackish water	
	capture fisheries).	
	LINIT II.	Knowladge Understand
	1 Principles of preservation	Apply Applyze Create
	handling and packaging of fish	Appry, Anaryze, Create
	for marketing.	
	2. Importance and methods of	
	Fish preservation (Refrigeration	
	and freezing, Drying, Salting,	
	pasting and spicing.	
	Fermentation).	
	3. Fishery bi-products, their	
	production and utilization (liver	
	oils, Body oils, Fish meal, Fish	
	Fish guano Bone meal)	
	- Ser Bourio, 2010 mour/.	

Paper Name: Aquaculture & Fish Biotechnology PAPER Code: Z -4044

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Unit I:	Knowledge,
course, the students will be	1. Aquaculture systems	— Understand, Apply,
able to:	Extensive, semi-intensive, inten	sive Create
	and super intensive culture of f	ïsh;
CO1. Remember different	Pen and Cage culture in lentic	and
types of aquaculture systems	lotic water bodies; Monoculture	VS.
types of aquaeuture systems	Composite fish culture.	
CO2. Un demotor divise din s an d	2. Fish Breeding Technology	—
CO2: Understandbreeding and	Brood stock management, nutrition	onal
Culture of Air breatning fishes,	requirements, captive rearing,	and
Larval nutrition, non-	maturation; induced breed	ling
conventional methods of fish	techniques: physical and chem	ical
farming	inducing agents.	
	3. Breeding and Culture of	Air
CO3: Apply concepts for Fish	breathing fishes.	
Breeding Technology,	4. Non-conventional methods of	fish
aquarium maintenance and	farming — sewage fed fisher	ries,
Aquaculture Management	integrated fish farming.	
i iquaeanare management	5. Aquarium keeping — Design	and
	construction of tanks; species-v	vise
CO4. Create fish feed	tank size requirement; heat	ing,
CO4: Create fish feed	lighting, aeration and filtra	tion
formulation, management	arrangements; decorations u	sed;
plans for aquaculture	common aquarium plants and t	heir
	propagation.	
	Unit II:	Knowledge,
	6. Nutritional requirements	in Understand, Apply,
	aquaculture — Prot	create
	carbohydrate, fats, vitamins	and
	minerals.	
	7. Feed formulation — Gen	eral
	principles, different steps of f	feed
	formulation, classification of f	feed
	ingredients.	
	8. Maintenance of Natural Colo	r of
	fisnes in Aquarium.	
	9. Larval nutrition — Importance	e of
	live feed and artificial feed, Diffe	rent
	types of feed available for larvae.	
	10. Aquaculture Management	
	Feed, health and water qua	ality
	management; prophyla	xes;
	quarantine measures.	

Paper Name: Fish Pathology & Post harvest technology PAPER Code: Z -4054

Course Outcome		Unit/ Topic	Bloom's Taxo	nomy
			Level	
After the completion of this	Un	it I:	Knowledge,	
course, the students will be	FI	SH PATHOLOGY	Understand,	Apply,
able to:	1.	Fish disease — Types; symptoms;	Analyze, Create	11.07
	and	l prophylaxes.	,	
CO1. Identify different	2.	Disease diagnostics tools:		
types of fish diseases	Hi	stopathological methods;		
different courses of	Im	munoassay; Biochemical assay;		
	Se	cological techniques.		
pollution	3.	Techniques for isolation and		
	ide	ntification of fungi; Basics of		
CO2: Understand the	my	cological and virological techniques.		
impact of environment on	4.	Isolation and culture of different		
aquaculture, food	typ	es of bacteria.		
biotechnology, cell culture,	Un	it II:	Knowledge,	
recombinant DNA	EC	COSYSTEM MANAGEMENT	Understand,	Apply,
technology,			Analyze, Create	
cryopreservation	5.	Impact of environment on		
technology	aqu	aculture: Raw water source, physical		
teennoiogy	and	d chemical characteristics,		
CO2: Apply disasso	col	ntaminants and pollutants (algae,		
diagnostics tools	pat	hogens, heavy metals, pesticides)		
diagnostics tools,	and	their effect on productivity.		
mycological and	6.	Biological indicators and indices of		
virological techniques	wa	ter quality.		
	7.	Sanitation in aquaculture systems		
CO4: Compare different	8.	Algal blooms and environmental		
types of pollutants, their	mi	croflora.		
sources and causes	9.	Microbial toxins.		
	Un	it III:	Knowledge,	
CO5: Analyzeindices of	BI	OTECHNOLOGY	Understand,	Apply,
water quality	10	Food biotechnology: Probiotics,	Analyze, Create	
water quality	sin	gle cell proteins, Nutraceuticals.		
	11	Cell lines and cell culture; DNA		
COG: Create awaranass on	ma	rkers and MAS.		
COO. Cleate awareness on	12	Application of biotechnological		
impact of environment on	toc	ls: Recombinant DNA, Development		
aquaculture	of	hybridoma and production of		
	mo	nocional antibodies; Collection,		
	hai	ndling and observation of gametes of		
	t1n	tish and shellfish.		
	13	Cryopreservation technology;		
	Ira	ansier of gene and transgenic species		
	tor	mation.		

Paper Name: Dissertation PAPER Code: Z -4064

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Dissertation	Knowledge, Understand,
course, the students will be		Apply, Analyze, Evaluate,
able to:		Create
CO1: Apply learnt concepts in the research field		
CO2: Experiment with the		
given subject		
CO3: Apply learnt techniques in research field		
CO4: Analyze the data		
obtained from the experiment		
CO5: Evaluate the data to draw conclusion		
CO6: Summarize and Interpret		
drawn from the research work		

Paper Name: Practical paper-I (Taxonomy, Fish Biology & Aquaculture) PAPER Code: Z -4072

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this	Unit I:	Knowledge, Understand,
course, the students will be	1. Identification of	Apply, Analyze, Evaluate,
able to:	commercially important fresh	Create
	water fish species — Indigenous	
CO1: Identify commercially	and exotic food and ornamental	
important fresh water fish	fishes.	
species	2. Comparative biometric	
	assessment (Morphometry and	
CO2: Compare and assess	Meristics) of representative	
Morphometric and Meristic	freshwater fish species	
characters of fish, digestive	(carp/catfish/murrel/perch/loach)	
system, nervous system, and	following proper Taxonomic	
Urinogenital system in fish	Keys and tools for their	
	identification.	
	3. Fish osteology — Alizarin	
CO4: Analyzegut-content of	preparation of fish skeleton.	
freshwater fish species,	4. Dissection — Comparative	
bacterial colony	digestive system in herbivorous,	
	carnivorous and omnivorous	
CO4: Determine and	fish; nervous system (brain and	
Evaluategonadosomatic	cranial nerves - V, VII, IX, X);	
index, hepatosomatic index,	Urino-genital system	
condition factor and fecundity	(male/female); Weberianossicle.	
in fish	5. Gut-content analysis in	
	locally available freshwater fish	
CO5: Estimate of DO, TA, TH,	species.	
Ca and Mg in pond/river water	6. Determination of	
	gonadosomatic index (GSI),	
CO6: Perform fish Osteology,	hepatosomatic index (HSI),	
Haematological experiment,	condition factor (CF), and	
induce breeding and larval	fecundity.	
rearing in fisnes	7. water chemistry —	
	Estimation of DO, TA, TH, Ca	
	and Mg in pond/river water.	
	8. Histopathological	
	count	
	9 Haematological studies	
	DIC	
	10. Induced breeding and larval	
	rearing of IMC.	
	11. Viva-Voce	