Department of Physics

Programme Specific Outcome (BA/B.Sc. in Physics)

The programme specific outcome of the syllabus prescribed for the major students of physics is mentioned below:

- Understand the core theoretical concept of physics: Understand the core theoretical principles of physics.
- Acquire analytical and logical skill for higher Education: Acquire the ability to analyse critical problems logically.
- Excel in experimental physics and learn good laboratory practices and safety: Learn to handle experiments perfectly and safely.
- Trained to take up jobs in allied fields: Use the knowledge of physics to seek opportunities in other allied fields.

COURSE OUTCOME

BSc in Physics (Honours) syllabus (CBCS)

1st Semester (Honours)

Paper Name: Mathematical Physics I Paper Code: PHY-HC-1016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Vector Calculus	Understand, Apply
students will be able to:	Unit II: First and Second order	
• explain vector and its	Differential Equations	
applications in various fields,	Unit III: Orthogonal Curvilinear	
[understand]	Coordinates	
• interpret differential equations	Unit IV: Dirac Delta function and	
and its applications, [apply]	its Properties	
 use different coordinate systems 	Unit V: Introduction to Probability	
[apply]	Unit VI: Theory of Errors	
• use concept of probability and		
error [apply]		

Paper Name: Mechanics Paper Code: PHY-HC-1026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Fundamentals of Dynamics	Understand, Apply
students will be able to:	Unit II: Work and Energy	
• explain Inertial and non-inertial	Unit III: Collisions	
reference frames, Newtonian	Unit IV: Rotational Dynamics	
motion, Galilean	Unit V: Elasticity	
transformations, projectile	Unit VI: Fluid Motion	
motion, [understand]	Unit VII: Gravitation and Central	

• interpret work and energy,	Force Motion
Elastic and inelastic collisions,	Unit VIII: Oscillations
[apply]	Unit IX: Non-Inertial Systems
• explain motion under central	Unit X: Special Theory of
force, simple harmonic	Relativity
oscillations, [understand]	
• use special theory of relativity.	
[apply]	

Paper Name: Mechanics Paper Code: PHY-HG-1016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Vectors	Understand, Apply
students will be able to:	Unit II: Laws of Motion	
• explain the role of vectors and	Unit III: Momentum and Energy	
coordinate systems in Physics,	Unit IV : Rotational Motion	
[understand]	Unit V : Gravitation	
 solve Ordinary Differential 	Unit VI : Oscillations	
Equations, [apply]	Unit VII : Elasticity	
• apply laws of motion to various	Unit VII : Special Theory of	
dynamical situations, [apply]	Relativity	
• explain Inertial reference frames		
their transformations,		
[understand]		
• apply the concept of		
conservation of energy,		
momentum, angular momentum		
to basic problems, [apply]		
• explain phenomenon of simple		
harmonic motion, motion under		
central force [understand]		
• conceptualise time dilation,		
Length contraction using special		
teory of relativity. [understand]		
• use measuring instruments (like		
screw gauge, Vernier calipers,		
travelling microscope) [apply]		
 learn various principles and 		
associated measurable		
parameters of measuring		
instruments. [understand]		

Paper Name: Electricity & Magnetism Paper Code: PHY-HC-2016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Electric Field and Electric	Understand, Apply
students will be able to:	Potential	
• explain electric and magnetic	Unit II: Dielectric Properties of	
fields in matter, dilectric	Matter	
properties of matter magnetic	Unit III: Magnetic Field	
properties of matter,	Unit IV: Magnetic Properties of	
electromagnetic induction.	Matter	
[understand]	Unit V: Electromagnetic Induction	
 apply Kirchhofff's law in 	Unit VI: Electrical Circuits	
different circuits. [apply]	Unit VII: Network Theorems	
• apply network theorem in	Unit VIII: Ballistic Galvanometer	

circuits. [apply]	

Paper Name: Waves & Optics Paper Code: PHY-HC-2026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Superposition of Collinear	Understand, Apply
students will be able to:	Harmonic Oscillations	
• explain superposition of	Unit II: Superposition of Two	
harmonic oscillations, different	Perpendicular Harmonic	
types of wave motions,	Oscillations	
superposition of harmonic	Unit III: Wave Motion	
waves, [understand]	Unit IV: Velocity of Waves	
• use interference and	Unit V: Superposition of Two	
interferometer, diffraction,	Harmonic Waves	
holography. [apply]	Unit VI: Wave Optics	
	Unit VII: Interference	
	Unit VIII: Interferometer	
	Unit IX: Diffraction	
	Unit X: Fraunhofer Diffraction	
	Unit XI: Holography	

Paper Name: Electricity & Magnetism Paper Code: PHY-HG-2016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Vector Analysis	Understand, Apply
students will be able to:	Unit II: Electrostatics	
• apply Gauss's law of	Unit III: Magnetism	
electrostatics to solve a variety	Unit IV : Electromagnetic Induction	
of problems [apply]	Unit V : Maxwell's Equations and	
• calculate the magnetic forces	EM Wave	
that act on moving charges		
and the magnetic fields due to		
currents, [apply]		
 explain about magnetic 		
materials, [understand]		
• apply the concepts of		
induction to solve variety of		
problems. [apply]		
• measure resistance (high and		
low), voltage, current, self and		
mutual inductance, capacitor,		
strength of magnetic field and		
its variation, [apply]		
 understand different circuits 		
RC, LCR etc. [understand]		

Paper Name: Mathematical Physics II Paper Code: PHY-HC-3016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Frobenius Method and	Apply
students will be able to:	Special Functions	
• solve differential equation	Unit II: Partial Differential Equations	
using power series solution	Unit III: Some Special Integrals	
method [apply]	Unit IV: Matrix	

•	solve differential equation using separation of variables method, [apply]	Unit V: Fourier Series	
•	use special integrals, matrix, Fourier series. [apply]		

Paper Name: Thermal Physics Paper Code: PHY-HC-3026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Zeroth and First Law of	Understand
students will be able to:	Thermodynamics	
• describe laws in	Unit II: Second Law of	
thermodynamics, in particular:	Thermodynamics	
entropy, temperature,	Unit III: Entropy	
thermodynamic potentials,	Unit IV: Thermodynamic Potentials	
Free energies, [understand]	Unit V: Maxwell's Thermodynamic	
• explain Maxwell's relations in	Relations	
thermodynamics, behaviour of	Unit VI: Distribution of Velocities	
real gases. [understand]	Unit VII: Molecular Collisions	
	Unit VIII: Real Gases	

Paper Name: Digital Systems & Applications

Paper Code: PHY-HC-3036

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Introduction to CRO	Understand, Apply, Analyse
students will be able to:	Unit II: Integrated Circuits	
• explain the working principle	(qualitative treatment only)	
of CRO [understand]	Unit III: Digital Circuits	
• apply digital logic to solve real	Unit IV: Boolean Algebra	
life problems [apply]	Unit V: Data Processing Circuits	
• analyze combinational logic	Unit VI: Arithmetic Circuits	
circuits [analyse]	Unit VII: Sequential Circuits	
• Classify different	Unit VIII: Timers: IC 555	
semiconductor memories	Unit IX: Shift Registers	
[understand]	Unit X: Counters	
• organise sequential logic	Unit XI: Computer Organization	
circuits [analyse]	Unit XII: Intel 8085 Microprocessor	
• analyze digital system design	Architecture	
using PLD [analyse]	Unit XIII: Introduction to Assembly	
• implement combinational and	Language	
sequential circuits [apply]		

Paper Name: Thermal Physics & Statistical Mechanics Paper Code: PHY-HG-3016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Laws of Thermodynamics	Understand, Apply, Analyse
students will be able to:	Unit II: Thermodynamic Potentials	
• explain the basic concepts of	Unit III: Kinetic Theory of Gases	
thermodynamics, the first and	Unit IV : Theory of Radiation	
the second law of	Unit V : Statistical Mechanics	
thermodynamics, the concept		
of entropy and the associated		
theorems, the thermodynamic		
potentials and their physical		

interpretations, Maxwell's	
thermodynamic relations,	
fundamentals of the kinetic	
theory of gases, Maxwell-	
Boltzman distribution law,	
equipartition of energies, mean	
free path of molecular	
collisions, viscosity, thermal	
conductivity, diffusion and	
Brownian motion, black body	
radiations, Stefan-	
Boltzmann's law, Rayleigh-	
Jean's law and Planck's law	
and their significances,	
quantum statistical	
distributions, viz., the Bose-	
Einstein statistics and the	
Fermi-Dirac statistics.	
[understand]	
• measure of Planck's constant	
using black body radiation,	
[apply]	
• determine Stefan's Constant,	
coefficient of thermal	
conductivity of a bad	
conductor and a good	
conductor [apply]	
• determine the temperature	
coefficient of resistance	
[apply]	
• examine variation of thermos	
emf across two junctions of a	
thermocouple with	
temperature etc. [analyse]	

Paper Name: Applied Optics Paper Code: PHY-SE-3074

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Sources and detectors	Understand, Apply
students will be able to:	Unit II: Holography	
• determine of the grating radial	Unit III: Photonics: Fibre Optics	
spacing of the Compact Disc		
(CD) by reflection using He-Ne		
or solid state laser. [apply]		
• find the width of the wire or		
width of the slit using		
diffraction pattern obtained by		
a He-Ne or solid state laser.		
[apply]		
• find the polarization angle of		
laser light using polarizer and		
analyzer [apply]		
• execute experiments with		
semiconductors [apply]		
• record and reconstruct		
holograms [apply]		
• describe a Michelson		
interferometer or a Fabry Perot		

	interferometer [understand]	
•	measure the refractive index of	
	air [apply]	

Paper Name: Mathematical Physics III Paper Code: PHY-HC-4016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Complex Analysis	Understand, Apply
students will be able to:	Unit II: Complex Integration	
• solve complex integrals using	Unit III: Fourier Transforms	
residue theorem [apply]	Unit IV: Laplace Transforms	
 apply Fourier and Laplace 	Unit V: Tensor Algebra	
transforms in solving		
differential equations [apply]		
 explain properties of tensor like 		
transformation of coordinates,		
contravariant and co-variant		
tensors, indices rules for		
combining tensors [understand]		

Paper Name: Elements of Modern Physics Paper Code: PHY-HC-4026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Quantum Theory and	Understand
students will be able to:	Blackbody Radiation	
• describe modern development in	Unit II: Uncertainty and Wave-	
physics, starting from Planck's	Particle Duality	
law, development of the idea of	Unit III: Schrödinger Equation	
probability interpretation and the	Unit IV: One-dimensional Box and	
formulation of Schrodinger	Step Barrier	
equation. [understand]	Unit V: Structure of the Atomic	
• exaplin the structure of nucleus,	Nucleus	
radioactivity, fission and fusion	Unit VI: Radioactivity	
[understand]	Unit VII : Detection of nuclear	
 conceptualize the principle of 	radiation	
Laser [understand]	Unit VIII: Fission and Fusion	
	Unit IX: Lasers	

Paper Name: Analog Systems & Applications Paper Code: PHY-HC-4036

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Semiconductor Diodes	Undesratnd
students will be able to:	Unit II: Two-terminal Devices and	
• describe about the physics of	their Applications	
semiconductor p-n junction	Unit III: Bipolar Junction	
and devices such as rectifier	Transistors	
diodes, zener diode,	Unit IV: Amplifiers	
photodiode etc. and bipolar	Unit V: Coupled Amplifier	
junction transistors, transistor	Unit VI: Feedback in Amplifiers	
biasing and stabilization	Unit VII: Sinusoidal Oscillators	
circuits [understand]	Unit VIII: Operational Amplifiers	
• explain feedback in amplifiers	Unit IX: Applications of Op-Amps	
and the oscillator circuits	Unit X: Convversion	
[understand]		

• classify operational amplifiers	
and their applications.	
[understand]	

Paper Name: Waves & Optics Paper Code: PHY-HG-4016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Superposition of Two	Understand, Apply
students will be able to:	Collinear Harmonic Oscillations	
• describe simple harmonic	Unit II: Superposition of Two	
oscillation and superposition	Perpendicular Harmonic	
principle, importance of	Oscillations	
classical wave equation in	Unit III: Waves Motion	
transverse and longitudinal	Unit IV: Fluids	
waves [understand]	Unit V : Sound	
 describe a range of physical 	Unit VI : Wave Optics	
systems based on wave equation	Unit VIII : Michelson	
[understand]	Interferometer	
• explain of normal modes in	Unit IX : Diffraction	
transverse and longitudinal	Unit X : Polarization	
waves: their frequencies and		
configurations, interference as		
superposition of waves from		
coherent sources derived from		
same parent source, [understand]		
• Demonstrate understanding of		
interference and diffraction		
experiments, Polarization.		
[apply]		
• use various optical instruments		
[apply]		
• make finer measurements of		
wavelength of light using		
Newton Rings experiment,		
Fresnel Biprism etc. [apply]		
• find out resolving power of		
optical equipment, the motion of		
coupled oscillators [apply]		
 explain Lissajous figures and 		
behaviour of transverse,		
longitudinal waves [understand]		

Paper Name: Research & Technical Writing Paper Code: PHY-SE-4024

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Introduction	Understand, Apply
students will be able to:	Unit II: Technical Writing in LaTex	
• identify and write different	Unit III: Scientific graphing and	
parts of technical reports,	data analysis	
[understand]		
• write article, thesis [apply]		
• make presentation in latex		
[apply]		
• use different format of chart		
based on need [apply]		
• plot data from different		

Paper Name: Quantum Mechanics & Applications Paper Code: PHY-HC-5016

Course Outcome	Unit/ Topic Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Time Dependent Understand, Apply
students will be able to:	Schrödinger Equation
• explain the principles in	Unit II: Time Independent
quantum mechanics, such as the	Schrödinger Equation
Schrödinger equation, the wave	Unit III: Bound States
function, the uncertainty	Unit IV: Hydrogen-like Atoms
principle, stationary and non-	Unit V: Atoms in Electric &
stationary states, time evolution	Magnetic Fields
of solutions, as well as the	Unit VI: Many Electron Atoms
relation between quantum	
mechanics and linear algebra.	
[understand]	
 solve the Schrödinger equation 	
for hydrogen atom [apply]	
• describe angular momentum and	
spin, as well as the rules for	
quantization and addition of	
these, spin-orbit coupling and	
Zeeman Effect. [understand]	

Paper Name: Solid State Physics Paper Code: PHY-HC-5026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Crystal Structure	Understand
students will be able to:	Unit II: Elementary Lattice	
• explain the main features of	Dynamics	
crystal lattices and phonons	Unit III: Magnetic Properties of	
[understand]	Matter	
• describe the elementary lattice	Unit IV: Dielectric Properties of	
dynamics and its influence on	Materials	
the properties of materials	Unit V: Ferroelectric Properties of	
[understand]	Materials	
• describe the main features of	Unit VI: Free Electron Theory of	
the physics of electrons in	Metals	
solids [understand]	Unit VII: Superconductivity	
• explain the dielectric		
ferroelectric and magnetic		
properties of solids		
[understand]		
• explain the basic concept in		
superconductivity.		
[understand]		

Paper Name: PHY-HE-5046

Paper Code: Physics of Devices and Instruments

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Devices	Understand
students will be able to:	Unit II: Power supply and Filters	

• describe advanced electronics	Unit III: Active and Passive Filters
devices such as UJT, JFET,	Unit IV: Multivibrators
MOSFET, CMOS etc.,	Unit V: Phase Locked Loop(PLL)
[understand]	Unit VI: Processing of Devices
• explain detailed process of IC	Unit VII: Digital Data
fabrication, Digital Data serial	Communication Standards
and parallel Communication	Unit VIII: Introduction to
Standards [understand]	communication systems
• describe communication	
systems.[understand]	

Paper Name: Experimental Techniques Paper Code: PHY-HE-5016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Measurements	understand
students will be able to:	Unit II: Signals and Systems	
• describe the errors in	Unit III: Shielding and Grounding	
measurement and statistical	Unit IV: Transducers & industrial	
analysis of data required while	instrumentation (working principle,	
performing an experiment	efficiency, applications)	
[understand]	Unit V: Digital Multimeter	
• explain the working principle,	Unit VI: Impedance Bridges and Q-	
efficiency and applications of	meter	
transducers & industrial	Unit VII: Vacuum Systems	
instruments like digital		
multimeter, RTD, Thermistor,		
Thermocouples and		
Semiconductor type		
temperature sensors		
[understand]		

Paper Name: Nuclear and Particle Physics Paper Code: PHY-HE-5056

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: General Properties of Nuclei	Understand, Apply
students will be able to:	Unit II: Nuclear Models	
• describe the sub atomic	Unit III: Radioactivity decay	
particles and their properties.	Unit IV: Nuclear Reactions	
[understand]	Unit V: Interaction of Nuclear	
• explain different nuclear	Radiation with matter	
techniques and their	Unit VI: Detector for Nuclear	
applications in different	Radiations	
branches of physics and	Unit VII: Particle Accelerators	
societal application.	Unit VIII: Particle physics	
[understand]		
• applied the concept of nuclear		
physics in medical,		
archeology, geology and other		
interdisciplinary fields of		
Physics and Chemistry.		
[apply]		

Paper Name: Electromagnetic Theory Paper Code: PHY-HC-6016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level

After the completion of this course, the	Unit I: Maxwell Equations	Understand
students will be able to:	Unit II: EM Wave Propagation in	
• describe the Maxwell's	Unbounded Media	
equations, propagation of	Unit III: EM Wave in Bounded	
electromagnetic (EM) waves in	Media	
different homogeneous-	Unit IV: Polarization of	
isotropic as well as anisotropic	Electromagnetic Waves	
unbounded and bounded media	Unit V: Rotatory Polarization	
[understand]	Unit VI: Optical Fibres	
• explain production and		
detection of different types of		
polarized EM waves		
[understand]		
• describe waveguides and fibre		
optics. [understand]		

Paper Name: Statistical Mechanics Paper Code: PHY-HC-6026

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Classical Statistics	Apply
students will be able to:	Unit II: Classical Theory of	
• apply Statistical Mechanics to	Radiation	
in various fields including	Unit III: Quantum Theory of	
Astrophysics, Semiconductors,	Radiation	
Plasma Physics, Bio-Physics,	Unit IV: Bose-Einstein Statistics	
Chemistry and in many other	Unit V: Fermi-Dirac Statistics	
directions. [apply]		

Paper Name: Advanced Mathematical Physics II Paper Code: PHY-HE-6036

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Calculus of Variations	Apply
students will be able to:	Unit II: Group Theory	
• apply the concepts of	Unit III: Advanced Probability	
Calculus of Variations, Group	Theory	
Theory and Probability		
Theory to solve numerical		
problems in Physics [apply]		

Paper Name: Astronomy and Astrophysics Paper Code: PHY-HE-6046

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Stellar properties	Understand
students will be able to:	Unit II: The Sun and the solar	
• explain the origin and	system	
evolution of the Universe.	Unit III: Positional Astronomy	
[understand]	Unit IV: Astronomical Techniques	
• describe the measurement of	Unit V: Galaxies	
basic astronomical parameters	Unit VI: Large Scale Structure and	
such as astronomical scales,	Cosmology	
luminosity and astronomical		
quantities. [understand]		
• describe the developments in		

observational astrophysics	
[understand]	
 explain the instruments 	
implemented for astronomical	
observation [understand]	
describe the formation of	
planetary system and its	
evolution with time,	
[understand]	
• explain the physical properties	
of Sun and the components of	
the solar system [understand]	
• describe the difference	
between stellar and interstellar	
components of our Milky Way	
galaxy [understand]	
• describe the origin and	
evolution of galaxies, presence	
of dark matter and large scale	
of dark matter and large scale	
structures of the Universe.	
[understand]	

Paper Name: PHYSICS-DSE: CLASSICAL DYNAMICS Paper Code: PHY-HE-6056

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Classical Mechanics of	Understand, Apply
students will be able to:	Point Particles	
• explain Newton's Laws of	Unit II: Small Amplitude	
Motion [understand]	Oscillations	
• describe Special Theory of	Unit III: Special Theory of	
Relativity by 4-vectoer	Relativity	
approach and fluids.	Unit IV: Fluid Dynamics	
[understand]		
 explain Lagrangian and 		
Hamiltonian of a system		
[understand]		
• solve the seen or unseen		
problems/numericals in		
classical mechanics.[apply]		

Paper Name: Communication Electronics Paper Code: PHY-HE-6016

Course Outcome	Unit/ Topic	Bloom's Taxonomy Level
After the completion of this course, the	Unit I: Electronic communication	Understand
students will be able to:	Unit II: Analog Modulation	
• describe the role of electronics	Unit III: Analog Pulse Modulation	
in communication	Unit IV: Digital Pulse Modulation	
[understand]	Unit V: Satellite Communication	
• describe details of	Unit VI: Mobile Telephony	
communication techniques	System	
based on Analog Modulation,	Unit VII: GPS navigation system	
Analog and digital Pulse		
Modulation including PAM,		
PWM, PPM, ASK, PSK, FSK,		
[understand]		
• explain communication and		

Navigation systems such as
GPS and mobile telephony
system. [understand]