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Preface

This book is an introductory text on probability and statistics, targeting students who
have studied one year of calculus at the university level and are seeking an introduction
to probability and statistics with mathematical content. Where possible, we provide
mathematical details, and it is expected that students are seeking to gain some mastery
over these, as well as to learn how to conduct data analyses. All the usual method
ologies covered in a typical introductory course are introduced, as well as some of the
theory that serves as their justification.

The text can be used with or without a statistical computer package. It is our opin
ion that students should see the importance of various computational techniques in
applications, and the book attempts to do this. Accordingly, we feel that computational
aspects of the subject, such as Monte Carlo, should be covered, even if a statistical
package is not used. Almost any statistical package is suitable. A Computations
appendix provides an introduction to the R language. This covers all aspects of the lan
guage needed to do the computations in the text. Furthermore, we have provided the R
code for any of the more complicated computations. Students can use these examples
as templates for problems that involve such computations, e.g., using Gibbs sampling.
Also, we have provided, in a separate section of this appendix, Minitab code for those
computations that are slightly involved, e.g., Gibbs sampling. No programming expe
rience is required of students to do the problems.

We have organized the exercises in the book into groups, as an aid to users. Exer
cises are suitable for all students and offer practice in applying the concepts discussed
in a particular section. Problems require greater understanding, and a student can ex
pect to spend more thinking time on these. If a problem is marked (MV), then it will
require some facility with multivariable calculus beyond the first calculus course, al
though these problems are not necessarily hard. Challenges are problems that most
students will find difficult; these are only for students who have no trouble with the
Exercises and the Problems. There are also Computer Exercises and Computer
Problems, where it is expected that students will make use of a statistical package in
deriving solutions.

We have included a number of Discussion Topics designed to promote critical
thinking in students. Throughout the book, we try to point students beyond the mastery
of technicalities to think of the subject in a larger frame of reference. It is important that
students acquire a sound mathematical foundation in the basic techniques of probability
and statistics, which we believe this book will help students accomplish. Ultimately,
however, these subjects are applied in realworld contexts, so it is equally important
that students understand how to go about their application and understand what issues
arise. Often, there are no right answers to Discussion Topics; their purpose is to get a
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student thinking about the subject matter. If these were to be used for evaluation, then
they would be answered in essay format and graded on the maturity the student showed
with respect to the issues involved. Discussion Topics are probably most suitable for
smaller classes, but these will also benefit students who simply read them over and
contemplate their relevance.

Some sections of the book are labelled Advanced. This material is aimed at stu
dents who are more mathematically mature (for example, they are taking, or have taken,
a second course in calculus). All the Advanced material can be skipped, with no loss
of continuity, by an instructor who wishes to do so. In particular, the final chapter of the
text is labelled Advanced and would only be taught in a highlevel introductory course
aimed at specialists. Also, many proofs appear in the final section of many chapters,
labelled Further Proofs (Advanced). An instructor can choose which (if any) of these
proofs they wish to present to their students.

As such, we feel that the material in the text is presented in a exible way that
allows the instructor to find an appropriate level for the students they are teaching. A
Mathematical Background appendix reviews some mathematical concepts, from a
first course in calculus, in case students could use a refresher, as well as brief introduc
tions to partial derivatives, double integrals, etc.

Chapter 1 introduces the probability model and provides motivation for the study
of probability. The basic properties of a probability measure are developed.

Chapter 2 deals with discrete, continuous, joint distributions, and the effects of
a change of variable. It also introduces the topic of simulating from a probability
distribution. The multivariate change of variable is developed in an Advanced section.

Chapter 3 introduces expectation. The probabilitygenerating function is dis
cussed, as are the moments and the momentgenerating function of a random variable.
This chapter develops some of the major inequalities used in probability. A section on
characteristic functions is included as an Advanced topic.

Chapter 4 deals with sampling distributions and limits. Convergence in probabil
ity, convergence with probability 1, the weak and strong laws of large numbers, con
vergence in distribution, and the central limit theorem are all introduced, along with
various applications such as Monte Carlo. The normal distribution theory, necessary
for many statistical applications, is also dealt with here.

As mentioned, Chapters 1 through 4 include material on Monte Carlo techniques.
Simulation is a key aspect of the application of probability theory, and it is our view
that its teaching should be integrated with the theory right from the start. This reveals
the power of probability to solve realworld problems and helps convince students that
it is far more than just an interesting mathematical theory. No practitioner divorces
himself from the theory when using the computer for computations or vice versa. We
believe this is a more modern way of teaching the subject. This material can be skipped,
however, if an instructor believes otherwise or feels there is not enough time to cover
it effectively.

Chapter 5 is an introduction to statistical inference. For the most part, this is con
cerned with laying the groundwork for the development of more formal methodology
in later chapters. So practical issues — such as proper data collection, presenting data
via graphical techniques, and informal inference methods like descriptive statistics —
are discussed here.
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Chapter 6 deals with many of the standard methods of inference for onesample
problems. The theoretical justification for these methods is developed primarily through
the likelihood function, but the treatment is still fairly informal. Basic methods of in
ference, such as the standard error of an estimate, confidence intervals, and Pvalues,
are introduced. There is also a section devoted to distributionfree (nonparametric)
methods like the bootstrap.

Chapter 7 involves many of the same problems discussed in Chapter 6, but now
from a Bayesian perspective. The point of view adopted here is not that Bayesian meth
ods are better or, for that matter, worse than those of Chapter 6. Rather, we take the
view that Bayesian methods arise naturally when the statistician adds another ingredi
ent — the prior — to the model. The appropriateness of this, or the sampling model
for the data, is resolved through the modelchecking methods of Chapter 9. It is not
our intention to have students adopt a particular philosophy. Rather, the text introduces
students to a broad spectrum of statistical thinking.

Subsequent chapters deal with both frequentist and Bayesian approaches to the
various problems discussed. The Bayesian material is in clearly labelled sections and
can be skipped with no loss of continuity, if so desired. It has become apparent in
recent years, however, that Bayesian methodology is widely used in applications. As
such, we feel that it is important for students to be exposed to this, as well as to the
frequentist approaches, early in their statistical education.

Chapter 8 deals with the traditional optimality justifications offered for some sta
tistical inferences. In particular, some aspects of optimal unbiased estimation and the
Neyman–Pearson theorem are discussed. There is also a brief introduction to decision
theory. This chapter is more formal and mathematical than Chapters 5, 6, and 7, and it
can be skipped, with no loss of continuity, if an instructor wants to emphasize methods
and applications.

Chapter 9 is on model checking. We placed model checking in a separate chapter
to emphasize its importance in applications. In practice, model checking is the way
statisticians justify the choices they make in selecting the ingredients of a statistical
problem. While these choices are inherently subjective, the methods of this chapter
provide checks to make sure that the choices made are sensible in light of the objective
observed data.

Chapter 10 is concerned with the statistical analysis of relationships among vari
ables. This includes material on simple linear and multiple regression, ANOVA, the
design of experiments, and contingency tables. The emphasis in this chapter is on
applications.

Chapter 11 is concerned with stochastic processes. In particular, Markov chains
and Markov chain Monte Carlo are covered in this chapter, as are Brownian motion and
its relevance to finance. Fairly sophisticated topics are introduced, but the treatment is
entirely elementary. Chapter 11 depends only on the material in Chapters 1 through 4.

A onesemester course on probability would cover Chapters 1–4 and perhaps some
of Chapter 11. A onesemester, followup course on statistics would cover Chapters 5–
7 and 9–10. Chapter 8 is not necessary, but some parts, such as the theory of unbiased
estimation and optimal testing, are suitable for a more theoretical course.

A basic twosemester course in probability and statistics would cover Chapters 1–6
and 9–10. Such a course covers all the traditional topics, including basic probability
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theory, basic statistical inference concepts, and the usual introductory applied statistics
topics. To cover the entire book would take three semesters, which could be organized
in a variety of ways.

The Advanced sections can be skipped or included, depending on the level of the
students, with no loss of continuity. A similar approach applies to Chapters 7, 8, and
11.

Students who have already taken an introductory, noncalculusbased, applied sta
tistics course will also benefit from a course based on this text. While similar topics are
covered, they are presented with more depth and rigor here. For example, Introduction
to the Practice of Statistics, 6th ed., by D. Moore and G. McCabe (W. H. Freeman,
2009) is an excellent text, and we believe that our book would serve as a strong basis
for a followup course.

There is an Instructor’s Solutions Manual available from the publisher.
The second edition contains many more basic exercises than the first edition. Also,

we have rewritten a number of sections, with the aim of making the material clearer to
students. One goal in our rewriting was to subdivide the material into smaller, more
digestible components so that key ideas stand out more boldly. There has been a com
plete typographical redesign that we feel aids in this as well. In the appendices, we have
added material on the statistical package R as well as answers for the oddnumbered
exercises that students can use to check their understanding.

Many thanks to the reviewers and users for their comments: Abbas Alhakim (Clark
son University), Michelle Baillargeon (McMaster University), Arne C. Bathke (Univer
sity of Kentucky), Lisa A. Bloomer (Middle Tennessee State University), Christopher
Brown (California Lutheran University), Jem N. Corcoran (University of Colorado),
Guang Cheng (Purdue University), Yi Cheng (Indiana University South Bend), Eugene
Demidenko (Dartmouth College), Robert P. Dobrow (Carleton College), John Ferdi
nands (Calvin College), Soledad A. Fernandez (The Ohio State University), Paramjit
Gill (University of British Columbia Okanagan), Marvin Glover (Milligan College),
Ellen Gundlach (Purdue University), Paul Gustafson (University of British Columbia),
Jan Hannig (Colorado State University), Solomon W. Harrar (The University of Mon
tana), Susan Herring (Sonoma State University), George F. Hilton (Pacific Union Col
lege), Chun Jin (Central Connecticut State University), Paul Joyce (University of Idaho),
Hubert Lilliefors (George Washington University), Andy R. Magid (University of Ok
lahoma), Phil McDonnough (University of Toronto), Julia Morton (Nipissing Univer
sity), Jean D. Opsomer (Colorado State University), Randall H. Rieger (West Chester
University), Robert L. Schaefer (Miami University), Osnat Stramer (University of
Iowa), Tim B. Swartz (Simon Fraser University), Glen Takahara (Queen’s University),
Robert D. Thompson (Hunter College), David C. Vaughan (Wilfrid Laurier University),
Joseph J. Walker (Georgia State University), Chad Westerland (University of Arizona),
Dongfeng Wu (Mississippi State University), Yuehua Wu (York University), Nicholas
Zaino (University of Rochester). In particular, Professor Chris Andrews (State Univer
sity of New York) provided many corrections to the first edition.

The authors would also like to thank many who have assisted in the development
of this project. In particular, our colleagues and students at the University of Toronto
have been very supportive. Ping Gao, Aysha Hashim, Gun Ho Jang, Hadas Moshonov,
and Mahinda Samarakoon helped in many ways. A number of the data sets in Chapter
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provided much support and encouragement. Our families helped us with their patience
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Chapter 1

Probability Models

CHAPTER OUTLINE

Section 1 Probability: A Measure of Uncertainty
Section 2 Probability Models
Section 3 Properties of Probability Models
Section 4 Uniform Probability on Finite Spaces
Section 5 Conditional Probability and Independence
Section 6 Continuity of P
Section 7 Further Proofs (Advanced)

This chapter introduces the basic concept of the entire course, namely, probability. We
discuss why probability was introduced as a scientific concept and how it has been
formalized mathematically in terms of a probability model. Following this we develop
some of the basic mathematical results associated with the probability model.

1.1 Probability: A Measure of Uncertainty
Often in life we are confronted by our own ignorance. Whether we are pondering
tonight’s traffic jam, tomorrow’s weather, next week’s stock prices, an upcoming elec
tion, or where we left our hat, often we do not know an outcome with certainty. Instead,
we are forced to guess, to estimate, to hedge our bets.

Probability is the science of uncertainty. It provides precise mathematical rules for
understanding and analyzing our own ignorance. It does not tell us tomorrow’s weather
or next week’s stock prices; rather, it gives us a framework for working with our limited
knowledge and for making sensible decisions based on what we do and do not know.

To say there is a 40% chance of rain tomorrow is not to know tomorrow’s weather.
Rather, it is to know what we do not know about tomorrow’s weather.

In this text, we will develop a more precise understanding of what it means to say
there is a 40% chance of rain tomorrow. We will learn how to work with ideas of
randomness, probability, expected value, prediction, estimation, etc., in ways that are
sensible and mathematically clear.

1
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There are also other sources of randomness besides uncertainty. For example, com
puters often use pseudorandom numbers to make games fun, simulations accurate, and
searches efficient. Also, according to the modern theory of quantum mechanics, the
makeup of atomic matter is in some sense truly random. All such sources of random
ness can be studied using the techniques of this text.

Another way of thinking about probability is in terms of relative frequency. For ex
ample, to say a coin has a 50% chance of coming up heads can be interpreted as saying
that, if we ipped the coin many, many times, then approximately half of the time it
would come up heads. This interpretation has some limitations. In many cases (such
as tomorrow’s weather or next week’s stock prices), it is impossible to repeat the ex
periment many, many times. Furthermore, what precisely does “approximately” mean
in this case? However, despite these limitations, the relative frequency interpretation is
a useful way to think of probabilities and to develop intuition about them.

Uncertainty has been with us forever, of course, but the mathematical theory of
probability originated in the seventeenth century. In 1654, the Paris gambler Le Cheva
lier de Méré asked Blaise Pascal about certain probabilities that arose in gambling
(such as, if a game of chance is interrupted in the middle, what is the probability that
each player would have won had the game continued?). Pascal was intrigued and cor
responded with the great mathematician and lawyer Pierre de Fermat about these ques
tions. Pascal later wrote the book Traité du Triangle Arithmetique, discussing binomial
coefficients (Pascal’s triangle) and the binomial probability distribution.

At the beginning of the twentieth century, Russians such as Andrei Andreyevich
Markov, Andrey Nikolayevich Kolmogorov, and Pafnuty L. Chebychev (and Ameri
can Norbert Wiener) developed a more formal mathematical theory of probability. In
the 1950s, Americans William Feller and Joe Doob wrote important books about the
mathematics of probability theory. They popularized the subject in the western world,
both as an important area of pure mathematics and as having important applications in
physics, chemistry, and later in computer science, economics, and finance.

1.1.1 Why Do We Need Probability Theory?

Probability theory comes up very often in our daily lives. We offer a few examples
here.

Suppose you are considering buying a “Lotto 6/49” lottery ticket. In this lottery,
you are to pick six distinct integers between 1 and 49. Another six distinct integers
between 1 and 49 are then selected at random by the lottery company. If the two sets
of six integers are identical, then you win the jackpot.

After mastering Section 1.4, you will know how to calculate that the probability
of the two sets matching is equal to one chance in 13,983,816. That is, it is about 14
million times more likely that you will not win the jackpot than that you will. (These
are not very good odds!)

Suppose the lottery tickets cost $1 each. After mastering expected values in Chap
ter 3, you will know that you should not even consider buying a lottery ticket unless the
jackpot is more than $14 million (which it usually is not). Furthermore, if the jackpot
is ever more than $14 million, then likely many other people will buy lottery tickets
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that week, leading to a larger probability that you will have to share the jackpot with
other winners even if you do win — so it is probably not in your favor to buy a lottery
ticket even then.

Suppose instead that a “friend” offers you a bet. He has three cards, one red on
both sides, one black on both sides, and one red on one side and black on the other.
He mixes the three cards in a hat, picks one at random, and places it at on the table
with only one side showing. Suppose that one side is red. He then offers to bet his $4
against your $3 that the other side of the card is also red.

At first you might think it sounds like the probability that the other side is also red is
50%; thus, a good bet. However, after mastering conditional probability (Section 1.5),
you will know that, conditional on one side being red, the conditional probability that
the other side is also red is equal to 2/3. So, by the theory of expected values (Chap
ter 3), you will know that you should not accept your “friend’s” bet.

Finally, suppose he suggests that you ip a coin one thousand times. Your “friend”
says that if the coin comes up heads at least six hundred times, then he will pay you
$100; otherwise, you have to pay him just $1.

At first you might think that, while 500 heads is the most likely, there is still a
reasonable chance that 600 heads will appear — at least good enough to justify accept
ing your friend’s $100 to $1 bet. However, after mastering the laws of large numbers
(Chapter 4), you will know that as the number of coin ips gets large, it becomes more
and more likely that the number of heads is very close to half of the total number of
coin ips. In fact, in this case, there is less than one chance in ten billion of getting
more than 600 heads! Therefore, you should not accept this bet, either.

As these examples show, a good understanding of probability theory will allow you
to correctly assess probabilities in everyday situations, which will in turn allow you to
make wiser decisions. It might even save you money!

Probability theory also plays a key role in many important applications of science
and technology. For example, the design of a nuclear reactor must be such that the
escape of radioactivity into the environment is an extremely rare event. Of course, we
would like to say that it is categorically impossible for this to ever happen, but reac
tors are complicated systems, built up from many interconnected subsystems, each of
which we know will fail to function properly at some time. Furthermore, we can never
definitely say that a natural event like an earthquake cannot occur that would damage
the reactor sufficiently to allow an emission. The best we can do is try to quantify our
uncertainty concerning the failures of reactor components or the occurrence of natural
events that would lead to such an event. This is where probability enters the picture.
Using probability as a tool to deal with the uncertainties, the reactor can be designed to
ensure that an unacceptable emission has an extremely small probability — say, once
in a billion years — of occurring.

The gambling and nuclear reactor examples deal essentially with the concept of
risk — the risk of losing money, the risk of being exposed to an injurious level of
radioactivity, etc. In fact, we are exposed to risk all the time. When we ride in a car,
or take an airplane ight, or even walk down the street, we are exposed to risk. We
know that the risk of injury in such circumstances is never zero, yet we still engage in
these activities. This is because we intuitively realize that the probability of an accident
occurring is extremely low.
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So we are using probability every day in our lives to assess risk. As the problems
we face, individually or collectively, become more complicated, we need to refine and
develop our rough, intuitive ideas about probability to form a clear and precise ap
proach. This is why probability theory has been developed as a subject. In fact, the
insurance industry has been developed to help us cope with risk. Probability is the
tool used to determine what you pay to reduce your risk or to compensate you or your
family in case of a personal injury.

Summary of Section 1.1

Probability theory provides us with a precise understanding of uncertainty.

This understanding can help us make predictions, make better decisions, assess
risk, and even make money.

DISCUSSION TOPICS

1.1.1 Do you think that tomorrow’s weather and next week’s stock prices are “really”
random, or is this just a convenient way to discuss and analyze them?

1.1.2 Do you think it is possible for probabilities to depend on who is observing them,
or at what time?

1.1.3 Do you find it surprising that probability theory was not discussed as a mathe
matical subject until the seventeenth century? Why or why not?
1.1.4 In what ways is probability important for such subjects as physics, computer
science, and finance? Explain.
1.1.5 What are examples from your own life where thinking about probabilities did
save — or could have saved — you money or helped you to make a better decision?
(List as many as you can.)
1.1.6 Probabilities are often depicted in popular movies and television programs. List
as many examples as you can. Do you think the probabilities were portrayed there in a
“reasonable” way?

1.2 Probability Models
A formal definition of probability begins with a sample space, often written S. This
sample space is any set that lists all possible outcomes (or, responses) of some unknown
experiment or situation. For example, perhaps

S rain snow clear

when predicting tomorrow’s weather. Or perhaps S is the set of all positive real num
bers, when predicting next week’s stock price. The point is, S can be any set at all,
even an infinite set. We usually write s for an element of S, so that s S. Note that S
describes only those things that we are interested in; if we are studying weather, then
rain and snow are in S, but tomorrow’s stock prices are not.
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A probability model also requires a collection of events, which are subsets of S
to which probabilities can be assigned. For the above weather example, the subsets
rain , snow , rain, snow , rain, clear , rain, snow, clear , and even the empty set

, are all examples of subsets of S that could be events. Note that here the comma
means “or”; thus, rain, snow is the event that it will rain or snow. We will generally
assume that all subsets of S are events. (In fact, in complicated situations there are
some technical restrictions on what subsets can or cannot be events, according to the
mathematical subject of measure theory. But we will not concern ourselves with such
technicalities here.)

Finally, and most importantly, a probability model requires a probability measure,
usually written P . This probability measure must assign, to each event A, a probability
P A . We require the following properties:

1. P A is always a nonnegative real number, between 0 and 1 inclusive.

2. P 0, i.e., if A is the empty set , then P A 0.

3. P S 1, i.e., if A is the entire sample space S, then P A 1.

4. P is (countably) additive, meaning that if A1 A2 is a finite or countable
sequence of disjoint events, then

P A1 A2 P A1 P A2 (1.2.1)

The first of these properties says that we shall measure all probabilities on a scale
from 0 to 1, where 0 means impossible and 1 (or 100%) means certain. The second
property says the probability that nothing happens is 0; in other words, it is impossible
that no outcome will occur. The third property says the probability that something
happens is 1; in other words, it is certain that some outcome must occur.

The fourth property is the most subtle. It says that we can calculate probabilities
of complicated events by adding up the probabilities of smaller events, provided those
smaller events are disjoint and together contain the entire complicated event. Note that
events are disjoint if they contain no outcomes in common. For example, rain and
snow, clear are disjoint, whereas rain and rain, clear are not disjoint. (We are

assuming for simplicity that it cannot both rain and snow tomorrow.) Thus, we should
have P rain P snow clear P rain snow clear , but do not expect to
have P rain P rain clear P rain rain clear (the latter being the same
as P rain clear ).

We now formalize the definition of a probability model.

Definition 1.2.1 A probability model consists of a nonempty set called the sample
space S; a collection of events that are subsets of S; and a probability measure P
assigning a probability between 0 and 1 to each event, with P 0 and P S 1
and with P additive as in (1.2.1).
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EXAMPLE 1.2.1
Consider again the weather example, with S rain, snow, clear . Suppose that the
probability of rain is 40%, the probability of snow is 15%, and the probability of a
clear day is 45%. We can express this as P rain 0 40, P snow 0 15, and
P clear 0 45.

For this example, of course P 0, i.e., it is impossible that nothing will happen
tomorrow. Also P rain, snow, clear 1, because we are assuming that exactly
one of rain, snow, or clear must occur tomorrow. (To be more realistic, we might say
that we are predicting the weather at exactly 11:00 A.M. tomorrow.) Now, what is the
probability that it will rain or snow tomorrow? Well, by the additivity property, we see
that

P rain snow P rain P snow 0 40 0 15 0 55

We thus conclude that, as expected, there is a 55% chance of rain or snow tomorrow.

EXAMPLE 1.2.2
Suppose your candidate has a 60% chance of winning an election in progress. Then
S win, lose , with P win 0 6 and P lose 0 4. Note that P win P lose
1.

EXAMPLE 1.2.3
Suppose we ip a fair coin, which can come up either heads (H ) or tails (T ) with equal
probability. Then S H T , with P H P T 0 5. Of course, P H P T
1.

EXAMPLE 1.2.4
Suppose we ip three fair coins in a row and keep track of the sequence of heads and
tails that result. Then

S H H H H H T H T H H T T T H H T HT T T H T T T

Furthermore, each of these eight outcomes is equally likely. Thus, P H H H 1 8,
P T T T 1 8, etc. Also, the probability that the first coin is heads and the second
coin is tails, but the third coin can be anything, is equal to the sum of the probabilities
of the events H T H and H T T , i.e., P H T H P H T T 1 8 1 8 1 4.

EXAMPLE 1.2.5
Suppose we ip three fair coins in a row but care only about the number of heads
that result. Then S 0 1 2 3 . However, the probabilities of these four outcomes
are not all equally likely; we will see later that in fact P 0 P 3 1 8, while
P 1 P 2 3 8.

We note that it is possible to define probability models on more complicated (e.g.,
uncountably infinite) sample spaces as well.

EXAMPLE 1.2.6
Suppose that S [0 1] is the unit interval. We can define a probability measure P on
S by saying that

P [a b] b a whenever 0 a b 1 (1.2.2)
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In words, for any1 subinterval [a b] of [0 1], the probability of the interval is simply
the length of that interval. This example is called the uniform distribution on [0 1].
The uniform distribution is just the first of many distributions on uncountable state
spaces. Many further examples will be given in Chapter 2.

1.2.1 Venn Diagrams and Subsets

Venn diagrams provide a very useful graphical method for depicting the sample space
S and subsets of it. For example, in Figure 1.2.1 we have a Venn diagram showing the
subset A S and the complement

Ac s : s A

of A The rectangle denotes the entire sample space S The circle (and its interior) de
notes the subset A the region outside the circle, but inside S denotes Ac

1

A

S

S

A

Ac

Figure 1.2.1: Venn diagram of the subsets A and Ac of the sample space S.

Two subsets A S and B S are depicted as two circles, as in Figure 1.2.2 on
the next page. The intersection

A B s : s A and s B

of the subsets A and B is the set of elements common to both sets and is depicted by
the region where the two circles overlap. The set

A B A Bc s : s A and s B

is called the complement of B in A and is depicted as the region inside the A circle,
but not inside the B circle. This is the set of elements in A but not in B Similarly, we
have the complement of A in B namely, Ac B Observe that the sets A B A Bc,
and Ac B are mutually disjoint.

1For the uniform distribution on [0 1], it turns out that not all subsets of [0 1] can properly be regarded
as events for this model. However, this is merely a technical property, and any subset that we can explicitly
write down will always be an event. See more advanced probability books, e.g., page 3 of A First Look at
Rigorous Probability Theory, Second Edition, by J. S. Rosenthal (World Scientific Publishing, Singapore,
2006).
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The union
A B s : s A or s B

of the sets A and B is the set of elements that are in either A or B In Figure 1.2.2, it
is depicted by the region covered by both circles. Notice that A B A Bc

A B Ac B
There is one further region in Figure 1.2.2. This is the complement of A B

namely, the set of elements that are in neither A nor B So we immediately have

A B c Ac Bc

Similarly, we can show that

A B c Ac Bc

namely, the subset of elements that are not in both A and B is given by the set of ele
ments not in A or not in B

S

A B

Ac  BA  Bc

A  B

Ac  Bc

Figure 1.2.2: Venn diagram depicting the subsets A, B, A B, A Bc , Ac B, Ac Bc ,
and A B

Finally, we note that if A and B are disjoint subsets, then it makes sense to depict
these as drawn in Figure 1.2.3, i.e., as two nonoverlapping circles because they have
no elements in common.

1

A

S

A B

Figure 1.2.3: Venn diagram of the disjoint subsets A and B
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Summary of Section 1.2

A probability model consists of a sample space S and a probability measure P
assigning probabilities to each event.

Different sorts of sets can arise as sample spaces.

Venn diagrams provide a convenient method for representing sets and the rela
tionships among them.

EXERCISES

1.2.1 Suppose S 1 2 3 , with P 1 1 2, P 2 1 3, and P 3 1 6.
(a) What is P 1 2 ?
(b) What is P 1 2 3 ?
(c) List all events A such that P A 1 2.
1.2.2 Suppose S 1 2 3 4 5 6 7 8 , with P s 1 8 for 1 s 8.
(a) What is P 1 2 ?
(b) What is P 1 2 3 ?
(c) How many events A are there such that P A 1 2?
1.2.3 Suppose S 1 2 3 , with P 1 1 2 and P 1 2 2 3. What must
P 2 be?
1.2.4 Suppose S 1 2 3 , and we try to define P by P 1 2 3 1, P 1 2
0 7, P 1 3 0 5, P 2 3 0 7, P 1 0 2, P 2 0 5, P 3 0 3. Is
P a valid probability measure? Why or why not?
1.2.5 Consider the uniform distribution on [0 1]. Let s [0 1] be any outcome. What
is P s ? Do you find this result surprising?
1.2.6 Label the subregions in the Venn diagram in Figure 1.2.4 using the sets A B and
C and their complements (just as we did in Figure 1.2.2).
1.2.7 On a Venn diagram, depict the set of elements that are in subsets A or B but not
in both. Also write this as a subset involving unions and intersections of A B and
their complements.
1.2.8 Suppose S 1 2 3 , and P 1 2 1 3, and P 2 3 2 3. Compute
P 1 , P 2 , and P 3 .
1.2.9 Suppose S 1 2 3 4 , and P 1 1 12, and P 1 2 1 6, and
P 1 2 3 1 3. Compute P 1 , P 2 , P 3 , and P 4 .
1.2.10 Suppose S 1 2 3 , and P 1 P 3 2 P 2 . Compute P 1 ,
P 2 , and P 3 .
1.2.11 Suppose S 1 2 3 , and P 1 P 2 1 6, and P 3 2 P 2 .
Compute P 1 , P 2 , and P 3 .
1.2.12 Suppose S 1 2 3 4 , and P 1 1 8 P 2 3 P 3 4 P 4 .
Compute P 1 , P 2 , P 3 , and P 4 .



10 Section 1.3: Properties of Probability Models

A B

C

a b c

d
e

f

g

S

Figure 1.2.4: Venn diagram of subsets A B and C .

PROBLEMS

1.2.13 Consider again the uniform distribution on [0 1]. Is it true that

P [0 1]
s [0 1]

P s ?

How does this relate to the additivity property of probability measures?
1.2.14 Suppose S is a finite or countable set. Is it possible that P s 0 for every
single s S? Why or why not?
1.2.15 Suppose S is an uncountable set. Is it possible that P s 0 for every single
s S? Why or why not?

DISCUSSION TOPICS

1.2.16 Does the additivity property make sense intuitively? Why or why not?
1.2.17 Is it important that we always have P S 1? How would probability theory
change if this were not the case?

1.3 Properties of Probability Models
The additivity property of probability measures automatically implies certain basic
properties. These are true for any probability model at all.

If A is any event, we write Ac (read “A complement”) for the event that A does not
occur. In the weather example, if A rain , then Ac snow, clear . In the coin
examples, if A is the event that the first coin is heads, then Ac is the event that the first
coin is tails.

Now, A and Ac are always disjoint. Furthermore, their union is always the entire
sample space: A Ac S. Hence, by the additivity property, we must have P A
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P Ac P S . But we always have P S 1. Thus, P A P Ac 1, or

P Ac 1 P A (1.3.1)

In words, the probability that any event does not occur is equal to one minus the prob
ability that it does occur. This is a very helpful fact that we shall use often.

Now suppose that A1 A2 are events that form a partition of the sample space
S. This means that A1 A2 are disjoint and, furthermore, that their union is equal
to S, i.e., A1 A2 S. We have the following basic theorem that allows us to
decompose the calculation of the probability of B into the sum of the probabilities of
the sets Ai B. Often these are easier to compute.

Theorem 1.3.1 (Law of total probability, unconditioned version) Let A1 A2
be events that form a partition of the sample space S. Let B be any event. Then

P B P A1 B P A2 B

PROOF The events A1 B A2 B are disjoint, and their union is B. Hence,
the result follows immediately from the additivity property (1.2.1).

A somewhat more useful version of the law of total probability, and applications of its
use, are provided in Section 1.5.

Suppose now that A and B are two events such that A contains B (in symbols,
A B). In words, all outcomes in B are also in A. Intuitively, A is a “larger” event
than B, so we would expect its probability to be larger. We have the following result.

Theorem 1.3.2 Let A and B be two events with A B. Then

P A P B P A Bc (1.3.2)

PROOF We can write A B A Bc , where B and A Bc are disjoint. Hence,
P A P B P A Bc by additivity.

Because we always have P A Bc 0, we conclude the following.

Corollary 1.3.1 (Monotonicity) Let A and B be two events, with A B. Then

P A P B

On the other hand, rearranging (1.3.2), we obtain the following.

Corollary 1.3.2 Let A and B be two events, with A B. Then

P A Bc P A P B (1.3.3)

More generally, even if we do not have A B, we have the following property.
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Theorem 1.3.3 (Principle of inclusion–exclusion, twoevent version) Let A and B
be two events. Then

P A B P A P B P A B (1.3.4)

PROOF We can write A B A Bc B Ac A B , where A Bc,
B Ac, and A B are disjoint. By additivity, we have

P A B P A Bc P B Ac P A B (1.3.5)

On the other hand, using Corollary 1.3.2 (with B replaced by A B), we have

P A Bc P A A B c P A P A B (1.3.6)

and similarly,
P B Ac P B P A B (1.3.7)

Substituting (1.3.6) and (1.3.7) into (1.3.5), the result follows.

A more general version of the principle of inclusion–exclusion is developed in Chal
lenge 1.3.10.

Sometimes we do not need to evaluate the probability content of a union; we need
only know it is bounded above by the sum of the probabilities of the individual events.
This is called subadditivity.

Theorem 1.3.4 (Subadditivity) Let A1 A2 be a finite or countably infinite se
quence of events, not necessarily disjoint. Then

P A1 A2 P A1 P A2

PROOF See Section 1.7 for the proof of this result.

We note that some properties in the definition of a probability model actually follow
from other properties. For example, once we know the probability P is additive and
that P S 1, it follows that we must have P 0. Indeed, because S and are
disjoint, P S P S P . But of course, P S P S 1, so we
must have P 0.

Similarly, once we know P is additive on countably infinite sequences of disjoint
events, it follows that P must be additive on finite sequences of disjoint events, too.
Indeed, given a finite disjoint sequence A1 An , we can just set Ai for all
i n, to get a countably infinite disjoint sequence with the same union and the same
sum of probabilities.

Summary of Section 1.3

The probability of the complement of an event equals one minus the probability
of the event.
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Probabilities always satisfy the basic properties of total probability, subadditivity,
and monotonicity.

The principle of inclusion–exclusion allows for the computation of P A B in
terms of simpler events.

EXERCISES

1.3.1 Suppose S 1 2 100 . Suppose further that P 1 0 1.
(a) What is the probability P 2 3 4 100 ?
(b) What is the smallest possible value of P 1 2 3 ?
1.3.2 Suppose that Al watches the six o’clock news 2 3 of the time, watches the eleven
o’clock news 1 2 of the time, and watches both the six o’clock and eleven o’clock news
1 3 of the time. For a randomly selected day, what is the probability that Al watches
only the six o’clock news? For a randomly selected day, what is the probability that Al
watches neither news?
1.3.3 Suppose that an employee arrives late 10% of the time, leaves early 20% of the
time, and both arrives late and leaves early 5% of the time. What is the probability that
on a given day that employee will either arrive late or leave early (or both)?
1.3.4 Suppose your right knee is sore 15% of the time, and your left knee is sore 10%
of the time. What is the largest possible percentage of time that at least one of your
knees is sore? What is the smallest possible percentage of time that at least one of your
knees is sore?
1.3.5 Suppose a fair coin is ipped five times in a row.
(a) What is the probability of getting all five heads?
(b) What is the probability of getting at least one tail?
1.3.6 Suppose a card is chosen uniformly at random from a standard 52card deck.
(a) What is the probability that the card is a jack?
(b) What is the probability that the card is a club?
(c) What is the probability that the card is both a jack and a club?
(d) What is the probability that the card is either a jack or a club (or both)?

1.3.7 Suppose your team has a 40% chance of winning or tying today’s game and has
a 30% chance of winning today’s game. What is the probability that today’s game will
be a tie?
1.3.8 Suppose 55% of students are female, of which 4/5 (44%) have long hair, and 45%
are male, of which 1/3 (15% of all students) have long hair. What is the probability
that a student chosen at random will either be female or have long hair (or both)?

PROBLEMS

1.3.9 Suppose we choose a positive integer at random, according to some unknown
probability distribution. Suppose we know that P 1 2 3 4 5 0 3, that P 4 5 6

0 4, and that P 1 0 1. What are the largest and smallest possible values of
P 2 ?

CHALLENGES
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1.3.10 Generalize the principle of inclusion–exclusion, as follows.
(a) Suppose there are three events A, B, and C . Prove that

P A B C P A P B P C P A B P A C

P B C P A B C

(b) Suppose there are n events A1 A2 An . Prove that

P A1 An

n

i 1

P Ai

n

i j 1
i j

P Ai A j

n

i j k 1
i j k

P Ai A j Ak

P A1 An

(Hint: Use induction.)

DISCUSSION TOPICS

1.3.11 Of the various theorems presented in this section, which ones do you think are
the most important? Which ones do you think are the least important? Explain the
reasons for your choices.

1.4 Uniform Probability on Finite Spaces
If the sample space S is finite, then one possible probability measure on S is the uniform
probability measure, which assigns probability 1 S to each outcome. Here S is the
number of elements in the sample space S. By additivity, it then follows that for any
event A we have

P A
A

S
(1.4.1)

EXAMPLE 1.4.1
Suppose we roll a sixsided die. The possible outcomes are S 1 2 3 4 5 6 , so
that S 6. If the die is fair, then we believe each outcome is equally likely. We thus
set P i 1 6 for each i S so that P 3 1 6, P 4 1 6, etc. It follows
from (1.4.1) that, for example, P 3 4 2 6 1 3, P 1 5 6 3 6 1 2, etc.
This is a good model of rolling a fair sixsided die once.

EXAMPLE 1.4.2
For a second example, suppose we ip a fair coin once. Then S heads, tails , so
that S 2, and P heads P tails 1 2.

EXAMPLE 1.4.3
Suppose now that we ip three different fair coins. The outcome can be written as a
sequence of three letters, with each letter being H (for heads) or T (for tails). Thus,

S H H H H H T H T H H T T T H H T HT T T H T T T

Here S 8, and each of the events is equally likely. Hence, P H H H 1 8,
P H H H T T T 2 8 1 4, etc. Note also that, by additivity, we have, for
example, that P exactly two heads P H H T H T H T H H 1 8 1 8
1 8 3 8, etc.
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EXAMPLE 1.4.4
For a final example, suppose we roll a fair sixsided die and ip a fair coin. Then we
can write

S 1H 2H 3H 4H 5H 6H 1T 2T 3T 4T 5T 6T

Hence, S 12 in this case, and P s 1 12 for each s S.

1.4.1 Combinatorial Principles

Because of (1.4.1), problems involving uniform distributions on finite sample spaces
often come down to being able to compute the sizes A and S of the sets involved.
That is, we need to be good at counting the number of elements in various sets. The
science of counting is called combinatorics, and some aspects of it are very sophisti
cated. In the remainder of this section, we consider a few simple combinatorial rules
and their application in probability theory when the uniform distribution is appropriate.

EXAMPLE 1.4.5 Counting Sequences: The Multiplication Principle
Suppose we ip three fair coins and roll two fair sixsided dice. What is the prob
ability that all three coins come up heads and that both dice come up 6? Each coin
has two possible outcomes (heads and tails), and each die has six possible outcomes
1 2 3 4 5 6 . The total number of possible outcomes of the three coins and two dice

is thus given by multiplying three 2’s and two 6’s, i.e., 2 2 2 6 6 288. This is
sometimes referred to as the multiplication principle. There are thus 288 possible out
comes of our experiment (e.g., H H H66 H T H24 T T H15 etc.). Of these outcomes,
only one (namely, H H H66) counts as a success. Thus, the probability that all three
coins come up heads and both dice come up 6 is equal to 1/288.

Notice that we can obtain this result in an alternative way. The chance that any
one of the coins comes up heads is 1/2, and the chance that any one die comes up 6 is
1/6. Furthermore, these events are all independent (see the next section). Under inde
pendence, the probability that they all occur is given by the product of their individual
probabilities, namely,

1 2 1 2 1 2 1 6 1 6 1 288

More generally, suppose we have k finite sets S1 Sk and we want to count the
number of sequences of length k where the i th element comes from Si , i.e., count the
number of elements in

S s1 sk : si Si S1 Sk

The multiplication principle says that the number of such sequences is obtained by
multiplying together the number of elements in each set Si , i.e.,

S S1 Sk
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EXAMPLE 1.4.6
Suppose we roll two fair sixsided dice. What is the probability that the sum of the
numbers showing is equal to 10? By the above multiplication principle, the total
number of possible outcomes is equal to 6 6 36. Of these outcomes, there are
three that sum to 10, namely, 4 6 , 5 5 , and 6 4 . Thus, the probability that the
sum is 10 is equal to 3/36, or 1/12.

EXAMPLE 1.4.7 Counting Permutations
Suppose four friends go to a restaurant, and each checks his or her coat. At the end
of the meal, the four coats are randomly returned to the four people. What is the
probability that each of the four people gets his or her own coat? Here the total number
of different ways the coats can be returned is equal to 4 3 2 1, or 4! (i.e., four
factorial). This is because the first coat can be returned to any of the four friends,
the second coat to any of the three remaining friends, and so on. Only one of these
assignments is correct. Hence, the probability that each of the four people gets his or
her own coat is equal to 1 4!, or 1 24.

Here we are counting permutations, or sequences of elements from a set where
no element appears more than once. We can use the multiplication principle to count
permutations more generally. For example, suppose S n and we want to count the
number of permutations of length k n obtained from S i.e., we want to count the
number of elements of the set

s1 sk : si S si s j when i j

Then we have n choices for the first element s1, n 1 choices for the second ele
ment, and finally n k 1 n k 1 choices for the last element. So there are
n n 1 n k 1 permutations of length k from a set of n elements. This can
also be written as n! n k ! Notice that when k n there are

n! n n 1 2 1

permutations of length n

EXAMPLE 1.4.8 Counting Subsets
Suppose 10 fair coins are ipped. What is the probability that exactly seven of them
are heads? Here each possible sequence of 10 heads or tails (e.g., H H H T T T HT T T ,
T HT T T T H H HT , etc.) is equally likely, and by the multiplication principle the total
number of possible outcomes is equal to 2 multiplied by itself 10 times, or 210 1024.
Hence, the probability of any particular sequence occurring is 1 1024. But of these
sequences, how many have exactly seven heads?

To answer this, notice that we may specify such a sequence by giving the positions
of the seven heads, which involves choosing a subset of size 7 from the set of possible
indices 1 10 . There are 10! 3! 10 9 5 4 different permutations of length
7 from 1 10 and each such permutation specifies a sequence of seven heads
and three tails But we can permute the indices specifying where the heads go in 7!
different ways without changing the sequence of heads and tails. So the total number
of outcomes with exactly seven heads is equal to 10! 3!7! 120. The probability that
exactly seven of the 10 coins are heads is therefore equal to 120 1024, or just under
12%.
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In general, if we have a set S of n elements, then the number of different subsets of
size k that we can construct by choosing elements from S is

n

k

n!

k! n k !

which is called the binomial coefficient. This follows by the same argument, namely,
there are n! n k ! permutations of length k obtained from the set; each such permu
tation, and the k! permutations obtained by permuting it, specify a unique subset of S.

It follows, for example, that the probability of obtaining exactly k heads when
ipping a total of n fair coins is given by

n

k
2 n n!

k! n k !
2 n

This is because there are n
k different patterns of k heads and n k tails, and a total of

2n different sequences of n heads and tails.
More generally, if each coin has probability of being heads (and probability 1

of being tails), where 0 1, then the probability of obtaining exactly k heads
when ipping a total of n such coins is given by

n

k
k 1 n k n!

k! n k !
k 1 n k (1.4.2)

because each of the n
k different patterns of k heads and n k tails has probability

k 1 n k of occurring (this follows from the discussion of independence in Section
1.5.2). If 1 2, then this reduces to the previous formula.

EXAMPLE 1.4.9 Counting Sequences of Subsets and Partitions
Suppose we have a set S of n elements and we want to count the number of elements
of

S1 S2 Sl : Si S Si ki Si S j when i j

namely, we want to count the number of sequences of l subsets of a set where no
two subsets have any elements in common and the i th subset has ki elements. By the
multiplication principle, this equals

n

k1

n k1

k2

n k1 kl 1

kl

n!

k1! kl 1!kl! n k1 kl !
(1.4.3)

because we can choose the elements of S1 in n
k1

ways, choose the elements of S2 in
n k1

k2
ways, etc.

When we have that S S1 S2 Sl , in addition to the individual sets being
mutually disjoint, then we are counting the number of ordered partitions of a set of n
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elements with k1 elements in the first set, k2 elements in the second set, etc. In this
case, (1.4.3) equals

n

k1 k2 kl

n!

k1!k2! kl!
(1.4.4)

which is called the multinomial coefficient.

For example, how many different bridge hands are there? By this we mean how
many different ways can a deck of 52 cards be divided up into four hands of 13 cards
each, with the hands labelled North, East, South, and West, respectively. By (1.4.4),
this equals

52

13 13 13 13

52!

13! 13! 13! 13!
5 364474 1028

which is a very large number.

Summary of Section 1.4

The uniform probability distribution on a finite sample space S satisfies P A
A S .

Computing P A in this case requires computing the sizes of the sets A and S.
This may require combinatorial principles such as the multiplication principle,
factorials, and binomial/multinomial coefficients.

EXERCISES

1.4.1 Suppose we roll eight fair sixsided dice.
(a) What is the probability that all eight dice show a 6?
(b) What is the probability that all eight dice show the same number?
(c) What is the probability that the sum of the eight dice is equal to 9?
1.4.2 Suppose we roll 10 fair sixsided dice. What is the probability that there are
exactly two 2’s showing?
1.4.3 Suppose we ip 100 fair independent coins. What is the probability that at least
three of them are heads? (Hint: You may wish to use (1.3.1).)
1.4.4 Suppose we are dealt five cards from an ordinary 52card deck. What is the
probability that
(a) we get all four aces, plus the king of spades?
(b) all five cards are spades?
(c) we get no pairs (i.e., all five cards are different values)?
(d) we get a full house (i.e., three cards of a kind, plus a different pair)?
1.4.5 Suppose we deal four 13card bridge hands from an ordinary 52card deck. What
is the probability that
(a) all 13 spades end up in the same hand?
(b) all four aces end up in the same hand?
1.4.6 Suppose we pick two cards at random from an ordinary 52card deck. What
is the probability that the sum of the values of the two cards (where we count jacks,
queens, and kings as 10, and count aces as 1) is at least 4?
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1.4.7 Suppose we keep dealing cards from an ordinary 52card deck until the first jack
appears. What is the probability that at least 10 cards go by before the first jack?
1.4.8 In a wellshufed ordinary 52card deck, what is the probability that the ace of
spades and the ace of clubs are adjacent to each other?
1.4.9 Suppose we repeatedly roll two fair sixsided dice, considering the sum of the
two values showing each time. What is the probability that the first time the sum is
exactly 7 is on the third roll?
1.4.10 Suppose we roll three fair sixsided dice. What is the probability that two of
them show the same value, but the third one does not?
1.4.11 Consider two urns, labelled urn #1 and urn #2. Suppose urn #1 has 5 red and
7 blue balls. Suppose urn #2 has 6 red and 12 blue balls. Suppose we pick three balls
uniformly at random from each of the two urns. What is the probability that all six
chosen balls are the same color?
1.4.12 Suppose we roll a fair sixsided die and ip three fair coins. What is the proba
bility that the total number of heads is equal to the number showing on the die?
1.4.13 Suppose we ip two pennies, three nickels, and four dimes. What is the proba
bility that the total value of all coins showing heads is equal to $0.31?

PROBLEMS

1.4.14 Show that a probability measure defined by (1.4.1) is always additive in the
sense of (1.2.1).
1.4.15 Suppose we roll eight fair sixsided dice. What is the probability that the sum
of the eight dice is equal to 9? What is the probability that the sum of the eight dice is
equal to 10? What is the probability that the sum of the eight dice is equal to 11?
1.4.16 Suppose we roll one fair sixsided die, and ip six coins. What is the probability
that the number of heads is equal to the number showing on the die?
1.4.17 Suppose we roll 10 fair sixsided dice. What is the probability that there are
exactly two 2’s showing and exactly three 3’s showing?

1.4.18 Suppose we deal four 13card bridge hands from an ordinary 52card deck.
What is the probability that the North and East hands each have exactly the same num
ber of spades?
1.4.19 Suppose we pick a card at random from an ordinary 52card deck and also ip
10 fair coins. What is the probability that the number of heads equals the value of the
card (where we count jacks, queens, and kings as 10, and count aces as 1)?

CHALLENGES

1.4.20 Suppose we roll two fair sixsided dice and ip 12 coins. What is the probability
that the number of heads is equal to the sum of the numbers showing on the two dice?
1.4.21 (The birthday problem) Suppose there are C people, each of whose birthdays
(month and day only) are equally likely to fall on any of the 365 days of a normal (i.e.,
nonleap) year.
(a) Suppose C 2. What is the probability that the two people have the same exact
birthday?



20 Section 1.5: Conditional Probability and Independence

(b) Suppose C 2. What is the probability that all C people have the same exact
birthday?
(c) Suppose C 2. What is the probability that some pair of the C people have the
same exact birthday? (Hint: You may wish to use (1.3.1).)
(d) What is the smallest value of C such that the probability in part (c) is more than
0 5? Do you find this result surprising?

1.5 Conditional Probability and Independence
Consider again the threecoin example as in Example 1.4.3, where we ip three differ
ent fair coins, and

S H H H H HT H T H H T T T H H T HT T T H T T T

with P s 1 8 for each s S. What is the probability that the first coin comes
up heads? Well, of course, this should be 1 2. We can see this more formally by
saying that P first coin heads P H H H H H T HT H H T T 4 8 1 2, as
it should.

But suppose now that an informant tells us that exactly two of the three coins came
up heads. Now what is the probability that the first coin was heads?

The point is that this informant has changed our available information, i.e., changed
our level of ignorance. It follows that our corresponding probabilities should also
change. Indeed, if we know that exactly two of the coins were heads, then we know
that the outcome was one of H HT , H T H , and T H H . Because those three outcomes
should (in this case) still all be equally likely, and because only the first two correspond
to the first coin being heads, we conclude the following: If we know that exactly two
of the three coins are heads, then the probability that the first coin is heads is 2 3.

More precisely, we have computed a conditional probability. That is, we have de
termined that, conditional on knowing that exactly two coins came up heads, the con
ditional probability of the first coin being heads is 2 3. We write this in mathematical
notation as

P first coin heads two coins heads 2 3

Here the vertical bar stands for “conditional on,” or “given that.”

1.5.1 Conditional Probability

In general, given two events A and B with P B 0, the conditional probability of
A given B, written P A B , stands for the fraction of the time that A occurs once we
know that B occurs. It is computed as the ratio of the probability that A and B both
occur, divided by the probability that B occurs, as follows.

Definition 1.5.1 Given two events A and B, with P B 0, the conditional prob
ability of A given B is equal to

P A B
P A B

P B
(1.5.1)
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The motivation for (1.5.1) is as follows. The event B will occur a fraction P B of
the time. Also, both A and B will occur a fraction P A B of the time. The ratio
P A B P B thus gives the proportion of the times when B occurs, that A also
occurs. That is, if we ignore all the times that B does not occur and consider only those
times that B does occur, then the ratio P A B P B equals the fraction of the time
that A will also occur. This is precisely what is meant by the conditional probability of
A given B.

In the example just computed, A is the event that the first coin is heads, while B
is the event that exactly two coins were heads. Hence, in mathematical terms, A
H H H H HT H T H H T T and B H H T H T H T H H . It follows that A

B H H T H T H . Therefore,

P A B
P A B

P B

P H H T HT H

P H H T HT H T H H

2 8

3 8
2 3

as already computed.
On the other hand, we similarly compute that

P first coin tails two coins heads 1 3

We thus see that conditioning on some event (such as “two coins heads”) can make
probabilities either increase (as for the event “first coin heads”) or decrease (as for the
event “first coin tails”).

The definition of P B A immediately leads to the multiplication formula

P A B P A P B A (1.5.2)

This allows us to compute the joint probability of A and B when we are given the
probability of A and the conditional probability of B given A

Conditional probability allows us to express Theorem 1.3.1, the law of total proba
bility, in a different and sometimes more helpful way.

Theorem 1.5.1 (Law of total probability, conditioned version) Let A1 A2 be
events that form a partition of the sample space S, each of positive probability. Let
B be any event. Then P B P A1 P B A1 P A2 P B A2

PROOF The multiplication formula (1.5.2) gives that P Ai B P Ai P B Ai
The result then follows immediately from Theorem 1.3.1.

EXAMPLE 1.5.1
Suppose a class contains 60% girls and 40% boys. Suppose that 30% of the girls have
long hair, and 20% of the boys have long hair. A student is chosen uniformly at random
from the class. What is the probability that the chosen student will have long hair?

To answer this, we let A1 be the set of girls and A2 be the set of boys. Then
A1 A2 is a partition of the class. We further let B be the set of all students with long

hair.
We are interested in P B . We compute this by Theorem 1.5.1 as

P B P A1 P B A1 P A2 P B A2 0 6 0 3 0 4 0 2 0 26
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so there is a 26% chance that the randomly chosen student has long hair.

Suppose now that A and B are two events, each of positive probability. In some ap
plications, we are given the values of P A P B and P B A and want to compute
P A B The following result establishes a simple relationship among these quanti
ties.

Theorem 1.5.2 (Bayes’ theorem) Let A and B be two events, each of positive prob
ability. Then

P A B
P A

P B
P B A

PROOF We compute that

P A

P B
P B A

P A

P B

P A B

P A

P A B

P B
P A B

This gives the result.
Standard applications of the multiplication formula, the law of total probabilities,

and Bayes’ theorem occur with twostage systems. The response for such systems can
be thought of as occurring in two steps or stages. Typically, we are given the prob
abilities for the first stage and the conditional probabilities for the second stage. The
multiplication formula is then used to calculate joint probabilities for what happens at
both stages; the law of total probability is used to compute the probabilities for what
happens at the second stage; and Bayes’ theorem is used to calculate the conditional
probabilities for the first stage, given what has occurred at the second stage. We illus
trate this by an example.

EXAMPLE 1.5.2
Suppose urn #1 has 3 red and 2 blue balls, and urn #2 has 4 red and 7 blue balls.
Suppose one of the two urns is selected with probability 1 2 each, and then one of the
balls within that urn is picked uniformly at random.

What is the probability that urn #2 is selected at the first stage (event A) and a blue
ball is selected at the second stage (event B)? The multiplication formula provides the
correct way to compute this probability as

P A B P A P B A
1

2

7

11

7

22

Suppose instead we want to compute the probability that a blue ball is obtained.
Using the law of total probability (Theorem 1.5.1), we have that

P B P A P B A P Ac P B Ac 1

2

7

11

1

2

2

5

Now suppose we are given the information that the ball picked is blue. Then, using
Bayes’ theorem, the conditional probability that we had selected urn #2 is given by

P A B
P A

P B
P B A

1 2

1 2 2 5 1 2 7 11

7

11
35 57 0 614
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Note that, without the information that a blue ball occurred at the second stage, we
have that

P urn #2 selected 1 2

We see that knowing the ball was blue significantly increases the probability that urn
#2 was selected.

We can represent a twostage system using a tree, as in Figure 1.5.1. It can be help
ful to draw such a figure when carrying out probability computations for such systems.
There are two possible outcomes at the first stage and three possible outcomes at the
second stage.

first stage
outcome 1

first stage
outcome 2

second stage
outcome 3

second stage
outcome 1

second stage
outcome 2

second stage
outcome 3

second stage
outcome 1

second stage
outcome 2

S

Figure 1.5.1: A tree depicting a twostage system with two possible outcomes at the first stage
and three possible outcomes at the second stage.

1.5.2 Independence of Events

Consider now Example 1.4.4, where we roll one fair die and ip one fair coin, so that

S 1H 2H 3H 4H 5H 6H 1T 2T 3T 4T 5T 6T

and P s 1 12 for each s S. Here the probability that the die comes up 5 is
equal to P 5H 5T 2 12 1 6, as it should be.

But now, what is the probability that the die comes up 5, conditional on knowing
that the coin came up tails? Well, we can compute that probability as

P die 5 coin tails
P die 5 and coin tails

P coin tails
P 5T

P 1T 2T 3T 4T 5T 6T
1 12

6 12
1 6

This is the same as the unconditional probability, P die 5 . It seems that knowing
that the coin was tails had no effect whatsoever on the probability that the coin came
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up 5. This property is called independence. We say that the coin and the die are
independent in this example, to indicate that the occurrence of one does not have any
inuence on the probability of the other occurring.

More formally, we make the following definition.

Definition 1.5.2 Two events A and B are independent if

P A B P A P B

Now, because P A B P A B P B , we see that A and B are independent
if and only if P A B P A or P B A P B , provided that P A 0 and
P B 0. Definition 1.5.2 has the advantage that it remains valid even if P B 0
or P A 0 respectively. Intuitively, events A and B are independent if neither one
has any impact on the probability of the other.

EXAMPLE 1.5.3
In Example 1.4.4, if A is the event that the die was 5, and B is the event that the coin
was tails, then P A P 5H 5T 2 12 1 6, and

P B P 1T 2T 3T 4T 5T 6T 6 12 1 2

Also, P A B P 5T 1 12, which is indeed equal to 1 6 1 2 . Hence, A
and B are independent in this case.

For multiple events, the definition of independence is somewhat more involved.

Definition 1.5.3 A collection of events A1 A2 A3 are independent if

P Ai1 Ai j P Ai1 P Ai j

for any finite subcollection Ai1 Ai j of distinct events.

EXAMPLE 1.5.4
According to Definition 1.5.3, three events A, B, and C are independent if all of the
following equations hold:

P A B P A P B

P A C P A P C

P B C P B P C (1.5.3)

and
P A B C P A P B P C (1.5.4)

It is not sufficient to check just some of these conditions to verify independence. For
example, suppose that S 1 2 3 4 , with P 1 P 2 P 3 P 4
1 4. Let A 1 2 , B 1 3 , and C 1 4 . Then each of the three equations
(1.5.3) holds, but equation (1.5.4) does not hold. Here, the events A, B, and C are
called pairwise independent, but they are not independent.
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Summary of Section 1.5

Conditional probability measures the probability that A occurs given that B oc
curs; it is given by P A B P A B P B .

Conditional probability satisfies its own law of total probability.

Events are independent if they have no effect on each other’s probabilities. For
mally, this means that P A B P A P B .

If A and B are independent, and P A 0 and P B 0, then P A B
P A and P B A P B .

EXERCISES

1.5.1 Suppose that we roll four fair sixsided dice.
(a) What is the conditional probability that the first die shows 2, conditional on the
event that exactly three dice show 2?
(b) What is the conditional probability that the first die shows 2, conditional on the
event that at least three dice show 2?

1.5.2 Suppose we ip two fair coins and roll one fair sixsided die.
(a) What is the probability that the number of heads equals the number showing on the
die?
(b) What is the conditional probability that the number of heads equals the number
showing on the die, conditional on knowing that the die showed 1?
(c) Is the answer for part (b) larger or smaller than the answer for part (a)? Explain
intuitively why this is so.

1.5.3 Suppose we ip three fair coins.
(a) What is the probability that all three coins are heads?
(b) What is the conditional probability that all three coins are heads, conditional on
knowing that the number of heads is odd?
(c) What is the conditional probability that all three coins are heads, given that the
number of heads is even?
1.5.4 Suppose we deal five cards from an ordinary 52card deck. What is the con
ditional probability that all five cards are spades, given that at least four of them are
spades?
1.5.5 Suppose we deal five cards from an ordinary 52card deck. What is the condi
tional probability that the hand contains all four aces, given that the hand contains at
least four aces?
1.5.6 Suppose we deal five cards from an ordinary 52card deck. What is the condi
tional probability that the hand contains no pairs, given that it contains no spades?
1.5.7 Suppose a baseball pitcher throws fastballs 80% of the time and curveballs 20%
of the time. Suppose a batter hits a home run on 8% of all fastball pitches, and on 5%
of all curveball pitches. What is the probability that this batter will hit a home run on
this pitcher’s next pitch?
1.5.8 Suppose the probability of snow is 20%, and the probability of a traffic accident
is 10%. Suppose further that the conditional probability of an accident, given that it
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snows, is 40%. What is the conditional probability that it snows, given that there is an
accident?
1.5.9 Suppose we roll two fair sixsided dice, one red and one blue. Let A be the event
that the two dice show the same value. Let B be the event that the sum of the two dice
is equal to 12. Let C be the event that the red die shows 4. Let D be the event that the
blue die shows 4.
(a) Are A and B independent?
(b) Are A and C independent?
(c) Are A and D independent?
(d) Are C and D independent?
(e) Are A, C, and D all independent?
1.5.10 Consider two urns, labelled urn #1 and urn #2. Suppose, as in Exercise 1.4.11,
that urn #1 has 5 red and 7 blue balls, that urn #2 has 6 red and 12 blue balls, and that
we pick three balls uniformly at random from each of the two urns. Conditional on the
fact that all six chosen balls are the same color, what is the conditional probability that
this color is red?
1.5.11 Suppose we roll a fair sixsided die and then ip a number of fair coins equal to
the number showing on the die. (For example, if the die shows 4, then we ip 4 coins.)
(a) What is the probability that the number of heads equals 3?
(b) Conditional on knowing that the number of heads equals 3, what is the conditional
probability that the die showed the number 5?
1.5.12 Suppose we roll a fair sixsided die and then pick a number of cards from a
wellshufed deck equal to the number showing on the die. (For example, if the die
shows 4, then we pick 4 cards.)
(a) What is the probability that the number of jacks in our hand equals 2?
(b) Conditional on knowing that the number of jacks in our hand equals 2, what is the
conditional probability that the die showed the number 3?

PROBLEMS

1.5.13 Consider three cards, as follows: One is red on both sides, one is black on both
sides, and one is red on one side and black on the other. Suppose the cards are placed
in a hat, and one is chosen at random. Suppose further that this card is placed at on
the table, so we can see one side only.
(a) What is the probability that this one side is red?
(b) Conditional on this one side being red, what is the probability that the card showing
is the one that is red on both sides? (Hint: The answer is somewhat surprising.)
(c) Suppose you wanted to verify the answer in part (b), using an actual, physical
experiment. Explain how you could do this.
1.5.14 Prove that A and B are independent if and only if AC and B are independent.
1.5.15 Let A and B be events of positive probability. Prove that P A B P A if
and only if P B A P B .
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CHALLENGES

1.5.16 Suppose we roll three fair sixsided dice. Compute the conditional probability
that the first die shows 4, given that the sum of the three numbers showing is 12.
1.5.17 (The game of craps) The game of craps is played by rolling two fair, sixsided
dice. On the first roll, if the sum of the two numbers showing equals 2, 3, or 12, then
the player immediately loses. If the sum equals 7 or 11, then the player immediately
wins. If the sum equals any other value, then this value becomes the player’s “point.”
The player then repeatedly rolls the two dice, until such time as he or she either rolls
the point value again (in which case he or she wins) or rolls a 7 (in which case he or
she loses).
(a) Suppose the player’s point is equal to 4. Conditional on this, what is the conditional
probability that he or she will win (i.e., will roll another 4 before rolling a 7)? (Hint:
The final roll will be either a 4 or 7; what is the conditional probability that it is a 4?)
(b) For 2 i 12, let pi be the conditional probability that the player will win,
conditional on having rolled i on the first roll. Compute pi for all i with 2 i 12.
(Hint: You’ve already done this for i 4 in part (b). Also, the cases i 2 3 7 11 12
are trivial. The other cases are similar to the i 4 case.)
(c) Compute the overall probability that a player will win at craps. (Hint: Use part (b)
and Theorem 1.5.1.)
1.5.18 (The Monty Hall problem) Suppose there are three doors, labeled A, B, and C.
A new car is behind one of the three doors, but you don’t know which. You select one
of the doors, say, door A. The host then opens one of doors B or C, as follows: If the
car is behind B, then they open C; if the car is behind C, then they open B; if the car
is behind A, then they open either B or C with probability 1/2 each. (In any case, the
door opened by the host will not have the car behind it.) The host then gives you the
option of either sticking with your original door choice (i.e., A), or switching to the
remaining unopened door (i.e., whichever of B or C the host did not open). You then
win (i.e., get to keep the car) if and only if the car is behind your final door selection.
(Source: Parade Magazine, “Ask Marilyn” column, September 9, 1990.) Suppose for
definiteness that the host opens door B.
(a) If you stick with your original choice (i.e., door A), conditional on the host having
opened door B, then what is your probability of winning? (Hint: First condition on the
true location of the car. Then use Theorem 1.5.2.)
(b) If you switch to the remaining door (i.e., door C), conditional on the host having
opened door B, then what is your probability of winning?
(c) Do you find the result of parts (a) and (b) surprising? How could you design a
physical experiment to verify the result?
(d) Suppose we change the rules so that, if you originally chose A and the car was in
deed behind A, then the host always opens door B. How would the answers to parts (a)
and (b) change in this case?
(e) Suppose we change the rules so that, if you originally chose A, then the host al
ways opens door B no matter where the car is. We then condition on the fact that door
B happened not to have a car behind it. How would the answers to parts (a) and (b)
change in this case?
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DISCUSSION TOPICS

1.5.19 Suppose two people each ip a fair coin simultaneously. Will the results of the
two ips usually be independent? Under what sorts of circumstances might they not be
independent? (List as many such circumstances as you can.)
1.5.20 Suppose you are able to repeat an experiment many times, and you wish to
check whether or not two events are independent. How might you go about this?
1.5.21 The Monty Hall problem (Challenge 1.5.18) was originally presented by Mar
ilyn von Savant, writing in the “Ask Marilyn” column of Parade Magazine. She gave
the correct answer. However, many people (including some wellknown mathemati
cians, plus many laypeople) wrote in to complain that her answer was incorrect. The
controversy dragged on for months, with many letters and very strong language written
by both sides (in the end, von Savant was vindicated). Part of the confusion lay in the
assumptions being made, e.g., some people misinterpreted her question as that of the
modified version of part (e) of Challenge 1.5.18. However, a lot of the confusion was
simply due to mathematical errors and misunderstandings. (Source: Parade Magazine,
“Ask Marilyn” column, September 9, 1990; December 2, 1990; February 17, 1991;
July 7, 1991.)
(a) Does it surprise you that so many people, including wellknown mathematicians,
made errors in solving this problem? Why or why not?
(b) Does it surprise you that so many people, including many laypeople, cared so
strongly about the answer to this problem? Why or why not?

1.6 Continuity of P
Suppose A1 A2 is a sequence of events that are getting “closer” (in some sense) to
another event, A. Then we might expect that the probabilities P A1 P A2 are
getting close to P A , i.e., that limn P An P A . But can we be sure about
this?

Properties like this, which say that P An is close to P A whenever An is “close”
to A, are called continuity properties. The above question can thus be translated,
roughly, as asking whether or not probability measures P are “continuous.” It turns
out that P is indeed continuous in some sense.

Specifically, let us write An A and say that the sequence An increases to A,
if A1 A2 A3 , and also n 1 An A. That is, the sequence of events
is an increasing sequence, and furthermore its union is equal to A. For example, if
An 1 n n then A1 A2 and n 1 An 0 Hence, 1 n n
0 Figure 1.6.1 depicts an increasing sequence of subsets.

Similarly, let us write An A and say that the sequence An decreases to
A, if A1 A2 A3 , and also n 1 An A. That is, the sequence of
events is a decreasing sequence, and furthermore its intersection is equal to A. For
example, if An 1 n 1 n then A1 A2 and n 1 An 0 Hence,

1 n 1 n 0 Figure 1.6.2 depicts a decreasing sequence of subsets.
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Figure 1.6.1: An increasing sequence of subsets A1 A2 A3

Figure 1.6.2: A decreasing sequence of subsets A1 A2 A3

We will consider such sequences of sets at several points in the text. For this we
need the following result.

Theorem 1.6.1 Let A A1 A2 be events, and suppose that either An A or
An A. Then

lim
n

P An P A

PROOF See Section 1.7 for the proof of this theorem.

EXAMPLE 1.6.1
Suppose S is the set of all positive integers, with P s 2 s for all s S. Then what
is P 5 6 7 8 ?

We begin by noting that the events An 5 6 7 8 n increase to A
5 6 7 8 , i.e., An A. Hence, using continuity of probabilities, we must
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have

P 5 6 7 8 lim
n

P 5 6 7 8 n

lim
n

P 5 P 6 P n

lim
n

2 5 2 6 2 n lim
n

2 5 2 n 1

1 2 1

lim
n

2 4 2 n 2 4 1 16

Alternatively, we could use countable additivity directly, to conclude that

P 5 6 7 8 P 5 P 6 P 7

which amounts to the same thing.

EXAMPLE 1.6.2
Let P be some probability measure on the space S R1. Suppose

P 3 5 1 n

for all n where 0. Let An 3 5 1 n . Then An A where A 3 5].
Hence, we must have P A P 3 5] as well.

Note, however, that we could still have P 3 5 0. For example, perhaps
P 5 , but P 3 5 0.

Summary of Section 1.6

If An A or An A, then limn P An P A .

This allows us to compute or bound various probabilities that otherwise could
not be understood.

EXERCISES

1.6.1 Suppose that S 1 2 3 is the set of all positive integers and that P s
2 s for all s S. Compute P A where A 2 4 6 is the set of all even
positive integers. Do this in two ways — by using continuity of P (together with finite
additivity) and by using countable additivity.
1.6.2 Consider the uniform distribution on [0 1]. Compute (with proof)

lim
n

P [1 4 1 e n]

1.6.3 Suppose that S 1 2 3 is the set of all positive integers and that P is
some probability measure on S. Prove that we must have

lim
n

P 1 2 n 1

1.6.4 Suppose P [0 8
4 n ] 2 e n

6 for all n 1 2 3 . What must P 0 be?
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1.6.5 Suppose P [0 1] 1, but P [1 n 1] 0 for all n 1 2 3 . What must
P 0 be?
1.6.6 Suppose P [1 n 1 2] 1 3 for all n 1 2 3 .
(a) Must we have P 0 1 2] 1 3?
(b) Must we have P [0 1 2] 1 3?

1.6.7 Suppose P [0 1. Prove that there is some n such that P [0 n] 0 9.
1.6.8 Suppose P 0 1 2] 1 3. Prove that there is some n such that P [1 n 1 2]
1 4.

1.6.9 Suppose P [0 1 2] 1 3. Must there be some n such that P [1 n 1 2]
1 4?

PROBLEMS

1.6.10 Let P be some probability measure on sample space S [0 1].
(a) Prove that we must have limn P 0 1 n 0.
(b) Show by example that we might have limn P [0 1 n 0.

CHALLENGES

1.6.11 Suppose we know that P is finitely additive, but we do not know that it is
countably additive. In other words, we know that P A1 An P A1
P An for any finite collection of disjoint events A1 An , but we do not know
about P A1 A2 for infinite collections of disjoint events. Suppose further
that we know that P is continuous in the sense of Theorem 1.6.1. Using this, give a
proof that P must be countably additive. (In effect, you are proving that continuity of
P is equivalent to countable additivity of P , at least once we know that P is finitely
additive.)

1.7 Further Proofs (Advanced)

Proof of Theorem 1.3.4

We want to prove that whenever A1 A2 is a finite or countably infinite sequence of
events, not necessarily disjoint, then P A1 A2 P A1 P A2

Let B1 A1, and for n 2, let Bn An A1 An 1
c. Then B1 B2

are disjoint, B1 B2 A1 A2 and, by additivity,

P A1 A2 P B1 B2 P B1 P B2 (1.7.1)

Furthermore, An Bn, so by monotonicity, we have P An P Bn . It follows from
(1.7.1) that

P A1 A2 P B1 P B2 P A1 P A2

as claimed.
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Proof of Theorem 1.6.1

We want to prove that when A A1 A2 are events, and either An A or An
A, then limn P An P A .

Suppose first that An A. Then we can write

A A1 A2 Ac
1 A3 Ac

2

where the union is disjoint. Hence, by additivity,

P A P A1 P A2 Ac
1 P A3 Ac

2

Now, by definition, writing this infinite sum is the same thing as writing

P A lim
n

P A1 P A2 Ac
1 P An Ac

n 1 . (1.7.2)

However, again by additivity, we see that

P A1 P A2 Ac
1 P A3 Ac

2 P An Ac
n 1 P An .

Substituting this information into (1.7.2), we obtain P A limn P An which
was to be proved.

Suppose now that An A. Let Bn Ac
n, and let B Ac. Then

we see that Bn B (why?). Hence, by what we just proved, we must have P B
limn P Bn But then, using (1.3.1), we have

1 P A lim
n

1 P An ,

from which it follows that P A limn P An This completes the proof.
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Random Variables and
Distributions

CHAPTER OUTLINE
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Section 4 Continuous Distributions
Section 5 Cumulative Distribution Functions
Section 6 OneDimensional Change of Variable
Section 7 Joint Distributions
Section 8 Conditioning and Independence
Section 9 Multidimensional Change of Variable
Section 10 Simulating Probability Distributions
Section 11 Further Proofs (Advanced)

In Chapter 1, we discussed the probability model as the central object of study in the
theory of probability. This required defining a probability measure P on a class of
subsets of the sample space S It turns out that there are simpler ways of presenting a
particular probability assignment than this — ways that are much more convenient to
work with than P This chapter is concerned with the definitions of random variables,
distribution functions, probability functions, density functions, and the development
of the concepts necessary for carrying out calculations for a probability model using
these entities. This chapter also discusses the concept of the conditional distribution of
one random variable, given the values of others. Conditional distributions of random
variables provide the framework for discussing what it means to say that variables are
related, which is important in many applications of probability and statistics.

33
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2.1 Random Variables
The previous chapter explained how to construct probability models, including a sam
ple space S and a probability measure P . Once we have a probability model, we may
define random variables for that probability model.

Intuitively, a random variable assigns a numerical value to each possible outcome
in the sample space. For example, if the sample space is rain, snow, clear , then we
might define a random variable X such that X 3 if it rains, X 6 if it snows, and
X 2 7 if it is clear.

More formally, we have the following definition.

Definition 2.1.1 A random variable is a function from the sample space S to the
set R1 of all real numbers.

Figure 2.1.1 provides a graphical representation of a random variable X taking a re
sponse value s S into a real number X s R1

1

S

X(s)

X

R1.s .

Figure 2.1.1: A random variable X as a function on the sample space S and taking values in
R1

EXAMPLE 2.1.1 A Very Simple Random Variable
The random variable described above could be written formally as X : rain, snow,
clear R1 by X rain 3, X snow 6, and X clear 2 7. We will return to
this example below.

We now present several further examples. The point is, we can define random
variables any way we like, as long as they are functions from the sample space to R1.

EXAMPLE 2.1.2
For the case S rain snow clear , we might define a second random variable Y by
saying that Y 0 if it rains, Y 1 2 if it snows, and Y 7 8 if it is clear. That is
Y rain 0, Y snow 1 2, and Y clear 7 8.

EXAMPLE 2.1.3
If the sample space corresponds to ipping three different coins, then we could let X
be the total number of heads showing, let Y be the total number of tails showing, let
Z 0 if there is exactly one head, and otherwise Z 17, etc.

EXAMPLE 2.1.4
If the sample space corresponds to rolling two fair dice, then we could let X be the
square of the number showing on the first die, let Y be the square of the number show
ing on the second die, let Z be the sum of the two numbers showing, let W be the
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square of the sum of the two numbers showing, let R be the sum of the squares of the
two numbers showing, etc.

EXAMPLE 2.1.5 Constants as Random Variables
As a special case, every constant value c is also a random variable, by saying that
c s c for all s S. Thus, 5 is a random variable, as is 3 or 21 6.

EXAMPLE 2.1.6 Indicator Functions
One special kind of random variable is worth mentioning. If A is any event, then we
can define the indicator function of A, written IA, to be the random variable

IA s
1 s A
0 s A

which is equal to 1 on A, and is equal to 0 on AC .

Given random variables X and Y , we can perform the usual arithmetic operations
on them. Thus, for example, Z X2 is another random variable, defined by Z s
X2 s X s 2 X s X s . Similarly, if W XY 3, then W s X s
Y s Y s Y s , etc. Also, if Z X Y , then Z s X s Y s , etc.

EXAMPLE 2.1.7
Consider rolling a fair sixsided die, so that S 1 2 3 4 5 6 . Let X be the number
showing, so that X s s for s S. Let Y be three more than the number showing,
so that Y s s 3. Let Z X2 Y . Then Z s X s 2 Y s s2 s 3. So
Z 1 5, Z 2 9, etc.

We write X Y to mean that X s Y s for all s S. Similarly, we write
X Y to mean that X s Y s for all s S, and X Y to mean that X s Y s
for all s S. For example, we write X c to mean that X s c for all s S.

EXAMPLE 2.1.8
Again consider rolling a fair sixsided die, with S 1 2 3 4 5 6 . For s S, let
X s s, and let Y X I 6 . This means that

Y s X s I 6 s
s s 5
7 s 6

Hence, Y s X s for 1 s 5. But it is not true that Y X , because Y 6
X 6 . On the other hand, it is true that Y X .

EXAMPLE 2.1.9
For the random variable of Example 2.1.1 above, it is not true that X 0, nor is it true
that X 0. However, it is true that X 2 7 and that X 6. It is also true that
X 10 and X 100.

If S is infinite, then a random variable X can take on infinitely many different
values.

EXAMPLE 2.1.10
If S 1 2 3 , with P s 2 s for all s S, and if X is defined by X s s2,
then we always have X 1 But there is no largest value of X s because the value
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X s increases without bound as s . We shall call such a random variable an
unbounded random variable.

Finally, suppose X is a random variable. We know that different states s occur with
different probabilities. It follows that X s also takes different values with different
probabilities. These probabilities are called the distribution of X ; we consider them
next.

Summary of Section 2.1

A random variable is a function from the state space to the set of real numbers.

The function could be constant, or correspond to counting some random quantity
that arises, or any other sort of function.

EXERCISES

2.1.1 Let S 1 2 3 , and let X s s2 and Y s 1 s for s S. For each
of the following quantities, determine (with explanation) whether or not it exists. If it
does exist, then give its value.
(a) mins S X s
(b) maxs S X s
(c) mins S Y s
(d) maxs S Y s

2.1.2 Let S high middle low . Define random variables X , Y , and Z by X high
12, X middle 2, X low 3, Y high 0, Y middle 0, Y low 1,

Z high 6, Z middle 0, Z low 4. Determine whether each of the following
relations is true or false.
(a) X Y
(b) X Y
(c) Y Z
(d) Y Z
(e) XY Z
(f) XY Z
2.1.3 Let S 1 2 3 4 5 .
(a) Define two different (i.e., nonequal) nonconstant random variables, X and Y , on S.
(b) For the random variables X and Y that you have chosen, let Z X Y 2. Compute
Z s for all s S.

2.1.4 Consider rolling a fair sixsided die, so that S 1 2 3 4 5 6 . Let X s s,
and Y s s3 2. Let Z XY . Compute Z s for all s S.
2.1.5 Let A and B be events, and let X IA IB . Is X an indicator function? If yes,
then of what event?
2.1.6 Let S 1 2 3 4 , X I 1 2 , Y I 2 3 , and Z I 3 4 . Let W X Y Z .
(a) Compute W 1 .
(b) Compute W 2 .
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(c) Compute W 4 .
(d) Determine whether or not W Z .
2.1.7 Let S 1 2 3 , X I 1 , Y I 2 3 , and Z I 1 2 . Let W X Y Z .
(a) Compute W 1 .
(b) Compute W 2 .
(c) Compute W 3 .
(d) Determine whether or not W Z .
2.1.8 Let S 1 2 3 4 5 , X I 1 2 3 , Y I 2 3 , and Z I 3 4 5 . Let W
X Y Z .
(a) Compute W 1 .
(b) Compute W 2 .
(c) Compute W 5 .
(d) Determine whether or not W Z .
2.1.9 Let S 1 2 3 4 , X I 1 2 , and Y s s2 X s .
(a) Compute Y 1 .
(b) Compute Y 2 .
(c) Compute Y 4 .

PROBLEMS

2.1.10 Let X be a random variable.
(a) Is it necessarily true that X 0?
(b) Is it necessarily true that there is some real number c such that X c 0?
(c) Suppose the sample space S is finite. Then is it necessarily true that there is some
real number c such that X c 0?
2.1.11 Suppose the sample space S is finite. Is it possible to define an unbounded
random variable on S? Why or why not?
2.1.12 Suppose X is a random variable that takes only the values 0 or 1. Must X be an
indicator function? Explain.
2.1.13 Suppose the sample space S is finite, of size m. How many different indicator
functions can be defined on S?
2.1.14 Suppose X is a random variable. Let Y X . Must Y be a random variable?
Explain.

DISCUSSION TOPICS

2.1.15 Mathematical probability theory was introduced to the Englishspeaking world
largely by two American mathematicians, William Feller and Joe Doob, writing in the
early 1950s. According to Professor Doob, the two of them had an argument about
whether random variables should be called “random variables” or “chance variables.”
They decided by ipping a coin — and “random variables” won. (Source: Statistical
Science 12 (1997), No. 4, page 307.) Which name do you think would have been a
better choice?
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2.2 Distributions of Random Variables
Because random variables are defined to be functions of the outcome s, and because
the outcome s is assumed to be random (i.e., to take on different values with different
probabilities), it follows that the value of a random variable will itself be random (as
the name implies).

Specifically, if X is a random variable, then what is the probability that X will equal
some particular value x? Well, X x precisely when the outcome s is chosen such
that X s x .

EXAMPLE 2.2.1
Let us again consider the random variable of Example 2.1.1, where S rain, snow,
clear , and X is defined by X rain 3, X snow 6, and X clear 2 7. Suppose
further that the probability measure P is such that P rain 0 4, P snow 0 15,
and P clear 0 45. Then clearly, X 3 only when it rains, X 6 only when
it snows, and X 2 7 only when it is clear. Thus, P X 3 P rain 0 4,
P X 6 P snow 0 15, and P X 2 7 P clear 0 45. Also,
P X 17 0, and in fact P X x P 0 for all x 3 6 2 7 . We can
also compute that

P X 3 6 P X 3 P X 6 0 4 0 15 0 55

while
P X 5 P X 3 P X 2 7 0 4 0 45 0 85

etc.

We see from this example that, if B is any subset of the real numbers, then P X
B P s S : X s B . Furthermore, to understand X well requires knowing
the probabilities P X B for different subsets B. That is the motivation for the
following definition.

Definition 2.2.1 If X is a random variable, then the distribution of X is the collec
tion of probabilities P X B for all subsets B of the real numbers.

Strictly speaking, it is required that B be a Borel subset, which is a technical restriction
from measure theory that need not concern us here. Any subset that we could ever
write down is a Borel subset.

In Figure 2.2.1, we provide a graphical representation of how we compute the dis
tribution of a random variable X For a set B we must find the elements in s S such
that X s B These elements are given by the set s S : X s B Then we
evaluate the probability P s S : X s B . We must do this for every subset
B R1
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1

S
X

R1
{s : X(s)  B }

( )

a b
B

Figure 2.2.1: If B a b R1 then s S : X s B is the set of elements such that
a X s b

EXAMPLE 2.2.2 A Very Simple Distribution
Consider once again the above random variable, where S rain, snow, clear and
where X is defined by X rain 3, X snow 6, and X clear 2 7, and
P rain 0 4, P snow 0 15, and P clear 0 45. What is the distribution of
X? Well, if B is any subset of the real numbers, then P X B should count 0 4 if
3 B, plus 0 15 if 6 B, plus 0 45 if 2 7 B. We can formally write all this
information at once by saying that

P X B 0 4 IB 3 0 15 IB 6 0 45 IB 2 7 ,

where again IB x 1 if x B, and IB x 0 if x B.

EXAMPLE 2.2.3 An AlmostAsSimple Distribution
Consider once again the above setting, with S rain, snow, clear , and P rain 0 4,
P snow 0 15, and P clear 0 45. Consider a random variable Y defined by
Y rain 5, Y snow 7, and Y clear 5.

What is the distribution of Y ? Clearly, Y 7 only when it snows, so that P Y
7 P snow 0 15. However, here Y 5 if it rains or if it is clear. Hence,
P Y 5 P rain, clear 0 4 0 45 0 85. Therefore, if B is any subset of
the real numbers, then

P Y B 0 15 IB 7 0 85 IB 5 .

While the above examples show that it is possible to keep track of P X B for all
subsets B of the real numbers, they also indicate that it is rather cumbersome to do so.
Fortunately, there are simpler functions available to help us keep track of probability
distributions, including cumulative distribution functions, probability functions, and
density functions. We discuss these next.

Summary of Section 2.2

The distribution of a random variable X is the collection of probabilities P X
B of X belonging to various sets.

The probability P X B is determined by calculating the probability of the set
of response values s such that X s B i.e., P X B P s S : X s
B
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EXERCISES

2.2.1 Consider ipping two independent fair coins. Let X be the number of heads that
appear. Compute P X x for all real numbers x .
2.2.2 Suppose we ip three fair coins, and let X be the number of heads showing.
(a) Compute P X x for every real number x .
(b) Write a formula for P X B , for any subset B of the real numbers.
2.2.3 Suppose we roll two fair sixsided dice, and let Y be the sum of the two numbers
showing.
(a) Compute P Y y for every real number y.
(b) Write a formula for P Y B , for any subset B of the real numbers.
2.2.4 Suppose we roll one fair sixsided die, and let Z be the number showing. Let
W Z3 4, and let V Z .
(a) Compute P W for every real number .
(b) Compute P V for every real number .
(c) Compute P ZW x for every real number x .
(d) Compute P V W y for every real number y.
(e) Compute P V W r for every real number r .
2.2.5 Suppose that a bowl contains 100 chips: 30 are labelled 1, 20 are labelled 2, and
50 are labelled 3. The chips are thoroughly mixed, a chip is drawn, and the number X
on the chip is noted.
(a) Compute P X x for every real number x .
(b) Suppose the first chip is replaced, a second chip is drawn, and the number Y on the
chip noted. Compute P Y y for every real number y.
(c) Compute P W for every real number when W X Y
2.2.6 Suppose a standard deck of 52 playing cards is thoroughly shufed and a single
card is drawn. Suppose an ace has value 1, a jack has value 11, a queen has value 12,
and a king has value 13.
(a) Compute P X x for every real number x when X is the value of the card
drawn.
(b) Suppose that Y 1 2 3 or 4 when a diamond, heart, club, or spade is drawn.
Compute P Y y for every real number y.
(c) Compute P W for every real number when W X Y
2.2.7 Suppose a university is composed of 55% female students and 45% male stu
dents. A student is selected to complete a questionnaire. There are 25 questions on
the questionnaire administered to a male student and 30 questions on the questionnaire
administered to a female student. If X denotes the number of questions answered by a
randomly selected student, then compute P X x for every real number x

2.2.8 Suppose that a bowl contains 10 chips, each uniquely numbered 0 through 9
The chips are thoroughly mixed, one is drawn and the number on it, X1, is noted. This
chip is then replaced in the bowl. A second chip is drawn and the number on it, X2 is
noted. Compute P W for every real number when W X1 10X2
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PROBLEMS

2.2.9 Suppose that a bowl contains 10 chips each uniquely numbered 0 through 9 The
chips are thoroughly mixed, one is drawn and the number on it, X1 is noted. This chip
is not replaced in the bowl. A second chip is drawn and the number on it, X2 is noted.
Compute P W for every real number when W X1 10X2

CHALLENGES

2.2.10 Suppose Alice ips three fair coins, and let X be the number of heads showing.
Suppose Barbara ips five fair coins, and let Y be the number of heads showing. Let
Z X Y . Compute P Z z for every real number z.

2.3 Discrete Distributions
For many random variables X , we have P X x 0 for certain x values. This
means there is positive probability that the variable will be equal to certain particular
values.

If

x R1

P X x 1

then all of the probability associated with the random variable X can be found from the
probability that X will be equal to certain particular values. This prompts the following
definition.

Definition 2.3.1 A random variable X is discrete if

x R1

P X x 1 (2.3.1)

At first glance one might expect (2.3.1) to be true for any random variable. How
ever, (2.3.1) does not hold for the uniform distribution on [0 1] or for other continuous
distributions, as we shall see in the next section.

Random variables satisfying (2.3.1) are simple in some sense because we can un
derstand them completely just by understanding their probabilities of being equal to
particular values x . Indeed, by simply listing out all the possible values x such that
P X x 0, we obtain a second, equivalent definition, as follows.

Definition 2.3.2 A random variable X is discrete if there is a finite or countable se
quence x1 x2 of distinct real numbers, and a corresponding sequence p1 p2
of nonnegative real numbers, such that P X xi pi for all i , and i pi 1.

This second definition also suggests how to keep track of discrete distributions. It
prompts the following definition.
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Definition 2.3.3 For a discrete random variable X , its probability function is the
function pX : R1 [0 1] defined by

pX x P X x .

Hence, if x1 x2 are the distinct values such that P X xi pi for all i with

i pi 1, then

pX x
pi x xi for some i
0 otherwise.

Clearly, all the information about the distribution of X is contained in its probability
function, but only if we know that X is a discrete random variable.

Finally, we note that Theorem 1.5.1 immediately implies the following.

Theorem 2.3.1 (Law of total probability, discrete random variable version) Let X
be a discrete random variable, and let A be some event. Then

P A
x R1

P X x P A X x .

2.3.1 Important Discrete Distributions

Certain particular discrete distributions are so important that we list them here.

EXAMPLE 2.3.1 Degenerate Distributions
Let c be some fixed real number. Then, as already discussed, c is also a random variable
(in fact, c is a constant random variable). In this case, clearly c is discrete, with
probability function pc satisfying that pc c 1, and pc x 0 for x c. Because c
is always equal to a particular value (namely, c) with probability 1, the distribution of
c is sometimes called a point mass or point distribution or degenerate distribution.

EXAMPLE 2.3.2 The Bernoulli Distribution
Consider ipping a coin that has probability of coming up heads and probability 1
of coming up tails, where 0 1. Let X 1 if the coin is heads, while X 0 if
the coin is tails. Then pX 1 P X 1 , while pX 0 P X 0 1 .
The random variable X is said to have the Bernoulli distribution; we write this as
X Bernoulli .

Bernoulli distributions arise anytime we have a response variable that takes only
two possible values, and we label one of these outcomes as 1 and the other as 0. For
example, 1 could correspond to success and 0 to failure of some quality test applied to
an item produced in a manufacturing process. In this case, is the proportion of manu
factured items that will pass the test. Alternatively, we could be randomly selecting an
individual from a population and recording a 1 when the individual is female and a 0 if
the individual is a male. In this case, is the proportion of females in the population.
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EXAMPLE 2.3.3 The Binomial Distribution
Consider ipping n coins, each of which has (independent) probability of coming up
heads, and probability 1 of coming up tails. (Again, 0 1.) Let X be the total
number of heads showing. By (1.4.2), we see that for x 0 1 2 n

pX x P X x
n

x
x 1 n x n!

x! n x !
x 1 n x

The random variable X is said to have the Binomial n distribution; we write this as
X Binomial n . The Bernoulli distribution corresponds to the special case of
the Binomial n distribution when n 1, namely, Bernoulli Binomial 1 .
Figure 2.3.1 contains the plots of several Binomial 20 probability functions.

20100

0.2

0.1

0.0

 x

 p

Figure 2.3.1: Plot of the Binomial 20 1 2 ( ) and the Binomial 20 1 5 ( )
probability functions.

The binomial distribution is applicable to any situation involving n independent
performances of a random system; for each performance, we are recording whether a
particular event has occurred, called a success, or has not occurred, called a failure. If
we denote the event in question by A and put P A we have that the number of
successes in the n performances is distributed Binomial n For example, we could
be testing light bulbs produced by a manufacturer, and is the probability that a bulb
works when we test it. Then the number of bulbs that work in a batch of n is distributed
Binomial n If a baseball player has probability of getting a hit when at bat, then
the number of hits obtained in n atbats is distributed Binomial n

There is another way of expressing the binomial distribution that is sometimes
useful. For example, if X1 X2 Xn are chosen independently and each has the
Bernoulli distribution, and Y X1 Xn, then Y will have the Binomial n
distribution (see Example 3.4.10 for the details).

EXAMPLE 2.3.4 The Geometric Distribution
Consider repeatedly ipping a coin that has probability of coming up heads and prob
ability 1 of coming up tails, where again 0 1. Let X be the number of tails
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that appear before the first head. Then for k 0, X k if and only if the coin shows
exactly k tails followed by a head. The probability of this is equal to 1 k . (In
particular, the probability of getting an infinite number of tails before the first head is
equal to 1 0, so X is never equal to infinity.) Hence, pX k 1 k ,
for k 0 1 2 3 . The random variable X is said to have the Geometric distri
bution; we write this as X Geometric . Figure 2.3.2 contains the plots of several
Geometric probability functions.
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Figure 2.3.2: Plot of the Geometric 1 2 ( ) and the Geometric 1 5 ( ) probability
functions at the values 0 1 15.

The geometric distribution applies whenever we are counting the number of failures
until the first success for independent performances of a random system where the
occurrence of some event is considered a success. For example, the number of light
bulbs tested that work until the first bulb that does not (a working bulb is considered a
“failure” for the test) and the number of atbats without a hit until the first hit for the
baseball player both follow the geometric distribution.

We note that some books instead define the geometric distribution to be the number
of coin ips up to and including the first head, which is simply equal to one plus the
random variable defined here.

EXAMPLE 2.3.5 The NegativeBinomial Distribution
Generalizing the previous example, consider again repeatedly ipping a coin that has
probability of coming up heads and probability 1 of coming up tails. Let r be a
positive integer, and let Y be the number of tails that appear before the r th head. Then
for k 0, Y k if and only if the coin shows exactly r 1 heads (and k tails) on the
first r 1 k ips, and then shows a head on the r k th ip. The probability of
this is equal to

pY k
r 1 k

r 1
r 1 1 k r 1 k

k
r 1 k

for k 0 1 2 3
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The random variable Y is said to have the NegativeBinomial r distribution; we
write this as Y NegativeBinomial r . Of course, the special case r 1 cor
responds to the Geometric distribution. So in terms of our notation, we have that
NegativeBinomial 1 Geometric . Figure 2.3.3 contains the plots of several
NegativeBinomial r probability functions.
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Figure 2.3.3: Plot of the NegativeBinomial 2 1 2 ( ) probability function and the
NegativeBinomial 10 1 2 ( ) probability function at the values 0 1 20.

The NegativeBinomial r distribution applies whenever we are counting the
number of failures until the r th success for independent performances of a random
system where the occurrence of some event is considered a success. For example, the
number of light bulbs tested that work until the third bulb that does not and the num
ber of atbats without a hit until the fifth hit for the baseball player both follow the
negativebinomial distribution.

EXAMPLE 2.3.6 The Poisson Distribution
We say that a random variable Y has the Poisson distribution, and write Y
Poisson , if

pY y P Y y
y

y!
e

for y 0 1 2 3 We note that since (from calculus) y 0
y y! e it is

indeed true (as it must be) that y 0 P Y y 1 Figure 2.3.4 contains the plots
of several Poisson probability functions.
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Figure 2.3.4: Plot of the Poisson 2 ( ) and the Poisson 10 ( ) probability functions at
the values 0 1 20.



46 Section 2.3: Discrete Distributions

We motivate the Poisson distribution as follows. Suppose X Binomial n ,
i.e., X has the Binomial n distribution as in Example 2.3.3. Then for 0 x n,

P X x
n

x
x 1 n x

If we set n for some 0, then this becomes

P X x
n

x n

x

1
n

n x

n n 1 n x 1

x! n

x

1
n

n x

(2.3.2)

Let us now consider what happens if we let n in (2.3.2), while keeping x
fixed at some nonnegative integer. In that case,

n n 1 n 2 n x 1

nx 1 1
1

n
1

2

n
1

x 1

n

converges to 1 while (since from calculus 1 c n n ec for any c)

1
n

n x

1
n

n

1
n

x

e 1 e

Substituting these limits into (2.3.2), we see that

lim
n

P X x
x

x!
e

for x 0 1 2 3
Intuitively, we can phrase this result as follows. If we ip a very large number

of coins n, and each coin has a very small probability n of coming up heads,
then the probability that the total number of heads will be x is approximately given
by xe x!. Figure 2.3.5 displays the accuracy of this estimate when we are ap
proximating the Binomial 100 1 10 distribution by the Poisson distribution where

n 100 1 10 10
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Figure 2.3.5: Plot of the Binomial 100 1 10 ( ) and the Poisson 10 ( ) probability
functions at the values 0 1 20.
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The Poisson distribution is a good model for counting random occurrences of an
event when there are many possible occurrences, but each occurrence has very small
probability. Examples include the number of house fires in a city on a given day, the
number of radioactive events recorded by a Geiger counter, the number of phone calls
arriving at a switchboard, the number of hits on a popular World Wide Web page on a
given day, etc.

EXAMPLE 2.3.7 The Hypergeometric Distribution
Suppose that an urn contains M white balls and N M black balls. Suppose we
draw n N balls from the urn in such a fashion that each subset of n balls has the
same probability of being drawn. Because there are N

n such subsets, this probability

is 1 N
n

One way of accomplishing this is to thoroughly mix the balls in the urn and then
draw a first ball. Accordingly, each ball has probability 1 N of being drawn. Then,
without replacing the first ball, we thoroughly mix the balls in the urn and draw a
second ball. So each ball in the urn has probability 1 N 1 of being drawn. We then
have that any two balls, say the i th and j th balls, have probability

P ball i and j are drawn

P ball i is drawn first P ball j is drawn second ball i is drawn first

P ball j is drawn first P ball i is drawn second ball j is drawn first

1

N

1

N 1

1

N

1

N 1
1

N

2

of being drawn in the first two draws. Continuing in this fashion for n draws, we obtain
that the probability of any particular set of n balls being drawn is 1 N

n This type of
sampling is called sampling without replacement.

Given that we take a sample of n let X denote the number of white balls obtained.
Note that we must have X 0 and X n N M because at most N M of
the balls could be black. Hence, X max 0 n M N . Furthermore, X n and
X M because there are only M white balls. Hence, X min n M

So suppose max 0 n M N x min n M . What is the probability that
x white balls are obtained? In other words, what is P X x ? To evaluate this, we
know that we need to count the number of subsets of n balls that contain x white balls.
Using the combinatorial principles of Section 1.4.1, we see that this number is given
by M

x
N M
n x Therefore,

P X x
M

x

N M

n x

N

n

for max 0 n M N x min n M The random variable X is said to have the
Hypergeometric N M n distribution. In Figure 2.3.6, we have plotted some hyper
geometric probability functions. The Hypergeometric 20 10 10 probability function
is 0 for x 10 while the Hypergeometric 20 10 5 probability function is 0 for
x 5
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Figure 2.3.6: Plot of Hypergeometric 20 10 10 ( ) and Hypergeometric 20 10 5
( ) probability functions.

Obviously, the hypergeometric distribution will apply to any context wherein we
are sampling without replacement from a finite set of N elements and where each el
ement of the set either has a characteristic or does not. For example, if we randomly
select people to participate in an opinion poll so that each set of n individuals in a pop
ulation of N has the same probability of being selected, then the number of people who
respond yes to a particular question is distributed Hypergeometric N M n where M
is the number of people in the entire population who would respond yes. We will see
the relevance of this to statistics in Section 5.4.2.

Suppose in Example 2.3.7 we had instead replaced the drawn ball before draw
ing the next ball. This is called sampling with replacement. It is then clear, from
Example 2.3.3, that the number of white balls observed in n draws is distributed
Binomial n M N .

Summary of Section 2.3

A random variable X is discrete if x P X x 1, i.e., if all its probability
comes from being equal to particular values.

A discrete random variable X takes on only a finite, or countable, number of
distinct values.

Important discrete distributions include the degenerate, Bernoulli, binomial, geo
metric, negativebinomial, Poisson, and hypergeometric distributions.

EXERCISES

2.3.1 Consider rolling two fair sixsided dice. Let Y be the sum of the numbers show
ing. What is the probability function of Y ?

2.3.2 Consider ipping a fair coin. Let Z 1 if the coin is heads, and Z 3 if the
coin is tails. Let W Z2 Z .
(a) What is the probability function of Z?
(b) What is the probability function of W?
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2.3.3 Consider ipping two fair coins. Let X 1 if the first coin is heads, and X 0
if the first coin is tails. Let Y 1 if the second coin is heads, and Y 5 if the second
coin is tails. Let Z XY . What is the probability function of Z?
2.3.4 Consider ipping two fair coins. Let X 1 if the first coin is heads, and X 0
if the first coin is tails. Let Y 1 if the two coins show the same thing (i.e., both heads
or both tails), with Y 0 otherwise. Let Z X Y , and W XY .
(a) What is the probability function of Z?
(b) What is the probability function of W?

2.3.5 Consider rolling two fair sixsided dice. Let W be the product of the numbers
showing. What is the probability function of W?
2.3.6 Let Z Geometric . Compute P 5 Z 9 .

2.3.7 Let X Binomial 12 . For what value of is P X 11 maximized?
2.3.8 Let W Poisson . For what value of is P W 11 maximized?
2.3.9 Let Z NegativeBinomial 3 1 4 . Compute P Z 2 .
2.3.10 Let X Geometric 1 5 . Compute P X2 15 .

2.3.11 Let Y Binomial 10 . Compute P Y 10 .
2.3.12 Let X Poisson . Let Y X 7. What is the probability function of Y?
2.3.13 Let X Hypergeometric 20 7 8 What is the probability that X 3? What
is the probability that X 8?
2.3.14 Suppose that a symmetrical die is rolled 20 independent times, and each time
we record whether or not the event 2 3 5 6 has occurred.

(a) What is the distribution of the number of times this event occurs in 20 rolls?
(b) Calculate the probability that the event occurs five times.
2.3.15 Suppose that a basketball player sinks a basket from a certain position on the
court with probability 0 35.
(a) What is the probability that the player sinks three baskets in 10 independent throws?
(b) What is the probability that the player scores their first basket on their tenth attempt?
(c) What is the probability that the player scores their second basket on their tenth
attempt?
2.3.16 An urn contains 4 black balls and 5 white balls. After a thorough mixing, a ball
is drawn from the urn, its color is noted, and the ball is returned to the urn.
(a) What is the probability that 5 black balls are observed in 15 such draws?
(b) What is the probability that 15 draws are required until the first black ball is ob
served?
(c) What is the probability that 15 draws are made with 5 black balls observed and the
fifth black ball is observed on the 15th draw?
2.3.17 An urn contains 4 black balls and 5 white balls. After a thorough mixing, a ball
is drawn from the urn, its color is noted, and the ball is set aside. The remaining balls
are then mixed and a second ball is drawn.

(a) What is the probability distribution of the number of black balls observed?
(b) What is the probability distribution of the number of white balls observed?
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2.3.18 (Poisson processes and queues) Consider a situation involving a server, e.g.,
a cashier at a fastfood restaurant, an automatic bank teller machine, a telephone ex
change, etc. Units typically arrive for service in a random fashion and form a queue
when the server is busy. It is often the case that the number of arrivals at the server, for
some specific unit of time t can be modeled by a Poisson t distribution and is such
that the number of arrivals in nonoverlapping periods are independent. In Chapter 3,
we will show that t is the average number of arrivals during a time period of length t
and so is the rate of arrivals per unit of time

Suppose telephone calls arrive at a help line at the rate of two per minute. A Poisson
process provides a good model.
(a) What is the probability that five calls arrive in the next 2 minutes?
(b) What is the probability that five calls arrive in the next 2 minutes and then five more
calls arrive in the following 2 minutes?
(c) What is the probability that no calls will arrive during a 10minute period?
2.3.19 Suppose an urn contains 1000 balls — one of these is black, and the other 999
are white. Suppose that 100 balls are randomly drawn from the urn with replacement.
Use the appropriate Poisson distribution to approximate the probability that five black
balls are observed.
2.3.20 Suppose that there is a loop in a computer program and that the test to exit
the loop depends on the value of a random variable X The program exits the loop
whenever X A and this occurs with probability 1/3. If the loop is executed at least
once, what is the probability that the loop is executed five times before exiting?

COMPUTER EXERCISES

2.3.21 Tabulate and plot the Hypergeometric 20 8 10 probability function.

2.3.22 Tabulate and plot the Binomial 30 0 3 probability function. Tabulate and plot
the Binomial 30 0 7 probability function. Explain why the Binomial 30 0 3 proba
bility function at x agrees with the Binomial 30 0 7 probability function at n x .

PROBLEMS

2.3.23 Let X be a discrete random variable with probability function pX x 2 x for
x 1 2 3 , with pX x 0 otherwise.
(a) Let Y X2. What is the probability function pY of Y ?
(b) Let Z X 1. What is the distribution of Z? (Identify the distribution by name
and specify all parameter values.)
2.3.24 Let X Binomial n1 and Y Binomial n2 , with X and Y chosen
independently. Let Z X Y . What will be the distribution of Z? (Explain your
reasoning.) (Hint: See the end of Example 2.3.3.)
2.3.25 Let X Geometric and Y Geometric , with X and Y chosen indepen
dently. Let Z X Y . What will be the distribution of Z? Generalize this to r coins.
(Explain your reasoning.)
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2.3.26 Let X Geometric 1 and Y Geometric 2 , with X and Y chosen in
dependently. Compute P X Y . Explain what this probability is in terms of coin
tossing.
2.3.27 Suppose that Xn Geometric n . Compute limn P Xn n .
2.3.28 Let X NegativeBinomial r and Y NegativeBinomial s , with X
and Y chosen independently. Let Z X Y . What will be the distribution of Z?
(Explain your reasoning.)
2.3.29 (Generalized hypergeometric distribution) Suppose that a set contains N ob
jects, M1 of which are labelled 1 M2 of which are labelled 2 and the remainder of
which are labelled 3. Suppose we select a sample of n N objects from the set using
sampling without replacement, as described in Example 2.3.7. Determine the proba
bility that we obtain the counts f1 f2 f3 where fi is the number of objects labelled
i in the sample.
2.3.30 Suppose that units arrive at a server according to a Poisson process at rate (see
Exercise 2.3.18) Let T be the amount of time until the first call. Calculate P T t

2.4 Continuous Distributions
In the previous section, we considered discrete random variables X for which P X
x 0 for certain values of x . However, for some random variables X , such as one
having the uniform distribution, we have P X x 0 for all x . This prompts the
following definition.

Definition 2.4.1 A random variable X is continuous if

P X x 0 (2.4.1)

for all x R1

EXAMPLE 2.4.1 The Uniform[0 1] Distribution
Consider a random variable whose distribution is the uniform distribution on [0 1], as
presented in (1.2.2). That is,

P a X b b a (2.4.2)

whenever 0 a b 1, with P X 0 P X 1 0. The random variable X
is said to have the Uniform[0 1] distribution; we write this as X Uniform[0 1]. For
example,

P
1

2
X

3

4

3

4

1

2

1

4

Also,

P X
2

3
P

2

3
X 1 P X 1 1

2

3
0

1

3

In fact, for any x [0 1],

P X x P X 0 P 0 X x 0 x 0 x
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Note that setting a b x in (2.4.2), we see in particular that P X x x
x 0 for every x R1 Thus, the uniform distribution is an example of a continuous
distribution. In fact, it is one of the most important examples!

The Uniform[0 1] distribution is fairly easy to work with. However, in general,
continuous distributions are very difficult to work with. Because P X x 0 for
all x , we cannot simply add up probabilities as we can for discrete random variables.
Thus, how can we keep track of all the probabilities?

A possible solution is suggested by rewriting (2.4.2), as follows. For x R1, let

f x
1 0 x 1
0 otherwise.

(2.4.3)

Then (2.4.2) can be rewritten as

P a X b
b

a
f x dx (2.4.4)

whenever a b
One might wonder about the wisdom of converting the simple equation (2.4.2) into

the complicated integral equation (2.4.4). However, the advantage of (2.4.4) is that, by
modifying the function f , we can obtain many other continuous distributions besides
the uniform distribution. To explore this, we make the following definitions.

Definition 2.4.2 Let f : R1 R1 be a function. Then f is a density function if
f x 0 for all x R1, and f x dx 1.

Definition 2.4.3 A random variable X is absolutely continuous if there is a density
function f , such that

P a X b
b

a
f x dx (2.4.5)

whenever a b as in (2.4.4).

In particular, if b a with a small positive number, and if f is continuous at a,
then we see that

P a X a
a

a
f x dx f a

Thus, a density function evaluated at a may be thought of as measuring the probability
of a random variable being in a small interval about a.

To better understand absolutely continuous random variables, we note the following
theorem.

Theorem 2.4.1 Let X be an absolutely continuous random variable. Then X is a
continuous random variable, i.e., P X a 0 for all a R1.
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PROOF Let a be any real number. Then P X a P a X a . On the
other hand, setting a b in (2.4.5), we see that P a X a a

a f x dx 0
Hence, P X a 0 for all a, as required.

It turns out that the converse to Theorem 2.4.1 is false. That is, not all continuous
distributions are absolutely continuous.1 However, most of the continuous distributions
that arise in statistics are absolutely continuous. Furthermore, absolutely continuous
distributions are much easier to work with than are other kinds of continuous distribu
tions. Hence, we restrict our discussion to absolutely continuous distributions here. In
fact, statisticians sometimes say that X is continuous as shorthand for saying that X is
absolutely continuous.

2.4.1 Important Absolutely Continuous Distributions

Certain absolutely continuous distributions are so important that we list them here.

EXAMPLE 2.4.2 The Uniform[0 1] Distribution
Clearly, the uniform distribution is absolutely continuous, with the density function
given by (2.4.3). We will see, in Section 2.10, that the Uniform[0 1] distribution has
an important relationship with every absolutely continuous distribution.

EXAMPLE 2.4.3 The Uniform[L R] Distribution
Let L and R be any two real numbers with L R. Consider a random variable X such
that

P a X b
b a

R L
(2.4.6)

whenever L a b R with P X L P X R 0. The random variable
X is said to have the Uniform[L R] distribution; we write this as X Uniform[L R].
(If L 0 and R 1, then this definition coincides with the previous definition of the
Uniform[0 1] distribution.) Note that X Uniform[L R] has the same probability of
being in any two subintervals of [L R] that have the same length.

Note that the Uniform[L R] distribution is also absolutely continuous, with density
given by

f x
1

R L L x R
0 otherwise.

In Figure 2.4.1 we have plotted a Uniform[2 4] density.

1For examples of this, see more advanced probability books, e.g., page 143 of A First Look at Rigorous
Probability Theory, Second Edition, by J. S. Rosenthal (World Scientific Publishing, Singapore, 2006).
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Figure 2.4.1: A Uniform[2 4] density function.

EXAMPLE 2.4.4 The Exponential 1 Distribution
Define a function f : R1 R1 by

f x
e x x 0
0 x 0

Then clearly, f x 0 for all x . Also,

f x dx
0

e x dx e x

0
0 1 1

Hence, f is a density function. See Figure 2.4.2 for a plot of this density.
Consider now a random variable X having this density function f . If 0 a b

, then

P a X b
b

a
f x dx

b

a
e x dx e b e a e a e b

The random variable X is said to have the Exponential 1 distribution, which we write
as X Exponential 1 . The exponential distribution has many important properties,
which we will explore in the coming sections.

EXAMPLE 2.4.5 The Exponential Distribution
Let 0 be a fixed constant. Define a function f : R1 R1 by

f x
e x x 0

0 x 0

Then clearly, f x 0 for all x . Also,

f x dx
0

e x dx e x

0
0 1 1.
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Hence, f is again a density function. (If 1, then this corresponds to the Exponential 1
density.)

If X is a random variable having this density function f , then

P a X b
b

a
e x dx e b e a e a e b

for 0 a b . The random variable X is said to have the Exponential
distribution; we write this as X Exponential . Note that some books and software
packages instead replace by 1 in the definition of the Exponential distribution
— always check this when using another book or when using software.

An exponential distribution can often be used to model lifelengths. For example, a
certain type of light bulb produced by a manufacturer might follow an Exponential
distribution for an appropriate choice of . By this we mean that the lifelength X of a
randomly selected light bulb from those produced by this manufacturer has probability

P X x
x

e z dz e x

of lasting longer than x in whatever units of time are being used. We will see in
Chapter 3 that, in a specific application, the value 1 will correspond to the average
lifelength of the light bulbs.

As another application of this distribution, consider a situation involving a server,
e.g., a cashier at a fastfood restaurant, an automatic bank teller machine, a telephone
exchange, etc. Units arrive for service in a random fashion and form a queue when the
server is busy. It is often the case that the number of arrivals at the server, for some
specific unit of time t can be modeled by a Poisson t distribution. Now let T1 be the
time until the first arrival. Then we have

P T1 t P no arrivals in 0 t]
t 0

0!
e t e t

and T1 has density given by

f t
d

dt t
f z dz

d

dt
P T1 t e t

So T1 Exponential .

EXAMPLE 2.4.6 The Gamma Distribution
The gamma function is defined by

0
t 1e t dt 0

It turns out (see Problem 2.4.15) that

1 (2.4.7)

and that if n is a positive integer, then n n 1 !, while 1 2 .
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We can use the gamma function to define the density of the Gamma distribu
tion, as follows. Let 0 and 0, and define a function f by

f x
x 1

e x (2.4.8)

when x 0 with f x 0 for x 0. Then clearly f 0. Furthermore, it is
not hard to verify (see Problem 2.4.17) that 0 f x dx 1. Hence, f is a density
function.

A random variable X having density function f given by (2.4.8) is said to have the
Gamma distribution; we write this as X Gamma . Note that some books
and software packages instead replace by 1 in the definition of the Gamma
distribution — always check this when using another book or when using software.

The case 1 corresponds (because 1 0! 1) to the Exponential dis
tribution: Gamma 1 Exponential . In Figure 2.4.2, we have plotted several
Gamma density functions.
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Figure 2.4.2: Graph of an Exponential 1 (solid line) a Gamma 2 1 (dashed line), and a
Gamma 3 1 (dotted line) density.

A gamma distribution can also be used to model lifelengths. As Figure 2.4.2 shows,
the gamma family gives a much greater variety of shapes to choose from than from the
exponential family.

We now define a function : R1 R1 by

x
1

2
e x2 2 (2.4.9)

This function is the famous “bellshaped curve” because its graph is in the shape of
a bell, as shown in Figure 2.4.3.
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Figure 2.4.3: Plot of the function in (2.4.9)

We have the following result for .

Theorem 2.4.2 The function given by (2.4.9) is a density function.

PROOF See Section 2.11 for the proof of this result.

This leads to the following important distributions.

EXAMPLE 2.4.7 The N 0 1 Distribution
Let X be a random variable having the density function given by (2.4.9). This means
that for a b ,

P a X b
b

a
x dx

b

a

1

2
e x2 2 dx .

The random variable X is said to have the N 0 1 distribution (or the standard normal
distribution); we write this as X N 0 1 .

EXAMPLE 2.4.8 The N 2 Distribution
Let R1, and let 0. Let f be the function defined by

f x
1 x 1

2
e x 2 2 2

(If 0 and 1, then this corresponds with the previous example.) Clearly,
f 0. Also, letting y x , we have

f x dx 1 x dx 1 y dy y dy 1

Hence, f is a density function.
Let X be a random variable having this density function f . The random variable

X is said to have the N 2 distribution; we write this as X N 2 . In Figure
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2.4.4, we have plotted the N 0 1 and the N 1 1 densities. Note that changes in
simply shift the density without changing its shape. In Figure 2.4.5, we have plotted
the N 0 1 and the N 0 4 densities. Note that both densities are centered on 0, but
the N 0 4 density is much more spread out. The value of 2 controls the amount of
spread.
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Figure 2.4.4: Graph of the N 1 1 density (solid line) and the N 0 1 density (dashed line).
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Figure 2.4.5: Graph of an N 0 4 density (solid line) and an N 0 1 density (dashed line).

The N 2 distribution, for some choice of and 2 arises quite often in ap
plications. Part of the reason for this is an important result known as the central limit
theorem. which we will discuss in Section 4.4. In particular, this result leads to using
a normal distribution to approximate other distributions, just as we used the Poisson
distribution to approximate the binomial distribution in Example 2.3.6.

In a large human population, it is not uncommon for various body measurements to
be normally distributed (at least to a reasonable degree of approximation). For example,
let us suppose that heights (measured in feet) of students at a particular university are
distributed N 2 for some choice of and 2 Then the probability that a randomly
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selected student has height between a and b feet, with a b is given by

b

a

1

2
e x 2 2 2

dx

In Section 2.5, we will discuss how to evaluate such an integral. Later in this text, we
will discuss how to select an appropriate value for and 2 and to assess whether or
not any normal distribution is appropriate to model the distribution of a variable defined
on a particular population.

Given an absolutely continuous random variable X , we will write its density as fX ,
or as f if no confusion arises. Absolutely continuous random variables will be used
extensively in later chapters of this book.

Remark 2.4.1 Finally, we note that density functions are not unique. Indeed, if f is a
density function and we change its value at a finite number of points, then the value of

b
a f x dx will remain unchanged. Hence, the changed function will also qualify as

a density corresponding to the same distribution. On the other hand, often a particular
“best” choice of density function is clear. For example, if the density function can be
chosen to be continuous, or even piecewise continuous, then this is preferred over some
other version of the density function.

To take a specific example, for the Uniform[0 1] distribution, we could replace the
density f of (2.4.3) by

g x
1 0 x 1
0 otherwise,

or even by

h x

1 0 x 3 4
17 x 3 4
1 3 4 x 1
0 otherwise.

Either of these new densities would again define the Uniform[0 1] distribution, be
cause we would have b

a f x dx b
a g x dx b

a h x dx for any a b.
On the other hand, the densities f and g are both piecewise continuous and are

therefore natural choices for the density function, whereas h is an unnecessarily com
plicated choice. Hence, when dealing with density functions, we shall always assume
that they are as continuous as possible, such as f and g, rather than having removable
discontinuities such as h. This will be particularly important when discussing likeli
hood methods in Chapter 6.

Summary of Section 2.4

A random variable X is continuous if P X x 0 for all x , i.e., if none of its
probability comes from being equal to particular values.

X is absolutely continuous if there exists a density function fX with P a X
b b

a fX x dx for all a b.
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Important absolutely continuous distributions include the uniform, exponential,
gamma, and normal.

EXERCISES

2.4.1 Let U Uniform[0 1]. Compute each of the following.
(a) P U 0
(b) P U 1 2
(c) P U 1 3
(d) P U 2 3
(e) P U 2 3
(f) P U 1
(g) P U 17

2.4.2 Let W Uniform[1 4]. Compute each of the following.
(a) P W 5
(b) P W 2
(c) P W2 9 (Hint: If W 2 9, what must W be?)
(d) P W 2 2
2.4.3 Let Z Exponential 4 . Compute each of the following.
(a) P Z 5
(b) P Z 5
(c) P Z2 9
(d) P Z4 17 9
2.4.4 Establish for which constants c the following functions are densities.
(a) f x cx on 0 1 and 0 otherwise.

(b) f x cxn on 0 1 and 0 otherwise, for n a nonnegative integer.
(c) f x cx1 2 on 0 2 and 0 otherwise.
(d) f x c sin x on 0 2 and 0 otherwise.
2.4.5 Is the function defined by f x x 3 for 1 x 2 and 0 otherwise, a
density? Why or why not?
2.4.6 Let X Exponential 3 . Compute each of the following.
(a) P 0 X 1
(b) P 0 X 3
(c) P 0 X 5
(d) P 2 X 5
(e) P 2 X 10
(f) P X 2
2.4.7 Let M 0, and suppose f x cx2 for 0 x M, otherwise f x 0. For
what value of c (depending on M) is f a density?
2.4.8 Suppose X has density f and that f x 2 for 0 3 x 0 4. Prove that
P 0 3 X 0 4 0 2.
2.4.9 Suppose X has density f and Y has density g. Suppose f x g x for 1
x 2. Prove that P 1 X 2 P 1 Y 2 .
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2.4.10 Suppose X has density f and Y has density g. Is it possible that f x g x
for all x? Explain.
2.4.11 Suppose X has density f and f x f y whenever 0 x 1 y 2.
Does it follow that P 0 X 1 P 1 X 2 ? Explain.
2.4.12 Suppose X has density f and f x f y whenever 0 x 1 y 3.
Does it follow that P 0 X 1 P 1 X 3 ? Explain.
2.4.13 Suppose X N 0 1 and Y N 1 1 . Prove that P X 3 P Y 3 .

PROBLEMS

2.4.14 Let Y Exponential for some 0. Let y h 0. Prove that P Y
h y Y h P Y y That is, conditional on knowing that Y h, the
random variable Y h has the same distribution as Y did originally. This is called
the memoryless property of the exponential distributions; it says that they immediately
“forget” their past behavior.
2.4.15 Consider the gamma function 0 t 1e t dt , for 0.
(a) Prove that 1 . (Hint: Use integration by parts.)
(b) Prove that 1 1.
(c) Use parts (a) and (b) to show that n n 1 ! if n is a positive integer.
2.4.16 Use the fact that 1 2 to give an alternate proof that x dx

1 (as in Theorem 2.4.2). (Hint: Make the substitution t x2 2.)
2.4.17 Let f be the density of the Gamma distribution, as in (2.4.8). Prove that

0 f x dx 1. (Hint: Let t x .)
2.4.18 (Logistic distribution) Consider the function given by f x
e x 1 e x 2 for x Prove that f is a density function.

2.4.19 (Weibull distribution) Consider, for 0 fixed, the function given by
f x x 1e x for 0 x and 0 otherwise Prove that f is a density
function.
2.4.20 (Pareto distribution) Consider, for 0 fixed, the function given by f x

1 x 1 for 0 x and 0 otherwise Prove that f is a density function.
2.4.21 (Cauchy distribution) Consider the function given by

f x
1 1

1 x2

for x Prove that f is a density function. (Hint: Recall the derivative of
arctan x )

2.4.22 (Laplace distribution) Consider the function given by f x e x 2 for
x and 0 otherwise Prove that f is a density function.

2.4.23 (Extreme value distribution) Consider the function given by f x e x exp e x

for x and 0 otherwise Prove that f is a density function.
2.4.24 (Beta a b distribution) The beta function is the function B : 0 2 R1

given by

B a b
1

0
xa 1 1 x b 1 dx
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It can be proved (see Challenge 2.4.25) that

B a b
a b

a b
(2.4.10)

(a) Prove that the function f given by f x B 1 a b xa 1 1 x b 1 for 0
x 1 and 0 otherwise, is a density function.
(b) Determine and plot the density when a 1 b 1 Can you name this distribution?
(c) Determine and plot the density when a 2 b 1

(d) Determine and plot the density when a 1 b 2
(e) Determine and plot the density when a 2 b 2

CHALLENGES

2.4.25 Prove (2.4.10). (Hint: Use a b 0 0 xa 1yb 1e x y dx dy and
make the change of variable u x y x u )

DISCUSSION TOPICS

2.4.26 Suppose X N 0 1 and Y N 0 4 . Which do you think is larger, P X
2 or P Y 2 ? Why? (Hint: Look at Figure 2.4.5.)

2.5 Cumulative Distribution Functions
If X is a random variable, then its distribution consists of the values of P X B for
all subsets B of the real numbers. However, there are certain special subsets B that are
convenient to work with. Specifically, if B x] for some real number x , then
P X B P X x . It turns out (see Theorem 2.5.1) that it is sufficient to keep
track of P X x for all real numbers x .

This motivates the following definition.

Definition 2.5.1 Given a random variable X , its cumulative distribution function
(or distribution function, or cdf for short) is the function FX : R1 [0 1], defined
by FX x P X x . (Where there is no confusion, we sometimes write F x
for FX x .)

The reason for calling FX the “distribution function” is that the full distribution
of X can be determined directly from FX . We demonstrate this for some events of
particular importance.

First, suppose that B a b] is a leftopen interval. Using (1.3.3),

P X B P a X b P X b P X a FX b FX a

Now, suppose that B [a b] is a closed interval. Using the continuity of proba
bility (see Theorem 1.6.1), we have

P X B P a X b lim
n

P a 1 n X b

lim
n

FX b FX a 1 n FX b lim
n

FX a 1 n
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We sometimes write limn FX a 1 n as FX a , so that P X [a b]
FX b FX a In the special case where a b, we have

P X a FX a FX a (2.5.1)

Similarly, if B a b is an open interval, then

P X B P a X b lim
n

FX b 1 n FX a FX b FX a

If B [a b is a rightopen interval, then

P X B P a X b lim
n

FX b 1 n lim
n

FX a 1 n

FX b FX a

We conclude that we can determine P X B from FX whenever B is any kind of
interval.

Now, if B is instead a union of intervals, then we can use additivity to again com
pute P X B from FX . For example, if

B a1 b1] a2 b2] ak bk]

with a1 b1 a2 b2 ak bk , then by additivity,

P X B P X a1 b1] P X ak bk]

FX b1 FX a1 FX bk FX ak

Hence, we can still compute P X B solely from the values of FX x .

Theorem 2.5.1 Let X be any random variable, with cumulative distribution func
tion FX . Let B be any subset of the real numbers. Then P X B can be deter
mined solely from the values of FX x .

PROOF (Outline) It turns out that all relevant subsets B can be obtained by apply
ing limiting operations to unions of intervals. Hence, because FX determines P X
B when B is a union of intervals, it follows that FX determines P X B for all
relevant subsets B.

2.5.1 Properties of Distribution Functions

In light of Theorem 2.5.1, we see that cumulative distribution functions FX are very
useful. Thus, we note a few of their basic properties here.

Theorem 2.5.2 Let FX be the cumulative distribution function of a random variable
X . Then

(a) 0 FX x 1 for all x ,
(b) FX x FX y whenever x y (i.e., FX is increasing),
(c) limx FX x 1,
(d) limx FX x 0.
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PROOF (a) Because FX x P X x is a probability, it is between 0 and 1.

(b) Let A X x and B X y . Then if x y, then A B, so that
P A P B . But P A FX x and P B FX y , so the result follows.

(c) Let An X n . Because X must take on some value and hence X n for
sufficiently large n, we see that An increases to S, i.e., An S (see Section 1.6).
Hence, by continuity of P (see Theorem 1.6.1), limn P An P S 1. But
P An P X n FX n , so the result follows.

(d) Let Bn X n . Because X n for sufficiently large n, Bn decreases
to the empty set, i.e., Bn . Hence, again by continuity of P, limn P Bn
P 0. But P Bn P X n FX n , so the result follows.

If FX is a cumulative distribution function, then FX is also right continuous; see Prob
lem 2.5.17. It turns out that if a function F : R1 R1 satisfies properties (a) through
(d) and is right continuous, then there is a unique probability measure P on R1 such
that F is the cdf of P We will not prove this result here.2

2.5.2 Cdfs of Discrete Distributions

We can compute the cumulative distribution function (cdf) FX of a discrete random
variable from its probability function pX , as follows.

Theorem 2.5.3 Let X be a discrete random variable with probability function pX .
Then its cumulative distribution function FX satisfies FX x y x pX y

PROOF Let x1 x2 be the possible values of X . Then FX x P X x

xi x P X xi y x P X y y x pX y as claimed.

Hence, if X is a discrete random variable, then by Theorem 2.5.3, FX is piecewise
constant, with a jump of size pX xi at each value xi . A plot of such a distribution
looks like that depicted in Figure 2.5.1.

We consider an example of a distribution function of a discrete random variable.

EXAMPLE 2.5.1
Consider rolling one fair sixsided die, so that S 1 2 3 4 5 6 , with P s 1 6
for each s S. Let X be the number showing on the die divided by 6, so that X s
s 6 for s S. What is FX x ? Since X s x if and only if s 6x we have that

FX x P X x
s S s 6x

P s
s S s 6x

1

6

1

6
s S : s 6x

2For example, see page 67 of A First Look at Rigorous Probability Theory, Second Edition, by J. S. Rosen
thal (World Scientific Publishing, Singapore, 2006).
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That is, to compute FX x , we count how many elements s S satisfy s 6x and
multiply that number by 1 6. Therefore,

FX x

0 x 1 6
1 6 1 6 x 2 6
2 6 2 6 x 3 6
3 6 3 6 x 4 6
4 6 4 6 x 5 6
5 6 5 6 x 1
6 6 1 x

In Figure 2.5.1, we present a graph of the function FX and note that this is a step
function. Note (see Exercise 2.5.1) that the properties of Theorem 2.5.2 are indeed
satisfied by the function FX .

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

x

 F

Figure 2.5.1: Graph of the cdf FX in Example 2.5.1.

2.5.3 Cdfs of Absolutely Continuous Distributions

Once we know the density fX of X , then it is easy to compute the cumulative distribu
tion function of X , as follows.

Theorem 2.5.4 Let X be an absolutely continuous random variable, with density
function fX . Then the cumulative distribution function FX of X satisfies

FX x
x

fX t dt

for x R1

PROOF This follows from (2.4.5), by setting b x and letting a .

From the fundamental theorem of calculus, we see that it is also possible to compute
a density fX once we know the cumulative distribution function FX .
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Corollary 2.5.1 Let X be an absolutely continuous random variable, with cumula
tive distribution function FX . Let

fX x
d

dx
FX x FX x

Then fX is a density function for X .

We note that FX might not be differentiable everywhere, so that the function fX of the
corollary might not be defined at certain isolated points. The density function may take
any value at such points.

Consider again the N 0 1 distribution, with density given by (2.4.9). According
to Theorem 2.5.4, the cumulative distribution function F of this distribution is given
by

F x
x

t dt
x 1

2
e t2 2 dt

It turns out that it is provably impossible to evaluate this integral exactly, except for
certain specific values of x (e.g., x , x 0, or x ). Nevertheless, the
cumulative distribution function of the N 0 1 distribution is so important that it is
assigned a special symbol. Furthermore, this is tabulated in Table D.2 of Appendix D
for certain values of x .

Definition 2.5.2 The symbol stands for the cumulative distribution function of
a standard normal distribution, defined by

x
x

t dt
x 1

2
e t2 2 dt (2.5.2)

for x R1

EXAMPLE 2.5.2 Normal Probability Calculations
Suppose that X N 0 1 and we want to calculate

P 0 63 X 2 0 P X 2 0 P X 0 63

Then P X 2 2 , while P X 0 63 0 63 . Unfortunately,
2 and 0 63 cannot be computed exactly, but they can be approximated us

ing a computer to numerically calculate the integral (2.5.2). Virtually all statistical
software packages will provide such approximations, but many tabulations such as
Table D.2, are also available. Using this table, we obtain 2 0 9772 while

0 63 0 2643 This implies that

P 0 63 X 2 0 2 0 0 63 0 9772 0 2643 0 7129

Now suppose that X N 2 and we want to calculate P a X b Letting
f denote the density of X and following Example 2.4.8, we have

P a X b
b

a
f x dx

b

a

1 x
dx
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Then, again following Example 2.4.8, we make the substitution y x in the
above integral to obtain

P a X b

b

a
x dx

b a

Therefore, general normal probabilities can be computed using the function
Suppose now that a 0 63 b 2 0 1 3 and 2 4 We obtain

P 0 63 X 2 0
2 0 1 3

2

0 63 1 3

2
0 35 0 965 0 6368 0 16725

0 46955

because, using Table D.2, 0 35 0 6368 We approximate 0 965 by the
linear interpolation between the values 0 96 0 1685 0 97 0 1660
given by

0 965 0 96
0 97 0 96

0 97 0 96
0 965 0 96

0 1685
0 1660 0 1685

0 97 0 96
0 965 0 96 0 16725

EXAMPLE 2.5.3
Let X be a random variable with cumulative distribution function given by

FX x
0 x 2
x 2 4 16 2 x 4

1 4 x

In Figure 2.5.2, we present a graph of FX
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F

Figure 2.5.2: Graph of the cdf FX in Example 2.5.3.

Suppose for this random variable X we want to compute P X 3 , P X 3 ,
P X 2 5 and P 1 2 X 3 4 . We can compute all these probabilities directly
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from FX . We have that

P X 3 FX 3 3 2 4 16 1 16

P X 3 FX 3 lim
n

3 1 n 2 4 16 1 16

P X 2 5 1 P X 2 5 1 FX 2 5

1 2 5 2 4 16 1 0 0625 16 0 996

P 1 2 X 3 4 FX 3 4 FX 1 2 3 4 2 4 16 0 0 2401

2.5.4 Mixture Distributions

Suppose now that F1 F2 Fk are cumulative distribution functions, correspond
ing to various distributions. Also let p1 p2 pk be positive real numbers with

k
i 1 pi 1 (so these values form a probability distribution). Then we can define a

new function G by

G x p1F1 x p2F2 x pk Fk x (2.5.3)

It is easily verified (see Exercise 2.5.6) that the function G given by (2.5.3) will
satisfy properties (a) through (d) of Theorem 2.5.2 and is right continuous. Hence, G
is also a cdf.

The distribution whose cdf is given by (2.5.3) is called a mixture distribution be
cause it mixes the various distributions with cdfs F1 Fk according to the probabil
ity distribution given by the p1 p2 pk

To see how a mixture distribution arises in applications, consider a twostage sys
tem, as discussed in Section 1.5.1. Let Z be a random variable describing the outcome
of the first stage and such that P Z i pi for i 1 2 k Suppose that for
the second stage, we observe a random variable Y where the distribution of Y depends
on the outcome of the first stage, so that Y has cdf Fi when Z i In effect, Fi is the
conditional distribution of Y given that Z i (see Section 2.8). Then, by the law of
total probability (see Theorem 1.5.1), the distribution function of Y is given by

P Y y
k

i 1

P Y y Z i P Z i
k

i 1

pi Fi y G y

Therefore, the distribution function of Y is given by a mixture of the Fi
Consider the following example of this.

EXAMPLE 2.5.4
Suppose we have two bowls containing chips. Bowl #1 contains one chip labelled
0, two chips labelled 3, and one chip labelled 5. Bowl #2 contains one chip labelled
2, one chip labelled 4, and one chip labelled 5. Now let Xi be the random variable
corresponding to randomly drawing a chip from bowl #i . Therefore, P X1 0
1 4, P X1 3 1 2, and P X1 5 1 4, while P X2 2 P X2 4
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P X2 5 1 3. Then X1 has distribution function given by

F1 x

0 x 0
1 4 0 x 3
3 4 3 x 5
1 x 5

and X2 has distribution function given by

F2 x

0 x 2
1 3 2 x 4
2 3 4 x 5
1 x 5

Now suppose that we choose a bowl by randomly selecting a card from a deck of
five cards where one card is labelled 1 and four cards are labelled 2. Let Z denote the
value on the card obtained, so that P Z 1 1 5 and P Z 2 4 5 Then,
having obtained the value Z i , we observe Y by randomly drawing a chip from bowl
#i . We see immediately that the cdf of Y is given by

G x 1 5 F1 x 4 5 F2 x

and this is a mixture of the cdfs F1 and F2.

As the following examples illustrate, it is also possible to have infinite mixtures of
distributions.

EXAMPLE 2.5.5 Location and Scale Mixtures
Suppose F is some cumulative distribution function. Then for any real number y, the
function Fy defined by Fy x F x y is also a cumulative distribution function. In
fact, Fy is just a “shifted” version of F . An example of this is depicted in Figure 2.5.3.

10 5 0 5 10

0.5

1.0

x

F

Figure 2.5.3: Plot of the distribution functions F (solid line) and F2 (dashed line) in Example
2.5.5, where F x ex ex 1 for x R1

If pi 0 with i pi 1 (so the pi form a probability distribution), and y1 y2
are real numbers, then we can define a discrete location mixture by

H x
i

pi Fyi x
i

pi F x yi
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Indeed, the shift Fy x F x y itself corresponds to a special case of a discrete
location mixture, with p1 1 and y1 y.

Furthermore, if g is some nonnegative function with g t dt 1 (so g is a
density function), then we can define

H x Fy x g y dy F x y g y dy

Then it is not hard to see that H is also a cumulative distribution function — one that is
called a continuous location mixture of F The idea is that H corresponds to a mixture
of different shifted distributions Fy , with the density g giving the distribution of the
mixing coefficient y.

We can also define a discrete scale mixture by

K x
i

pi F x yi

whenever yi 0, pi 0, and i pi 1. Similarly, if 0 g t dt 1, then we can
write

K x
0

F x y g y dy

Then K is also a cumulative distribution function, called a continuous scale mixture of
F .

You might wonder at this point whether a mixture distribution is discrete or con
tinuous. The answer depends on the distributions being mixed and the mixing distrib
ution. For example, discrete location mixtures of discrete distributions are discrete and
discrete location mixtures of continuous distributions are continuous.

There is nothing restricting us, however, to mixing only discrete distributions or
only continuous distributions. Other kinds of distribution are considered in the follow
ing section.

2.5.5 Distributions Neither Discrete Nor Continuous (Advanced)

There are some distributions that are neither discrete nor continuous, as the following
example shows.

EXAMPLE 2.5.6
Suppose that X1 Poisson 3 is discrete with cdf F1, while X2 N 0 1 is continu
ous with cdf F2 and Y has the mixture distribution given by FY y 1 5 F1 y
4 5 F2 y Using (2.5.1), we have

P Y y FY y FY y

1 5 F1 y 4 5 F2 y 1 5 F1 y 4 5 F2 y

1 5 F1 y F1 y 4 5 F2 y F2 y

1

5
P X1 y

4

5
P X2 y
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Therefore,

P Y y
1
5

3y

y! e 3 y a nonnegative integer
0 otherwise.

Because P Y y 0 for nonnegative integers y the random variable Y is not
continuous. On the other hand, we have

y
P Y y

y 0

1

5

3y

y!
e 3 1

5
1

Hence, Y is not discrete either.
In fact, Y is neither discrete nor continuous. Rather, Y is a mixture of a discrete

and a continuous distribution.

For the most part in this book, we shall treat discrete and continuous distributions
separately. However, it is important to keep in mind that actual distributions may be
neither discrete nor continuous but rather a mixture of the two.3 In most applications,
however, the distributions we deal with are either continuous or discrete.

Recall that a continuous distribution need not be absolutely continuous, i.e., have a
density. Hence, a distribution that is a mixture of a discrete and a continuous distribu
tion might not be a mixture of a discrete and an absolutely continuous distribution.

Summary of Section 2.5

The cumulative distribution function (cdf) of X is FX x P X x .

All probabilities associated with X can be determined from FX .

As x increases from to , FX x increases from 0 to 1.

If X is discrete, then FX x y x P X y .

If X is absolutely continuous, then FX x x fX t dt , and fX x FX x .

We write x for the cdf of the standard normal distribution evaluated at x .

A mixture distribution has a cdf that is a linear combination of other cdfs. Two
special cases are location and scale mixtures.

Some mixture distributions are neither discrete nor continuous.

EXERCISES

2.5.1 Verify explicitly that properties (a) through (d) of Theorem 2.5.2 are indeed sat
isfied by the function FX in Example 2.5.1.
2.5.2 Consider rolling one fair sixsided die, so that S 1 2 3 4 5 6 , and P s
1 6 for all s S. Let X be the number showing on the die, so that X s s for s S.
Let Y X2. Compute the cumulative distribution function FY y P Y y , for all
y R1. Verify explicitly that properties (a) through (d) of Theorem 2.5.2 are satisfied
by this function FY .

3In fact, there exist probability distributions that cannot be expressed even as a mixture of a discrete and
a continuous distribution, but these need not concern us here.
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2.5.3 For each of the following functions F , determine whether or not F is a valid
cumulative distribution function, i.e., whether or not F satisfies properties (a) through
(d) of Theorem 2.5.2.
(a) F x x for all x R1

(b)

F x
0 x 0
x 0 x 1
1 x 1

(c)

F x
0 x 0
x2 0 x 1
1 x 1

(d)

F x
0 x 0
x2 0 x 3
1 x 3

(e)

F x
0 x 0
x2 9 0 x 3
1 x 3

(f)

F x
0 x 1
x2 9 1 x 3
1 x 3

(g)

F x
0 x 1
x2 9 1 x 3
1 x 3

2.5.4 Let X N 0 1 . Compute each of the following in terms of the function of
Definition 2.5.2 and use Table D.2 (or software) to evaluate these probabilities numer
ically.
(a) P X 5
(b) P 2 X 7
(c) P X 3
2.5.5 Let Y N 8 4 . Compute each of the following, in terms of the function

of Definition 2.5.2 and use Table D.2 (or software) to evaluate these probabilities
numerically.
(a) P Y 5
(b) P 2 Y 7
(c) P Y 3
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2.5.6 Verify that the function G given by (2.5.3) satisfies properties (a) through (d) of
Theorem 2.5.2.
2.5.7 Suppose FX x x2 for 0 x 1. Compute each of the following.
(a) P X 1 3
(b) P 1 4 X 1 2)
(c) P 2 5 X 4 5)
(d) P X 0
(e) P X 1
(f) P X 1
(g) P X 3
(h) P X 3 7
2.5.8 Suppose FY y y3 for 0 y 1 2, and FY y 1 for 1 2 y. Compute
each of the following.
(a) P 1 3 Y 3 4
(b) P Y 1 3
(c) P Y 1 2
2.5.9 Let F x x2 for 0 x 2, with F x 0 for x 0 and F x 4 for
x 2.
(a) Sketch a graph of F .
(b) Is F a valid cumulative distribution function? Why or why not?
2.5.10 Let F x 0 for x 0, with F x e x for x 0.
(a) Sketch a graph of F .
(b) Is F a valid cumulative distribution function? Why or why not?

2.5.11 Let F x 0 for x 0, with F x 1 e x for x 0.
(a) Sketch a graph of F .
(b) Is F a valid cumulative distribution function? Why or why not?
2.5.12 Let X Exponential 3 . Compute the function FX .
2.5.13 Let F x 0 for x 0, with F x 1 3 for 0 x 2 5, and F x 3 4
for 2 5 x 4 5, and F x 1 for x 4 5.
(a) Sketch a graph of F .
(b) Prove that F is a valid cumulative distribution function.
(c) If X has cumulative distribution function equal to F , then compute P X 4 5
and P 1 X 1 2 and P X 2 5 and P X 4 5 .

2.5.14 Let G x 0 for x 0, with G x 1 e x2
for x 0.

(a) Prove that G is a valid cumulative distribution function.
(b) If Y has cumulative distribution function equal to G, then compute P Y 4 and
P 1 Y 2 and P Y 0 .
2.5.15 Let F and G be as in the previous two exercises. Let H x 1 3 F x
2 3 G x . Suppose Z has cumulative distribution function equal to H . Compute each

of the following.
(a) P Z 4 5
(b) P 1 Z 1 2
(c) P Z 2 5
(d) P Z 4 5
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(e) P Z 0
(f) P Z 1 2

PROBLEMS

2.5.16 Let F be a cumulative distribution function. Compute (with explanation) the
value of limn [F 2n F n ].

2.5.17 Let F be a cumulative distribution function. For x R1, we could define
F x by F x limn F x 1

n . Prove that F is right continuous, meaning that
for each x R1, we have F x F x . (Hint: You will need to use continuity of P
(Theorem 1.6.1).)

2.5.18 Let X be a random variable, with cumulative distribution function FX . Prove
that P X a 0 if and only if the function FX is continuous at a. (Hint: Use (2.5.1)
and the previous problem.)
2.5.19 Let be as in Definition 2.5.2. Derive a formula for x in terms of x .
(Hint: Let s t in (2.5.2), and do not forget Theorem 2.5.2.)
2.5.20 Determine the distribution function for the logistic distribution of Problem 2.4.18.
2.5.21 Determine the distribution function for the Weibull distribution of Problem
2.4.19.
2.5.22 Determine the distribution function for the Pareto distribution of Problem
2.4.20.
2.5.23 Determine the distribution function for the Cauchy distribution of Problem
2.4.21.
2.5.24 Determine the distribution function for the Laplace distribution of Problem
2.4.22.

2.5.25 Determine the distribution function for the extreme value distribution of Prob
lem 2.4.23.
2.5.26 Determine the distribution function for the beta distributions of Problem 2.4.24
for parts (b) through (e).

DISCUSSION TOPICS

2.5.27 Does it surprise you that all information about the distribution of a random
variable X can be stored by a single function FX ? Why or why not? What other
examples can you think of where lots of different information is stored by a single
function?

2.6 OneDimensional Change of Variable
Let X be a random variable with a known distribution. Suppose that Y h X , where
h : R1 R1 is some function. (Recall that this really means that Y s h X s , for
all s S.) Then what is the distribution of Y ?
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2.6.1 The Discrete Case

If X is a discrete random variable, this is quite straightforward. To compute the proba
bility that Y y we need to compute the probability of the set consisting of all the x
values satisfying h x y, namely, compute P X x : h x y This is depicted
graphically in Figure 2.6.1.

1

R1.R1. . .
yx1 x2 x3

h

{ x : h(x) = y } = { x1, x2, x3 }

Figure 2.6.1: An example where the set of x values that satisfy h x y consists of three
points x1 x2 and x3

We now establish the basic result.

Theorem 2.6.1 Let X be a discrete random variable, with probability function pX .
Let Y h X , where h : R1 R1 is some function. Then Y is also discrete,
and its probability function pY satisfies pY y x h 1 y pX x where h 1 y
is the set of all real numbers x with h x y.

PROOF We compute that pY y P h X y x h 1 y P X x

x h 1 y pX x as claimed.

EXAMPLE 2.6.1
Let X be the number of heads when ipping three fair coins. Let Y 1 if X 1, with
Y 0 if X 0. Then Y h X where h 0 0 and h 1 h 2 h 3 1.
Hence, h 1 0 0 , so P Y 0 P X 0 1 8. On the other hand,
h 1 1 1 2 3 , so P Y 1 P X 1 P X 2 P X 3
3 8 3 8 1 8 7 8.

EXAMPLE 2.6.2
Let X be the number showing on a fair sixsided die, so that P X x 1 6 for x
1 2 3 4 5 and 6. Let Y X2 3X 2. Then Y h X where h x x2 3x 2.
Note that h x 0 if and only if x 1 or x 2. Hence, h 1 0 1 2 and

P Y 0 pX 1 pX 2
1

6

1

6

1

3

2.6.2 The Continuous Case

If X is continuous and Y h X , then the situation is more complicated. Indeed, Y
might not be continuous at all, as the following example shows.
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EXAMPLE 2.6.3
Let X have the uniform distribution on [0 1], i.e., X Uniform[0 1] as in Exam
ple 2.4.2. Let Y h X , where

h x
7 x 3 4
5 x 3 4

Here, Y 7 if and only if X 3 4 (which happens with probability 3 4), whereas
Y 5 if and only if X 3 4 (which happens with probability 1 4). Hence, Y is
discrete, with probability function pY satisfying pY 7 3 4 pY 5 1 4 and
pY y 0 when y 5 7.

On the other hand, if X is absolutely continuous, and the function h is strictly
increasing, then the situation is considerably simpler, as the following theorem shows.

Theorem 2.6.2 Let X be an absolutely continuous random variable, with density
function fX . Let Y h X , where h : R1 R1 is a function that is differen
tiable and strictly increasing. Then Y is also absolutely continuous, and its density
function fY is given by

fY y fX h 1 y h h 1 y (2.6.1)

where h is the derivative of h, and where h 1 y is the unique number x such that
h x y.

PROOF See Section 2.11 for the proof of this result.

EXAMPLE 2.6.4
Let X Uniform[0 1], and let Y 3X . What is the distribution of Y ?

Here, X has density fX given by fX x 1 if 0 x 1, and fX x 0
otherwise. Also, Y h X , where h is defined by h x 3x . Note that h is strictly
increasing because if x y, then 3x 3y, i.e., h x h y . Hence, we may apply
Theorem 2.6.2.

We note first that h x 3 and that h 1 y y 3. Then, according to Theo
rem 2.6.2, Y is absolutely continuous with density

fY y fX h 1 y h h 1 y
1

3
fX y 3

1 3 0 y 3 1
0 otherwise

1 3 0 y 3
0 otherwise.

By comparison with Example 2.4.3, we see that Y Uniform[0 3], i.e., that Y has
the Uniform[L R] distribution with L 0 and R 3.

EXAMPLE 2.6.5
Let X N 0 1 , and let Y 2X 5. What is the distribution of Y ?

Here, X has density fX given by

fX x x
1

2
e x2 2
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Also, Y h X , where h is defined by h x 2x 5. Note that again, h is strictly
increasing because if x y, then 2x 5 2y 5, i.e., h x h y . Hence, we may
again apply Theorem 2.6.2.

We note first that h x 2 and that h 1 y y 5 2. Then, according to
Theorem 2.6.2, Y is absolutely continuous with density

fY y fX h 1 y h h 1 y fX y 5 2 2
1

2 2
e y 5 2 8

By comparison with Example 2.4.8, we see that Y N 5 4 , i.e., that Y has the
N 2 distribution with 5 and 2 4.

If instead the function h is strictly decreasing, then a similar result holds.

Theorem 2.6.3 Let X be an absolutely continuous random variable, with density
function fX . Let Y h X , where h : R1 R1 is a function that is differen
tiable and strictly decreasing. Then Y is also absolutely continuous, and its density
function fY may again be defined by (2.6.1).

PROOF See Section 2.11 for the proof of this result.

EXAMPLE 2.6.6
Let X Uniform[0 1], and let Y ln 1 X . What is the distribution of Y ?

Here, X has density fX given by fX x 1 for 0 x 1, and fX x 0
otherwise. Also, Y h X , where h is defined by h x ln 1 x . Note that here,
h is strictly decreasing because if x y, then 1 x 1 y, so ln 1 x ln 1 y , i.e.,
h x h y . Hence, we may apply Theorem 2.6.3.

We note first that h x 1 x and that h 1 y e y . Then, by Theorem 2.6.3,
Y is absolutely continuous with density

fY y fX h 1 y h h 1 y e y fX e y

e y 0 e y 1
0 otherwise

e y y 0
0 otherwise.

By comparison with Example 2.4.4, we see that Y Exponential 1 , i.e., that Y has
the Exponential 1 distribution.

Finally, we note the following.

Theorem 2.6.4 Theorem 2.6.2 (and 2.6.3) remains true assuming only that h is
strictly increasing (or decreasing) at places for which fX x 0. If fX x 0 for
an interval of x values, then it does not matter how the function h behaves in that
interval (or even if it is well defined there).

EXAMPLE 2.6.7
If X Exponential , then fX x 0 for x 0. Therefore, it is required that h be
strictly increasing (or decreasing) only for x 0. Thus, functions such as h x x2,
h x x8, and h x x could still be used with Theorem 2.6.2, while functions
such as h x x2, h x x8, and h x x could still be used with The
orem 2.6.3, even though such functions may not necessarily be strictly increasing (or
decreasing) and well defined on the entire real line.
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Summary of Section 2.6

If X is discrete, and Y h X , then P Y y x : h x y P X x .

If X is absolutely continuous, and Y h X with h strictly increasing or strictly
decreasing, then the density of Y is given by fY y fX h 1 y h h 1 y .

This allows us to compute the distribution of a function of a random variable.

EXERCISES

2.6.1 Let X Uniform[L R]. Let Y cX d, where c 0. Prove that Y
Uniform[cL d cR d]. (This generalizes Example 2.6.4.)
2.6.2 Let X Uniform[L R]. Let Y cX d, where c 0. Prove that Y
Uniform[cR d cL d]. (In particular, if L 0 and R 1 and c 1 and d 1,
then X Uniform[0 1] and also Y 1 X Uniform[0 1].)
2.6.3 Let X N 2 . Let Y cX d, where c 0. Prove that Y N c
d c2 2 . (This generalizes Example 2.6.5.)
2.6.4 Let X Exponential . Let Y cX , where c 0. Prove that Y
Exponential c .
2.6.5 Let X Exponential . Let Y X3. Compute the density fY of Y .
2.6.6 Let X Exponential . Let Y X1 4. Compute the density fY of Y . (Hint:
Use Theorem 2.6.4.)
2.6.7 Let X Uniform[0 3]. Let Y X2. Compute the density function fY of Y .
2.6.8 Let X have a density such that fX x fX x i.e., it is symmetric
about . Let Y 2 X . Show that the density of Y is given by fX . Use this to
determine the distribution of Y when X N 2

2.6.9 Let X have density function fX x x3 4 for 0 x 2, otherwise fX x 0.
(a) Let Y X2. Compute the density function fY y for Y .
(b) Let Z X . Compute the density function fZ z for Z .
2.6.10 Let X Uniform[0 2]. Let Y sin X . Compute the density function
fY y for Y .
2.6.11 Let X have density function fX x 1 2 sin x for 0 x , otherwise
fX x 0. Let Y X2. Compute the density function fY y for Y .
2.6.12 Let X have density function fX x 1 x2 for x 1, otherwise fX x 0.
Let Y X1 3. Compute the density function fY y for Y .
2.6.13 Let X Normal 0 1 . Let Y X3. Compute the density function fY y for
Y .

PROBLEMS

2.6.14 Let X Uniform[2 7], Y X3, and Z Y . Compute the density fZ of Z ,
in two ways.
(a) Apply Theorem 2.6.2 to first obtain the density of Y , then apply Theorem 2.6.2
again to obtain the density of Z .
(b) Observe that Z Y X3 X3 2, and apply Theorem 2.6.2 just once.



Chapter 2: Random Variables and Distributions 79

2.6.15 Let X Uniform[L R], and let Y h X where h x x c 6. According
to Theorem 2.6.4, under what conditions on L R, and c can we apply Theorem 2.6.2
or Theorem 2.6.3 to this choice of X and Y ?
2.6.16 Let X N 2 . Let Y cX d, where c 0. Prove that again Y
N c d c2 2 , just like in Exercise 2.6.3.

2.6.17 (Lognormal distribution) Suppose that X N 0 2 Prove that Y eX

has density

f y
1

2
exp

ln y 2

2 2

1

y

for y 0 and where 0 is unknown. We say that Y Lognormal
2.6.18 Suppose that X Weibull (see Problem 2.4.19). Determine the distribution
of Y X

2.6.19 Suppose that X Pareto (see Problem 2.4.20). Determine the distribution
of Y 1 X 1

2.6.20 Suppose that X has the extreme value distribution (see Problem 2.4.23). Deter
mine the distribution of Y e X

CHALLENGES

2.6.21 Theorems 2.6.2 and 2.6.3 require that h be an increasing or decreasing function,
at least at places where the density of X is positive (see Theorem 2.6.4). Suppose now
that X N 0 1 and Y h X where h x x2. Then fX x 0 for all x , while
h is increasing only for x 0 and decreasing only for x 0. Hence, Theorems 2.6.2
and 2.6.3 do not directly apply. Compute fY y anyway. (Hint: P a Y b
P a Y b X 0 P a Y b X 0 .)

2.7 Joint Distributions
Suppose X and Y are two random variables. Even if we know the distributions of X
and Y exactly, this still does not tell us anything about the relationship between X and
Y .

EXAMPLE 2.7.1
Let X Bernoulli 1 2 , so that P X 0 P X 1 1 2. Let Y1 X , and let
Y2 1 X . Then we clearly have Y1 Bernoulli 1 2 and Y2 Bernoulli 1 2 as
well.

On the other hand, the relationship between X and Y1 is very different from the re
lationship between X and Y2. For example, if we know that X 1, then we also must
have Y1 1, but Y2 0. Hence, merely knowing that X , Y1, and Y2 all have the dis
tribution Bernoulli 1 2 does not give us complete information about the relationships
among these random variables.

A formal definition of joint distribution is as follows.
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Definition 2.7.1 If X and Y are random variables, then the joint distribution of X
and Y is the collection of probabilities P X Y B , for all subsets B R2 of
pairs of real numbers.

Joint distributions, like other distributions, are so complicated that we use vari
ous functions to describe them, including joint cumulative distribution functions, joint
probability functions, and joint density functions, as we now discuss.

2.7.1 Joint Cumulative Distribution Functions

Definition 2.7.2 Let X and Y be random variables. Then their joint cumulative
distribution function is the function FX Y : R2 [0 1] defined by

FX Y x y P X x Y y

(Recall that the comma means “and” here, so that FX Y x y is the probability that
X x and Y y.)

EXAMPLE 2.7.2 (Example 2.7.1 continued)
Again, let X Bernoulli 1 2 , Y1 X , and Y2 1 X . Then we compute that

FX Y1 x y P X x Y1 y
0 min x y 0
1 2 0 min x y 1
1 min x y 1

On the other hand,

FX Y2 x y P X x Y2 y
0 min x y 0 or max x y 1
1 2 0 min x y 1 max x y
1 min x y 1

We thus see that FX Y1 is quite a different function from FX Y2 . This reects the
fact that, even though Y1 and Y2 each have the same distribution, their relationship
with X is quite different. On the other hand, the functions FX Y1 and FX Y2 are rather
cumbersome and awkward to work with.

We see from this example that joint cumulative distribution functions (or joint cdfs)
do indeed keep track of the relationship between X and Y . Indeed, joint cdfs tell us
everything about the joint probabilities of X and Y , as the following theorem (an analog
of Theorem 2.5.1) shows.

Theorem 2.7.1 Let X and Y be any random variables, with joint cumulative dis
tribution function FX Y . Let B be a subset of R2. Then P X Y B can be
determined solely from the values of FX Y x y .

We shall not give a proof of Theorem 2.7.1, although it is similar to the proof of
Theorem 2.5.1. However, the following theorem indicates why Theorem 2.7.1 is true,
and it also provides a useful computational fact.
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Theorem 2.7.2 Let X and Y be any random variables, with joint cumulative distri
bution function FX Y . Suppose a b and c d. Then

P a X b c Y d FX Y b d FX Y a d FX Y b c FX Y a c

PROOF According to (1.3.3),

P a X b c Y d

P X b Y d P X b Y d and either X a or Y c

But by the principle of inclusion–exclusion (1.3.4),

P X b Y d and either X a or Y c

P X b Y c P X a Y d P X a Y c

Combining these two equations, we see that

P a X b c Y d

P X b Y d P X a Y d P X b Y c P X a Y c

and from this we obtain

P a X b c Y d FX Y b d FX Y a d FX Y b c FX Y a c

as claimed.

Joint cdfs are not easy to work with. Thus, in this section we shall also consider
other functions, which are more convenient for pairs of discrete or absolutely continu
ous random variables.

2.7.2 Marginal Distributions

We have seen how a joint cumulative distribution function FX Y tells us about the rela
tionship between X and Y . However, the function FX Y also tells us everything about
each of X and Y separately, as the following theorem shows.

Theorem 2.7.3 Let X and Y be two random variables, with joint cumulative distri
bution function FX Y . Then the cumulative distribution function FX of X satisfies

FX x lim
y

FX Y x y

for all x R1 Similarly, the cumulative distribution function FY of Y satisfies

FY y lim
x

FX Y x y

for all y R1
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PROOF Note that we always have Y . Hence, using continuity of P, we have

FX x P X x

P X x Y

lim
y

P X x Y y

lim
y

FX Y x y

as claimed. Similarly,

FY y P Y y

P X Y y

lim
x

P X x Y y

lim
x

FX Y x y

completing the proof.

In the context of Theorem 2.7.3, FX is called the marginal cumulative distribu
tion function of X , and the distribution of X is called the marginal distribution of X .
(Similarly, FY is called the marginal cumulative distribution function of Y , and the
distribution of Y is called the marginal distribution of Y .) Intuitively, if we think of
FX Y as being a function of a pair x y , then FX and FY are functions of x and y,
respectively, which could be written into the “margins” of a graph of FX Y .

EXAMPLE 2.7.3
In Figure 2.7.1, we have plotted the joint distribution function

FX Y x y

0 x 0 or y 0

xy2 0 x 1 0 y 1

x 0 x 1 y 1

y2 x 1 0 y 1

1 x 1 and y 1

It is easy to see that
FX x FX Y x 1 x

for 0 x 1 and that
FY y FX Y 1 y y2

for 0 y 1 The graphs of these functions are given by the outermost edges of the
surface depicted in Figure 2.7.1.
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Figure 2.7.1: Graph of the joint distribution function FX Y x y xy2 for 0 x 1 and
0 y 1 in Example 2.7.3.

Theorem 2.7.3 thus tells us that the joint cdf FX Y is very useful indeed. Not only
does it tell us about the relationship of X to Y , but it also contains all the information
about the marginal distributions of X and of Y .

We will see in the next subsections that joint probability functions, and joint density
functions, similarly contain information about both the relationship of X and Y and the
marginal distributions of X and Y .

2.7.3 Joint Probability Functions

Suppose X and Y are both discrete random variables. Then we can define a joint
probability function for X and Y , as follows.

Definition 2.7.3 Let X and Y be discrete random variables. Then their joint prob
ability function, pX Y , is a function from R2 to R1, defined by

pX Y x y P X x Y y

Consider the following example.
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EXAMPLE 2.7.4 (Examples 2.7.1 and 2.7.2 continued)
Again, let X Bernoulli 1 2 , Y1 X , and Y2 1 X . Then we see that

pX Y1 x y P X x Y1 y
1 2 x y 1
1 2 x y 0
0 otherwise.

On the other hand,

pX Y2 x y P X x Y2 y
1 2 x 1 y 0
1 2 x 0 y 1
0 otherwise.

We thus see that pX Y1 and pX Y2 are two simple functions that are easy to work
with and that clearly describe the relationships between X and Y1 and between X and
Y2. Hence, for pairs of discrete random variables, joint probability functions are usually
the best way to describe their relationships.

Once we know the joint probability function pX Y , the marginal probability func
tions of X and Y are easily obtained.

Theorem 2.7.4 Let X and Y be two discrete random variables, with joint probabil
ity function pX Y . Then the probability function pX of X can be computed as

pX x
y

pX Y x y

Similarly, the probability function pY of Y can be computed as

pY y
x

pX Y x y

PROOF Using additivity of P , we have that

pX x P X x
y

P X x Y y
y

pX Y x y

as claimed. Similarly,

pY y P Y y
x

P X x Y y
x

pX Y x y

EXAMPLE 2.7.5
Suppose the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise
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Then

pX 5
y

pX Y 5 y pX Y 5 0 pX Y 5 3 pX Y 5 4

1

7

1

7

1

7

3

7

while

pX 8
y

pX Y 8 y pX Y 8 0 pX Y 8 4
3

7

1

7

4

7

Similarly,

pY 4
x

pX Y x 4 pX Y 5 4 pX Y 8 4
1

7

1

7

2

7

etc.
Note that in such a simple context it is possible to tabulate the joint probability

function in a table, as illustrated below for pX Y pX and pY of this example.

Y 0 Y 3 Y 4
X 5 1 7 1 7 1 7 3 7
X 8 3 7 0 1 7 4 7

4 7 1 7 2 7

Summing the rows and columns and placing the totals in the margins gives the marginal
distributions of X and Y .

2.7.4 Joint Density Functions

If X and Y are continuous random variables, then clearly pX Y x y 0 for all x and
y. Hence, joint probability functions are not useful in this case. On the other hand, we
shall see here that if X and Y are jointly absolutely continuous, then their relationship
may be usefully described by a joint density function.

Definition 2.7.4 Let f : R2 R1 be a function. Then f is a joint density function
if f x y 0 for all x and y, and f x y dx dy 1.

Definition 2.7.5 Let X and Y be random variables. Then X and Y are jointly ab
solutely continuous if there is a joint density function f , such that

P a X b c Y d
d

c

b

a
f x y dx dy

for all a b c d
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Consider the following example.

EXAMPLE 2.7.6
Let X and Y be jointly absolutely continuous, with joint density function f given by

f x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.

We first verify that f is indeed a density function. Clearly, f x y 0 for all x
and y. Also,

f x y dx dy
1

0

1

0
4x2y 2y5 dx dy

1

0

4

3
y 2y5 dy

4

3

1

2
2

1

6

2

3

1

3
1

Hence, f is a joint density function. In Figure 2.7.2, we have plotted the function f
which gives a surface over the unit square.

1.0

0.5
1.0

0.5

y

0.0

x

0.0
0

2

f
4

6

Figure 2.7.2: A plot of the density f in Example 2.7.6.
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We next compute P 0 5 X 0 7 0 2 Y 0 9 . Indeed, we have

P 0 5 X 0 7 0 2 Y 0 9
0 9

0 2

0 7

0 5
4x2y 2y5 dx dy

0 9

0 2

4

3
0 7 3 0 5 3 y 2y5 0 7 0 5 dy

4

3
0 7 3 0 5 3 1

2
0 9 2 0 2 2 2

6
0 9 6 0 2 6 0 7 0 5

2

3
0 7 3 0 5 3 0 9 2 0 2 2 1

3
0 9 6 0 2 6 0 7 0 5 0 147

Other probabilities can be computed similarly.

Once we know a joint density fX Y , then computing the marginal densities of X
and Y is very easy, as the following theorem shows.

Theorem 2.7.5 Let X and Y be jointly absolutely continuous random variables,
with joint density function fX Y . Then the (marginal) density fX of X satisfies

fX x fX Y x y dy

for all x R1 Similarly, the (marginal) density fY of Y satisfies

fY y fX Y x y dx

for all y R1

PROOF We need to show that, for a b, P a X b b
a fX x dx

b
a fX Y x y dy dx Now, we always have Y . Hence, using con

tinuity of P , we have that P a X b P a X b Y
and

P a X b Y

lim
c
d

P a X b c Y d lim
c
d

d

c

b

a
f x y dx dy

lim
c
d

b

a

d

c
f x y dy dx

b

a
fX Y x y dy dx

as claimed. The result for fY follows similarly.

EXAMPLE 2.7.7 (Example 2.7.6 continued)
Let X and Y again have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.



88 Section 2.7: Joint Distributions

Then by Theorem 2.7.5, for 0 x 1,

fX x fX Y x y dy
1

0
4x2y 2y5 dy 2x2 1 3

while for x 0 or x 1,

fX x fX Y x y dy 0 dy 0

Similarly, for 0 y 1,

fY y fX Y x y dx
1

0
4x2y 2y5 dx

4

3
y 2y5

while for y 0 or y 1, fY y 0.

EXAMPLE 2.7.8
Suppose X and Y are jointly absolutely continuous, with joint density

fX Y x y
120x3y x 0 y 0 x y 1
0 otherwise.

Then the region where fX Y x y 0 is a triangle, as depicted in Figure 2.7.3.

1

x

y

1

1

Figure 2.7.3: Region of the plane where the density fX Y in Example 2.7.8 is positive.

We check that

fX Y x y dx dy
1

0

1 x

0
120x3y dy dx

1

0
120x3 1 x 2

2
dx

1

0
60 x3 2x4 x5 dx 60

1

4
2

1

5

1

6
15 2 12 10 1

so that fX Y is indeed a joint density function. We then compute that, for example,

fX x
1 x

0
120x3y dy 120x3 1 x 2

2
60 x3 2x4 x5
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for 0 x 1 (with fX x 0 for x 0 or x 1).

EXAMPLE 2.7.9 Bivariate Normal 1 2 1 2 Distribution
Let 1 2 1 2, and be real numbers, with 1 2 0 and 1 1. Let X
and Y have joint density given by

fX Y x y
1

2 1 2 1 2
exp

1

2 1 2

x 1
1

2 y 2
2

2

2 x 1
1

y 2
2

for x R1 y R1 We say that X and Y have the Bivariate Normal 1 2 1 2
distribution.

It can be shown (see Problem 2.7.13) that X N 1
2
1 and Y N 2

2
2 .

Hence, X and Y are each normally distributed. The parameter measures the degree
of the relationship that exists between X and Y (see Problem 3.3.17) and is called
the correlation. In particular, X and Y are independent (see Section 2.8.3), and so
unrelated, if and only if 0 (see Problem 2.8.21).

Figure 2.7.4 is a plot of the standard bivariate normal density, given by setting

1 0 2 0 1 1 2 1, and 0 This is a bellshaped surface in R3

with its peak at the point 0 0 in the xyplane. The graph of the general Bivariate
Normal 1 2 1 2 distribution is also a bellshaped surface, but the peak is at
the point 1 2 in the xyplane and the shape of the bell is controlled by 1 2, and

2yx

2
0.00

2

0 0

2

0.05

0.15

0.10

Figure 2.7.4: A plot of the standard bivariate normal density function.
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It can be shown (see Problem 2.9.16) that, when Z1 Z2 are independent random
variables, both distributed N 0 1 and we put

X 1 1Z1 Y 2 2 Z1 1 2 1 2 Z2 (2.7.1)

then X Y Bivariate Normal 1 2 1 2 This relationship can be quite
useful in establishing various properties of this distribution. We can also write an

analogous version Y 2 2 Z1 X 1 1 Z1 1 2 1 2
Z2 and obtain

the same distributional result.
The bivariate normal distribution is one of the most commonly used bivariate dis

tributions in applications. For example, if we randomly select an individual from a
population and measure his weight X and height Y then a bivariate normal distribution
will often provide a reasonable description of the joint distribution of these variables.

Joint densities can also be used to compute probabilities of more general regions,
as the following result shows. (We omit the proof. The special case B [a b] [c d]
corresponds directly to the definition of fX Y .)

Theorem 2.7.6 Let X and Y be jointly absolutely continuous random variables,
with joint density fX Y , and let B R2 be any region. Then

P X Y B
B

f x y dx dy

The previous discussion has centered around having just two random variables,
X and Y . More generally, we may consider n random variables X1 Xn. If the
random variables are all discrete, then we can further define a joint probability function
pX1 Xn : Rn [0 1] by pX1 Xn x1 xn P X1 x1 Xn xn .
If the random variables are jointly absolutely continuous, then we can define a joint
density function fX1 Xn : Rn [0 1] so that

P a1 X1 b1 an Xn bn

bn

an

b1

a1

fX1 Xn x1 xn dx1 dxn

whenever ai bi for all i .

Summary of Section 2.7

It is often important to keep track of the joint probabilities of two random vari
ables, X and Y .

Their joint cumulative distribution function is given by FX Y x y P X
x Y y .

If X and Y are discrete, then their joint probability function is given by pX Y x y
P X x Y y .
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If X and Y are absolutely continuous, then their joint density function fX Y x y
is such that P a X b c Y d d

c
b

a fX Y x y dx dy

The marginal density of X and Y can be computed from any of FX Y , or pX Y ,
or fX Y .

An important example of a joint distribution is the bivariate normal distribution.

EXERCISES

2.7.1 Let X Bernoulli 1 3 , and let Y 4X 2. Compute the joint cdf FX Y .

2.7.2 Let X Bernoulli 1 4 , and let Y 7X . Compute the joint cdf FX Y .
2.7.3 Suppose

pX Y x y

1 5 x 2 y 3
1 5 x 3 y 2
1 5 x 3 y 2
1 5 x 2 y 3
1 5 x 17 y 19
0 otherwise

(a) Compute pX .
(b) Compute pY .
(c) Compute P Y X .
(d) Compute P Y X .
(e) Compute P XY 0 .
2.7.4 For each of the following joint density functions fX Y , find the value of C and
compute fX x fY y , and P X 0 8 Y 0 6 .
(a)

fX Y x y
2x2y Cy5 0 x 1 0 y 1
0 otherwise.

(b)

fX Y x y
C xy x5y5 0 x 1 0 y 1
0 otherwise.

(c)

fX Y x y
C xy x5 y5 0 x 4 0 y 10
0 otherwise.

(d)

fX Y x y
Cx5y5 0 x 4 0 y 10
0 otherwise.

2.7.5 Prove that FX Y x y min FX x FY y
2.7.6 Suppose P X x Y y 1 8 for x 3 5 and y 1 2 4 7, otherwise
P X x Y y 0. Compute each of the following.
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(a) FX Y x y for all x y R1

(b) pX Y x y for all x y R1

(c) pX x for all x R1

(d) pY y for all x R1

(e) The marginal cdf FX x for all x R1

(f) The marginal cdf FY y for all y R1

2.7.7 Let X and Y have joint density fX Y x y c sin xy for 0 x 1 and
0 y 2, otherwise fX Y x y 0, for appropriate constant c 0 (which cannot
be computed explicitly). In terms of c, compute each of the following.
(a) The marginal density fX x for all x R1

(b) The marginal density fY y for all y R1

2.7.8 Let X and Y have joint density fX Y x y x2 y 36 for 2 x 1 and
0 y 4, otherwise fX Y x y 0. Compute each of the following.
(a) The marginal density fX x for all x R1

(b) The marginal density fY y for all y R1

(c) P Y 1
(d) The joint cdf FX Y x y for all x y R1

2.7.9 Let X and Y have joint density fX Y x y x2 y 4 for 0 x y 2,
otherwise fX Y x y 0. Compute each of the following.
(a) The marginal density fX x for all x R1

(b) The marginal density fY y for all y R1

(c) P Y 1
2.7.10 Let X and Y have the BivariateNormal 3 5 2 4 1 2 distribution.
(a) Specify the marginal distribution of X .
(b) Specify the marginal distribution of Y .
(c) Are X and Y independent? Why or why not?

PROBLEMS

2.7.11 Let X Exponential , and let Y X3. Compute the joint cdf, FX Y x y .
2.7.12 Let FX Y be a joint cdf. Prove that for all y R1, limx FX Y x y 0.
2.7.13 Let X and Y have the Bivariate Normal 1 2 1 2 distribution, as in
Example 2.7.9. Prove that X N 1

2
1 , by proving that

fX Y x y dy
1

1 2
exp

x 1
2

2 2
1

2.7.14 Suppose that the joint density fX Y is given by fX Y x y Cye xy for 0
x 1 0 y 1 and is 0 otherwise
(a) Determine C so that fX Y is a density.
(b) Compute P 1 2 X 1 1 2 Y 1

(c) Compute the marginal densities of X and Y
2.7.15 Suppose that the joint density fX Y is given by fX Y x y Cye xy for 0
x y 1 and is 0 otherwise
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(a) Determine C so that fX Y is a density.

(b) Compute P 1 2 X 1 1 2 Y 1
(c) Compute the marginal densities of X and Y
2.7.16 Suppose that the joint density fX Y is given by fX Y x y Ce x y for
0 x y and is 0 otherwise
(a) Determine C so that fX Y is a density.
(b) Compute the marginal densities of X and Y
2.7.17 (Dirichlet 1 2 3 distribution) Let X1 X2 have the joint density

fX1 X2 x1 x2
1 2 3

1 2 3
x 1 1

1 x 2 1
2 1 x1 x2

3 1

for x1 0 x2 0 and 0 x1 x2 1 A Dirichlet distribution is often applicable
when X1 X2 and 1 X1 X2 correspond to random proportions.
(a) Prove that fX1 X2 is a density. (Hint: Sketch the region where fX1 X2 is nonnegative,
integrate out x1 first by making the transformation u x1 1 x2 in this integral, and
use (2.4.10) from Problem 2.4.24.)
(b) Prove that X1 Beta 1 2 3 and X2 Beta 2 1 3

2.7.18 (Dirichlet 1 k 1 distribution) Let X1 Xk have the joint density

fX1 Xk x1 xk

1 k 1

1 k 1
x 1 1

1 x k 1
k 1 x1 xk

k 1 1

for xi 0 i 1 k and 0 x1 xk 1 Prove that fX1 Xk is a density.
(Hint: Problem 2.7.17.)

CHALLENGES

2.7.19 Find an example of two random variables X and Y and a function h : R1 R1,
such that FX x 0 and FY x 0 for all x R1, but limx FX Y x h x 0.

DISCUSSION TOPICS

2.7.20 What are examples of pairs of reallife random quantities that have interesting
relationships? (List as many as you can, and describe each relationship as well as you
can.)

2.8 Conditioning and Independence
Let X and Y be two random variables. Suppose we know that X 5. What does
that tell us about Y ? Depending on the relationship between X and Y , that may tell
us everything about Y (e.g., if Y X), or nothing about Y . Usually, the answer
will be between these two extremes, and the knowledge that X 5 will change the
probabilities for Y somewhat.
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2.8.1 Conditioning on Discrete Random Variables

Suppose X is a discrete random variable, with P X 5 0. Let a b, and suppose
we are interested in the conditional probability P a Y b X 5 . Well, we
already know how to compute such conditional probabilities. Indeed, by (1.5.1),

P a Y b X 5
P a Y b X 5

P X 5

provided that P X 5 0. This prompts the following definition.

Definition 2.8.1 Let X and Y be random variables, and suppose that P X x
0. The conditional distribution of Y , given that X x , is the probability distribution
assigning probability

P Y B X x

P X x

to each event Y B. In particular, it assigns probability

P a Y b X x

P X x

to the event that a Y b.

EXAMPLE 2.8.1
Suppose as in Example 2.7.5 that X and Y have joint probability function

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise.

We compute P Y 4 X 8 as

P Y 4 X 8
P Y 4 X 8

P X 8

1 7

3 7 1 7

1 7

4 7
1 4

On the other hand,

P Y 4 X 5
P Y 4 X 5

P X 5

1 7

1 7 1 7 1 7

1 7

3 7
1 3

Thus, depending on the value of X , we obtain different probabilities for Y .

Generalizing from the above example, we see that if X and Y are discrete, then

P Y y X x
P Y y X x

P X x

pX Y x y

pX x

pX Y x y

z pX Y x z
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This prompts the following definition.

Definition 2.8.2 Suppose X and Y are two discrete random variables. Then the
conditional probability function of Y , given X , is the function pY X defined by

pY X y x
pX Y x y

z pX Y x z

pX Y x y

pX x

defined for all y R1 and all x with pX x 0.

2.8.2 Conditioning on Continuous Random Variables

If X is continuous, then we will have P X x 0. In this case, Definitions 2.8.1
and 2.8.2 cannot be used because we cannot divide by 0. So how can we condition on
X x in this case?

One approach is suggested by instead conditioning on x X x , where
0 is a very small number. Even if X is continuous, we might still have P x

X x 0. On the other hand, if is very small and x X x , then X
must be very close to x .

Indeed, suppose that X and Y are jointly absolutely continuous, with joint density
function fX Y . Then

P a Y b x X x
P a Y b x X x

P x X x
b

a
x

x fX Y t y dt dy
x

x fX Y t y dt dy

In Figure 2.8.1, we have plotted the region x y : a y b x x x
for X Y

b

a

y

x x+x
|

Figure 2.8.1: The shaded region is the set x y : a y b x x x .

Now, if is very small, then in the above integrals we will always have t very close
to x . If fX Y is a continuous function, then this implies that fX Y t y will be very
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close to fX Y x y . We conclude that, if is very small, then

P a Y b x X x
b

a
x

x fX Y x y dt dy
x

x fX Y x y dt dy
b

a 2 fX Y x y dy

2 fX Y x y dy

b

a

fX Y x y

fX Y x z dz
dy

This suggests that the quantity

fX Y x y

fX Y x z dz

fX Y x y

fX x

plays the role of a density, for the conditional distribution of Y given that X x . This
prompts the following definitions.

Definition 2.8.3 Let X and Y be jointly absolutely continuous, with joint den
sity function fX Y . The conditional density of Y , given X x , is the function
fY X y x , defined by

fY X y x
fX Y x y

fX x

valid for all y R1, and for all x such that fX x 0.

Definition 2.8.4 Let X and Y be jointly absolutely continuous, with joint density
function fX Y . The conditional distribution of Y , given X x , is defined by saying
that

P a Y b X x
b

a
fY X y x dy

when a b, with fY X as in Definition 2.8.3, valid for all x such that fX x 0.

EXAMPLE 2.8.2
Let X and Y have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise,

as in Examples 2.7.6 and 2.7.7.
We know from Example 2.7.7 that

fX x
2x2 1 3 0 x 1
0 otherwise,

while

fY y
4
3 y 2y5 0 y 1
0 otherwise.
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Let us now compute P 0 2 Y 0 3 X 0 8 . Using Definitions 2.8.4
and 2.8.3, we have

P 0 2 Y 0 3 X 0 8

0 3

0 2
fY X y 0 8 dy

0 3
0 2 fX Y 0 8 y dy

fX 0 8

0 3
0 2 4 0 8 2 y 2y5 dy

2 0 8 2 1
3

4
2 0 8 2 0 3 2 0 2 2 2

6 0 3 6 0 2 6

2 0 8 2 1
3

0 0398

By contrast, if we compute the unconditioned (i.e., usual) probability that 0 2
Y 0 3, we see that

P 0 2 Y 0 3
0 3

0 2
fY y dy

0 3

0 2

4

3
y 2y5 dy

4

3

1

2
0 3 2 0 2 2 2

6
0 3 6 0 2 6 0 0336

We thus see that conditioning on X 0 8 increases the probability that 0 2 Y 0 3,
from about 0 0336 to about 0 0398.

By analogy with Theorem 1.3.1, we have the following.

Theorem 2.8.1 (Law of total probability, absolutely continuous random variable
version) Let X and Y be jointly absolutely continuous random variables, and let
a b and c d. Then

P a X b c Y d
d

c

b

a
fX x fY X y x dx dy

More generally, if B R2 is any region, then

P X Y B
B

fX x fY X y x dx dy

PROOF By Definition 2.8.3,

fX x fY X y x fX Y x y

Hence, the result follows immediately from Definition 2.7.4 and Theorem 2.7.6.

2.8.3 Independence of Random Variables

Recall from Definition 1.5.2 that two events A and B are independent if P A B
P A P B . We wish to have a corresponding definition of independence for random
variables X and Y . Intuitively, independence of X and Y means that X and Y have no
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inuence on each other, i.e., that the values of X make no change to the probabilities
for Y (and vice versa).

The idea of the formal definition is that X and Y give rise to events, of the form
“a X b” or “Y B ” and we want all such events involving X to be independent
of all such events involving Y . Specifically, our definition is the following.

Definition 2.8.5 Let X and Y be two random variables. Then X and Y are inde
pendent if, for all subsets B1 and B2 of the real numbers,

P X B1 Y B2 P X B1 P Y B2

That is, the events “X B1” and “Y B2” are independent events.

Intuitively, X and Y are independent if they have no inuence on each other, as we
shall see.

Now, Definition 2.8.5 is very difficult to work with. Fortunately, there is a much
simpler characterization of independence.

Theorem 2.8.2 Let X and Y be two random variables. Then X and Y are indepen
dent if and only if

P a X b c Y d P a X b P c Y d (2.8.1)

whenever a b and c d.

That is, X and Y are independent if and only if the events “a X b” and “c Y
d” are independent events whenever a b and c d.

We shall not prove Theorem 2.8.2 here, although it is similar in spirit to the proof of
Theorem 2.5.1. However, we shall sometimes use (2.8.1) to check for the independence
of X and Y .

Still, even (2.8.1) is not so easy to check directly. For discrete and for absolutely
continuous distributions, easier conditions are available, as follows.

Theorem 2.8.3 Let X and Y be two random variables.
(a) If X and Y are discrete, then X and Y are independent if and only if their joint
probability function pX Y satisfies

pX Y x y pX x pY y

for all x y R1

(b) If X and Y are jointly absolutely continuous, then X and Y are independent if
and only if their joint density function fX Y can be chosen to satisfy

fX Y x y fX x fY y

for all x y R1
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PROOF (a) If X and Y are independent, then setting a b x and c d y
in (2.8.1), we see that P X x Y y P X x P Y y Hence, pX Y x y
pX x pY y .

Conversely, if pX Y x y pX x pY y for all x and y, then

P a X b c Y d

a x b c y d

pX Y x y
a x b c y d

pX x pY y

a x b

pX x
c y d

pY y P a X b P c Y d

This completes the proof of (a).

(b) If fX Y x y fX x fY y for all x and y, then

P a X b c Y d
b

a

d

c
fX Y x y dy dx

b

a

d

c
fX x fY y dy dx

b

a
fX x dx

d

c
fY y dy P a X b P c Y d

This completes the proof of the “if” part of (b). The proof of the “only if” part of (b) is
more technical, and we do not include it here.

EXAMPLE 2.8.3
Let X and Y have, as in Example 2.7.6, joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise

and so, as derived in as in Example 2.7.7, marginal densities

fX x
2x2 1 3 0 x 1
0 otherwise

and

fY y
4
3 y 2y5 0 y 1
0 otherwise.

Then we compute that

fX x fY y
2x2 1 3 4

3 y 2y5 0 x 1 0 y 1
0 otherwise.

We therefore see that fX x fY y fX Y x y . Hence, X and Y are not independent.
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EXAMPLE 2.8.4
Let X and Y have joint density

fX Y x y
1

8080 12xy2 6x 4y2 2 0 x 6 3 y 5
0 otherwise.

We compute the marginal densities as

fX x fX Y x y dy
1

60
1
20 x 0 x 6

0 otherwise,

and

fY y fX Y x y dx
3

202
3

101 y2 3 y 5
0 otherwise.

Then we compute that

fX x fY y
1

60
1

20 x 3
202

3
101 y2 0 x 6 3 y 5

0 otherwise.

Multiplying this out, we see that fX x fY y fX Y x y . Hence, X and Y are
independent in this case.

Combining Theorem 2.8.3 with Definitions 2.8.2 and 2.8.3, we immediately obtain
the following result about independence. It says that independence of random vari
ables is the same as saying that conditioning on one has no effect on the other, which
corresponds to an intuitive notion of independence.

Theorem 2.8.4 Let X and Y be two random variables.
(a) If X and Y are discrete, then X and Y are independent if and only if pY X y x
pY y for every x y R1.
(b) If X and Y are jointly absolutely continuous, then X and Y are independent if
and only if fY X y x fY y for every x y R1.

While Definition 2.8.5 is quite difficult to work with, it does provide the easiest
way to prove one very important property of independence, as follows.

Theorem 2.8.5 Let X and Y be independent random variables. Let f g : R1 R1

be any two functions. Then the random variables f X and g Y are also indepen
dent.

PROOF Using Definition 2.8.5, we compute that

P f X B1 g Y B2 P X f 1 B1 Y g 1 B2

P X f 1 B1 P Y g 1 B2

P f X B1 P g Y B2



Chapter 2: Random Variables and Distributions 101

(Here f 1 B1 x R1 : f x B1 and g 1 B2 y R1 : g y B2 .)
Because this is true for any B1 and B2, we see that f X and g Y are independent.

Suppose now that we have n random variables X1 Xn. The random variables
are independent if and only if the collection of events ai Xi bi are independent,
whenever ai bi for all i 1 2 n. Generalizing Theorem 2.8.3, we have the
following result.

Theorem 2.8.6 Let X1 Xn be a collection of random variables.
(a) If X1 Xn are discrete, then X1 Xn are independent if and only if their
joint probability function pX1 Xn satisfies

pX1 Xn x1 xn pX1 x1 pXn xn

for all x1 xn R1

(b) If X1 Xn are jointly absolutely continuous, then X1 Xn are indepen
dent if and only if their joint density function fX1 Xn can be chosen to satisfy

fX1 Xn x y fX1 x1 fXn xn

for all x1 xn R1

A particularly common case in statistics is the following.

Definition 2.8.6 A collection X1 Xn of random variables is independent and
identically distributed (or i.i.d.) if the collection is independent and if, furthermore,
each of the n variables has the same distribution. The i.i.d. sequence X1 Xn is
also referred to as a sample from the common distribution.

In particular, if a collection X1 Xn of random variables is i.i.d. and discrete, then
each of the probability functions pXi is the same, so that pX1 x pX2 x
pXn x p x for all x R1 Furthermore, from Theorem 2.8.6(a), it follows that

pX1 Xn x1 xn pX1 x1 pX2 x2 pXn xn p x1 p x2 p xn

for all x1 xn R1.
Similarly, if a collection X1 Xn of random variables is i.i.d. and jointly ab

solutely continuous, then each of the density functions fXi is the same, so that fX1 x
fX2 x fXn x f x for all x R1 Furthermore, from Theorem 2.8.6(b),
it follows that

fX1 Xn x1 xn fX1 x1 fX2 x2 fXn xn f x1 f x2 f xn

for all x1 xn R1.
We now consider an important family of discrete distributions that arise via sam

pling.
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EXAMPLE 2.8.5 Multinomial Distributions
Suppose we have a response s that can take three possible values — for convenience,
labelled 1 2 and 3 — with the probability distribution

P s 1 1 P s 2 2 P s 3 3

so that each i 0 and 1 2 3 1 As a simple example, consider a bowl
of chips of which a proportion i of the chips are labelled i (for i 1 2 3). If
we randomly draw a chip from the bowl and observe its label s then P s i i .
Alternatively, consider a population of students at a university of which a proportion 1
live on campus (denoted by s 1), a proportion 2 live offcampus with their parents
(denoted by s 2), and a proportion 3 live offcampus independently (denoted by
s 3). If we randomly draw a student from this population and determine s for that
student, then P s i i

We can also write
P s i

I 1 i
1

I 2 i
2

I 3 i
3

for i 1 2 3 where I j is the indicator function for j . Therefore, if s1 sn
is a sample from the distribution on 1 2 3 given by the i Theorem 2.8.6(a) implies
that the joint probability function for the sample equals

P s1 k1 sn kn

n

j 1

I 1 k j
1

I 2 k j
2

I 3 k j
3

x1
1

x2
2

x3
3 (2.8.2)

where xi
n
j 1 I i k j is equal to the number of i’s in k1 kn

Now, based on the sample s1 sn define the random variables

Xi

n

j 1

I i s j

for i 1 2 and 3 Clearly, Xi is the number of i’s observed in the sample and we
always have Xi 0 1 n and X1 X2 X3 n We refer to the Xi as the
counts formed from the sample.

For x1 x2 x3 satisfying xi 0 1 n and x1 x2 x3 n (2.8.2) implies
that the joint probability function for X1 X2 X3 is given by

p X1 X2 X3 x1 x2 x3 P X1 x1 X2 x2 X3 x3

C x1 x2 x3
x1
1

x2
2

x3
3

where C x1 x2 x3 equals the number of samples s1 sn with x1 of its elements
equal to 1 x2 of its elements equal to 2 and x3 of its elements equal to 3 To calcu
late C x1 x2 x3 we note that there are n

x1
choices for the places of the 1’s in the

sample sequence, n x1
x2

choices for the places of the 2’s in the sequence, and finally
n x1 x2

x3
1 choices for the places of the 3’s in the sequence (recall the multino

mial coefficient defined in (1.4.4)). Therefore, the probability function for the counts
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X1 X2 X3 is equal to

p X1 X2 X3 x1 x2 x3
n

x1

n x1

x2

n x1 x2

x3

x1
1

x2
2

x3
3

n

x1 x2 x3

x1
1

x2
2

x3
3

We say that
X1 X2 X3 Multinomial n 1 2 3

Notice that the Multinomial n 1 2 3 generalizes the Binomial n distribu
tion, as we are now counting the number of response values in three possible categories
rather than two. Also, it is immediate that

Xi Binomial n i

because Xi equals the number of occurrences of i in the n independent response values,
and i occurs for an individual response with probability equal to i (also see Problem
2.8.18).

As a simple example, suppose that we have an urn containing 10 red balls, 20 white
balls, and 30 black balls. If we randomly draw 10 balls from the urn with replacement,
what is the probability that we will obtain 3 red, 4 white, and 3 black balls? Because
we are drawing with replacement, the draws are i.i.d., so the counts are distributed
Multinomial 10 10 60 20 60 30 60 The required probability equals

10

3 4 3

10

60

3 20

60

4 30

60

3

3 0007 10 2

Note that if we had drawn without replacement, then the draws would not be i.i.d., the
counts would thus not follow a multinomial distribution but rather a generalization of
the hypergeometric distribution, as discussed in Problem 2.3.29.

Now suppose we have a response s that takes k possible values — for convenience,
labelled 1 2 k — with the probability distribution given by P s i i For
a sample s1 sn define the counts X i

n
j 1 I i s j for i 1 k Then,

arguing as above and recalling the development of (1.4.4), we have

p X1 Xk x1 xk
n

x1 xk

x1
1

xk
k

whenever each xi 0 n and x1 xk n In this case, we write

X1 Xk Multinomial n 1 k

2.8.4 Order Statistics

Suppose now that X1 Xn is a sample. In many applications of statistics, we will
have n data values where the assumption that these arise as an i.i.d. sequence makes



104 Section 2.8: Conditioning and Independence

sense. It is often of interest, then, to order these from smallest to largest to obtain the
order statistics

X 1 X n

Here, X i is equal to the i th smallest value in the sample X1 Xn So, for example,
if n 5 and

X1 2 3 X2 4 5 X3 1 2 X4 2 2 X5 4 3

then
X 1 1 2 X 2 2 2 X 3 2 3 X 4 4 3 X 5 4 5

Of considerable interest in many situations are the distributions of the order statis
tics. Consider the following examples.

EXAMPLE 2.8.6 Distribution of the Sample Maximum
Suppose X1 X2 Xn are i.i.d. so that FX1 x FX2 x FXn x Then
the largestorder statistic X n max X1 X2 Xn is the maximum of these n
random variables.

Now X n is another random variable. What is its cumulative distribution function?
We see that X n x if and only if X i x for all i . Hence,

FX n x P X n x P X1 x X2 x Xn x

P X1 x P X2 x P Xn x FX1 x FX2 x FXn x

FX1 x n

If FX1
corresponds to an absolutely continuous distribution, then we can differentiate

this expression to obtain the density of X n

EXAMPLE 2.8.7
As a special case of Example 2.8.6, suppose that X1 X2 Xn are identically and
independently distributed Uniform[0 1]. From the above, for 0 x 1, we have
FX n x FX1 x n xn It then follows from Corollary 2.5.1 that the density
fX n of X n equals fX n x FX n

x nxn 1 for 0 x 1, with (of course)
fX n x 0 for x 0 and x 1. Note that, from Problem 2.4.24, we can write
X n Beta n 1

EXAMPLE 2.8.8 Distribution of the Sample Minimum
Following Example 2.8.6, we can also obtain the distribution function of the sample
minimum, or smallestorder statistic, X 1 min X1 X2 Xn We have

FX 1 x P X 1 x

1 P X 1 x

1 P X1 x X2 x Xn x

1 P X1 x P X2 x P Xn x

1 1 FX1 x 1 FX2 x 1 FXn x

1 1 FX1 x n
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Again, if FX1 corresponds to an absolutely continuous distribution, we can differentiate
this expression to obtain the density of X 1

EXAMPLE 2.8.9
Let X1 Xn be i.i.d. Uniform[0 1]. Hence, for 0 x 1,

FX 1 x P X 1 x 1 P X 1 x 1 1 x n

It then follows from Corollary 2.5.1 that the density fX 1 of X 1 satisfies fX 1 x
FX 1

x n 1 x n 1 for 0 x 1, with (of course) fX 1 x 0 for x 0 and
x 1. Note that, from Problem 2.4.24, we can write X 1 Beta 1 n

The sample median and sample quartiles are defined in terms of order statistics
and used in statistical applications. These quantities, and their uses, are discussed in
Section 5.5.

Summary of Section 2.8

If X and Y are discrete, then the conditional probability function of Y given X
equals pY X y x pX Y x y pX x .

If X and Y are absolutely continuous, then the conditional density function of Y
given X equals fY X y x fX Y x y fX x .

X and Y are independent if P X B1 Y B2 P X B1 P Y B2 for
all B1 B2 R1.

Discrete X and Y are independent if and only if pX Y x y pX x pY y for
all x y R1 or, equivalently, pY X y x pY y .

Absolutely continuous X and Y are independent if and only if fX Y x y
fX x fY y for all x y R1 or, equivalently, fY X y x fY y .

A sequence X1 X2 Xn is i.i.d. if the random variables are independent, and
each X i has the same distribution.

EXERCISES

2.8.1 Suppose X and Y have joint probability function

pX Y x y

1 6 x 2 y 3
1 12 x 2 y 5
1 6 x 9 y 3
1 12 x 9 y 5
1 3 x 13 y 3
1 6 x 13 y 5
0 otherwise

(a) Compute pX x for all x R1.
(b) Compute pY y for all y R1.
(c) Determine whether or not X and Y are independent.
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2.8.2 Suppose X and Y have joint probability function

pX Y x y

1 16 x 2 y 3
1 4 x 2 y 5
1 2 x 9 y 3
1 16 x 9 y 5
1 16 x 13 y 3
1 16 x 13 y 5
0 otherwise

(a) Compute pX x for all x R1.
(b) Compute pY y for all y R1.
(c) Determine whether or not X and Y are independent.
2.8.3 Suppose X and Y have joint density function

fX Y x y
12
49 2 x xy 4y2 0 x 1 0 y 1

0 otherwise.

(a) Compute fX x for all x R1.
(b) Compute fY y for all y R1.
(c) Determine whether or not X and Y are independent.
2.8.4 Suppose X and Y have joint density function

fX Y x y
2

5 2 e 3 ex 3y 3yey yex yex y 0 x 1
0 y 1

0 otherwise

(a) Compute fX x for all x R1.
(b) Compute fY y for all y R1.
(c) Determine whether or not X and Y are independent.
2.8.5 Suppose X and Y have joint probability function

pX Y x y

1 9 x 4 y 2
2 9 x 5 y 2
3 9 x 9 y 2
2 9 x 9 y 0
1 9 x 9 y 4
0 otherwise.

(a) Compute P Y 4 X 9 .
(b) Compute P Y 2 X 9 .
(c) Compute P Y 0 X 4 .
(d) Compute P Y 2 X 5 .
(e) Compute P X 5 Y 2 .
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2.8.6 Let X Bernoulli and Y Geometric , with X and Y independent. Let
Z X Y . What is the probability function of Z?
2.8.7 For each of the following joint density functions fX Y (taken from Exercise 2.7.4),
compute the conditional density fY X y x , and determine whether or not X and Y are
independent.
(a)

fX Y x y
2x2y Cy5 0 x 1 0 y 1
0 otherwise.

(b)

fX Y x y
C xy x5y5 0 x 1 0 y 1
0 otherwise.

(c)

fX Y x y
C xy x5y5 0 x 4 0 y 10
0 otherwise.

(d)

fX Y x y
Cx5y5 0 x 4 0 y 10
0 otherwise.

2.8.8 Let X and Y be jointly absolutely continuous random variables. Suppose X
Exponential 2 and that P Y 5 X x e 3x . Compute P Y 5 .
2.8.9 Give an example of two random variables X and Y , each taking values in the set
1 2 3 , such that P X 1 Y 1 P X 1 P Y 1 , but X and Y are not

independent.
2.8.10 Let X Bernoulli and Y Bernoulli , where 0 1 and 0
1. Suppose P X 1 Y 1 P X 1 P Y 1 . Prove that X and Y must be
independent.
2.8.11 Suppose that X is a constant random variable and that Y is any random variable.
Prove that X and Y must be independent.
2.8.12 Suppose X Bernoulli 1 3 and Y Poisson , with X and Y independent
and with 0. Compute P X 1 Y 5 .
2.8.13 Suppose P X x Y y 1 8 for x 3 5 and y 1 2 4 7, otherwise
P X x Y y 0.
(a) Compute the conditional probability function pY X y x for all x y R1 with
pX x 0.
(b) Compute the conditional probability function pX Y x y for all x y R1 with
pY y 0.
(c) Are X and Y independent? Why or why not?
2.8.14 Let X and Y have joint density fX Y x y x2 y 36 for 2 x 1 and
0 y 4, otherwise fX Y x y 0.
(a) Compute the conditional density fY X y x for all x y R1 with fX x 0.
(b) Compute the conditional density fX Y x y for all x y R1 with fY y 0.
(c) Are X and Y independent? Why or why not?
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2.8.15 Let X and Y have joint density fX Y x y x2 y 4 for 0 x y 2,
otherwise fX Y x y 0. Compute each of the following.
(a) The conditional density fY X y x for all x y R1 with fX x 0
(b) The conditional density fX Y x y for all x y R1 with fY y 0
(c) Are X and Y independent? Why or why not?
2.8.16 Suppose we obtain the following sample of size n 6: X1 12, X2 8,
X3 X4 9, X5 7, and X6 11. Specify the order statistics X i for 1 i 6.

PROBLEMS

2.8.17 Let X and Y be jointly absolutely continuous random variables, having joint
density of the form

fX Y x y
C1 2x2y C2y5 0 x 1 0 y 1
0 otherwise.

Determine values of C1 and C2, such that fX Y is a valid joint density function, and X
and Y are independent.
2.8.18 Let X and Y be discrete random variables. Suppose pX Y x y g x h y ,
for some functions g and h. Prove that X and Y are independent. (Hint: Use Theo
rem 2.8.3(a) and Theorem 2.7.4.)
2.8.19 Let X and Y be jointly absolutely continuous random variables. Suppose
fX Y x y g x h y , for some functions g and h. Prove that X and Y are indepen
dent. (Hint: Use Theorem 2.8.3(b) and Theorem 2.7.5.)
2.8.20 Let X and Y be discrete random variables, with P X 1 0 and P X
2 0. Suppose P Y 1 X 1 3 4 and P Y 2 X 2 3 4. Prove that
X and Y cannot be independent.
2.8.21 Let X and Y have the bivariate normal distribution, as in Example 2.7.9. Prove
that X and Y are independent if and only if 0.
2.8.22 Suppose that X1 X2 X3 Multinomial n 1 2 3 Prove, by summing
the joint probability function, that X1 Binomial n 1

2.8.23 Suppose that X1 X2 X3 Multinomial n 1 2 3 Find the conditional
distribution of X2 given that X1 x1

2.8.24 Suppose that X1 Xn is a sample from the Exponential distribution.
Find the densities fX 1 and fX n

2.8.25 Suppose that X1 Xn is a sample from a distribution with cdf F Prove that

FX i x
n

j i

n

j
F j x 1 F x n j

(Hint: Note that X i x if and only if at least i of X1 Xn are less than or equal
to x )
2.8.26 Suppose that X1 X5 is a sample from the Uniform[0 1] distribution. If we
define the sample median to be X 3 find the density of the sample median. Can you
identify this distribution? (Hint: Use Problem 2.8.25.)
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2.8.27 Suppose that X Y Bivariate Normal 1 2 1 2 Prove that Y given
X x is distributed N 2 2 x 1 1 1 2 2

2 Establish the analogous
result for the conditional distribution of X given Y y (Hint: Use (2.7.1) for Y given
X x and its analog for X given Y y )

CHALLENGES

2.8.28 Let X and Y be random variables.
(a) Suppose X and Y are both discrete. Prove that X and Y are independent if and only
if P Y y X x P Y y for all x and y such that P X x 0.
(b) Suppose X and Y are jointly absolutely continuous. Prove that X and Y are inde
pendent if and only if P a Y b X x P a Y b for all x and y such
that fX x 0.

2.9 Multidimensional Change of Variable
Let X and Y be random variables with known joint distribution. Suppose that Z
h1 X Y and W h2 X Y , where h1 h2 : R2 R1 are two functions. What is the
joint distribution of Z and W?

This is similar to the problem considered in Section 2.6, except that we have moved
from a onedimensional to a twodimensional setting. The twodimensional setting is
more complicated; however, the results remain essentially the same, as we shall see.

2.9.1 The Discrete Case

If X and Y are discrete random variables, then the distribution of Z and W is essentially
straightforward.

Theorem 2.9.1 Let X and Y be discrete random variables, with joint probability
function pX Y . Let Z h1 X Y and W h2 X Y , where h1 h2 : R2 R1 are
some functions. Then Z and W are also discrete, and their joint probability function
pZ W satisfies

pZ W z
x y

h1 x y z h2 x y

pX Y x y

Here, the sum is taken over all pairs x y such that h1 x y z and h2 x y .

PROOF We compute that pZ W z P Z z W P h1 X Y
z h2 X Y This equals

x y
h1 x y z h2 x y

P X x Y y
x y

h1 x y z h2 x y

pX Y x y

as claimed.

As a special case, we note the following.
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Corollary 2.9.1 Suppose in the context of Theorem 2.9.1 that the joint function
h h1 h2 : R2 R2 defined by h x y h1 x y h2 x y is oneto
one, i.e., if h1 x1 y1 h1 x2 y2 and h2 x1 y1 h2 x2 y2 , then x1 x2 and
y1 y2. Then

pZ W z pX Y h 1 z

where h 1 z is the unique pair x y such that h x y z .

EXAMPLE 2.9.1
Suppose X and Y have joint density function

pX Y x y

1 6 x 2 y 6
1 12 x 2 y 6
1 4 x 3 y 11
1 2 x 3 y 8
0 otherwise

Let Z X Y and W Y X2. Then pZ W 8 2 P Z 8 W 2
P X 2 Y 6 P X 3 Y 11 1 6 1 4 5 12 On the other hand,
pZ W 5 17 P Z 5 W 17 P X 3 Y 8 1

2

2.9.2 The Continuous Case (Advanced)

If X and Y are continuous, and the function h h1 h2 is onetoone, then it is
again possible to compute a formula for the joint density of Z and W , as the following
theorem shows. To state it, recall from multivariable calculus that, if h h1 h2 :
R2 R2 is a differentiable function, then its Jacobian derivative J is defined by

J x y det

h1
x

h2
x

h1
y

h2
y

h1

x

h2

y

h2

x

h1

y

Theorem 2.9.2 Let X and Y be jointly absolutely continuous, with joint density
function fX Y . Let Z h1 X Y and W h2 X Y , where h1 h2 : R2 R1 are
differentiable functions. Define the joint function h h1 h2 : R2 R2 by

h x y h1 x y h2 x y

Assume that h is onetoone, at least on the region x y : f x y 0 , i.e., if
h1 x1 y1 h1 x2 y2 and h2 x1 y1 h2 x2 y2 , then x1 x2 and y1 y2.
Then Z and W are also jointly absolutely continuous, with joint density function
fZ W given by

fZ W z fX Y h 1 z J h 1 z

where J is the Jacobian derivative of h and where h 1 z is the unique pair
x y such that h x y z .
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PROOF See Section 2.11 for the proof of this result.

EXAMPLE 2.9.2
Let X and Y be jointly absolutely continuous, with joint density function fX Y given
by

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise

as in Example 2.7.6. Let Z X Y 2 and W X Y 2. What is the joint density of
Z and W?

We first note that Z h1 X Y and W h2 X Y , where h1 x y x y2 and
h2 x y x y2. Hence,

J x y
h1

x

h2

y

h2

x

h1

y
1 2y 1 2y 4y

We may invert the relationship h by solving for X and Y , to obtain that

X
1

2
Z W and Y

Z W

2

This means that h h1 h2 is invertible, with

h 1 z
1

2
z

z

2

Hence, using Theorem 2.9.2, we see that

fZ W z

fX Y h 1 z J h 1 z

fX Y
1

2
z

z

2
J h 1 z

4 1
2 z 2 z

2 2 z
2

5
4 z

2

0 1
2 z 1

0 z
2 1

0 otherwise

z
2

2 1
2

z
2

2 0 z 2 0 z 2
0 otherwise.

We have thus obtained the joint density function for Z and W .

EXAMPLE 2.9.3
Let U1 and U2 be independent, each having the Uniform[0 1] distribution. (We could
write this as U1 U2 are i.i.d. Uniform[0 1].) Thus,

fU1 U2 u1 u2
1 0 u1 1 0 u2 1
0 otherwise.
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Then define X and Y by

X 2 log 1 U1 cos 2 U2 Y 2 log 1 U1 sin 2 U2

What is the joint density of X and Y ?
We see that here X h1 U1 U2 and Y h2 U1 U2 , where

h1 u1 u2 2 log 1 u1 cos 2 u2 h2 u1 u2 2 log 1 u1 sin 2 u2

Therefore,

h1

u1
u1 u2

1

2
2 log 1 u1

1 2 2u1 1 u2
1 cos 2 u2

Continuing in this way, we eventually compute (see Exercise 2.9.1) that

J u1 u2
h1

u1

h2

u2

h2

u1

h1

u2

2

u1
cos2 2 u2 sin2 2 u2

2

u1

Next, we set R X2 Y 2, so that R2 X2 Y 2 2 log 1 U1 . Then,
inverting the relationship h, we compute that

U1 X Y e R2 2 cos 2 U2 X Y X R sin 2 U2 X Y Y R

Here U1 X Y [0 1] is defined directly, while U2 X Y [0 1] is defined im
plicitly to make 2 U2 X Y [0 2 be the unique angle which satisfies the above
relationships. Then, by Theorem 2.9.2, for any x y R2,

fX Y x y fU1 U2 h 1 x y J h 1 x y
1

fU1 U2 U1 x y U2 x y J U1 x y U2 x y 1

1
2

U1 x y

1 2

e R2 x y 2

1

2

e x2 y2 2

1 1

2
e x2 y2 2

We conclude that

fX Y x y
1

2
e x2 2 1

2
e y2 2

We recognize this as a product of two standard normal densities. We thus conclude that
X N 0 1 and Y N 0 1 and that, furthermore, X and Y are independent.
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2.9.3 Convolution

Suppose now that X and Y are independent, with known distributions, and that Z
X Y . What is the distribution of Z? In this case, the distribution of Z is called the
convolution of the distributions of X and of Y . Fortunately, the convolution is often
reasonably straightforward to compute.

Theorem 2.9.3 Let X and Y be independent, and let Z X Y .
(a) If X and Y are both discrete, with probability functions pX and pY , then Z is
also discrete, with probability function pZ given by

pZ z pX z pY

(b) If X and Y are jointly absolutely continuous, with density functions fX and fY ,
then Z is also absolutely continuous, with density function fZ given by

fZ z fX z fY d

PROOF (a) We let W Y and consider the twodimensional transformation from
X Y to Z W X Y Y .

In the discrete case, by Corollary 2.9.1, pZ W z pX Y z Then from
Theorem 2.7.4, pZ z pZ W z pX Y z But because X
and Y are independent, pX Y x y pX x pY y , so pX Y z pX z

pY . This proves part (a).

(b) In the continuous case, we must compute the Jacobian derivative J x y of the
transformation from X Y to Z W X Y Y . Fortunately, this is very easy, as
we obtain

J x y
x y

x

y

y

y

x

x y

y
1 1 0 1 1

Hence, from Theorem 2.9.2, fZ W z fX Y z 1 fX Y z and
from Theorem 2.7.5,

fZ z fZ W z d fX Y z d

But because X and Y are independent, we may take fX Y x y fX x fY y , so
fX Y z fX z fY . This proves part (b).

EXAMPLE 2.9.4
Let X Binomial 4 1 5 and Y Bernoulli 1 4 , with X and Y independent. Let
Z X Y . Then

pZ 3 P X Y 3 P X 3 Y 0 P X 2 Y 1
4

3
1 5 3 4 5 1 3 4

4

2
1 5 2 4 5 2 1 4

4 1 5 3 4 5 1 3 4 6 1 5 2 4 5 2 1 4 0 0576
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EXAMPLE 2.9.5
Let X Uniform[3 7] and Y Exponential 6 , with X and Y independent. Let
Z X Y . Then

fZ 5 fX x fY 5 x dx
5

3
1 4 6 e 6 5 x dx

1 4 e 6 5 x
x 5

x 3
1 4 e 12 1 4 e0 0 2499985

Note that here the limits of integration go from 3 to 5 only, because fX x 0 for
x 3, while fY 5 x 0 for x 5.

Summary of Section 2.9

If X and Y are discrete, and Z h1 X Y and W h2 X Y , then

pZ W z
x y : h1 x y z h2 x y

pX Y x y

If X and Y are absolutely continuous, if Z h1 X Y and W h2 X Y , and
if h h1 h2 : R2 R2 is onetoone with Jacobian J x y , then
fZ W z fX Y h 1 z J h 1 z .

This allows us to compute the joint distribution of functions of pairs of random
variables.

EXERCISES

2.9.1 Verify explicitly in Example 2.9.3 that J u1 u2 2 u1.

2.9.2 Let X Exponential 3 and Y Uniform[1 4], with X and Y independent.
Let Z X Y and W X Y .
(a) Write down the joint density fX Y x y of X and Y . (Be sure to consider the ranges
of valid x and y values.)
(b) Find a twodimensional function h such that Z W h X Y .
(c) Find a twodimensional function h 1 such that X Y h 1 Z W .
(d) Compute the joint density fZ W z of Z and W . (Again, be sure to consider the
ranges of valid z and values.)
2.9.3 Repeat parts (b) through (d) of Exercise 2.9.2, for the same random variables X
and Y , if instead Z X2 Y 2 and W X2 Y 2.
2.9.4 Repeat parts (b) through (d) of Exercise 2.9.2, for the same random variables X
and Y , if instead Z X 4 and W Y 3.
2.9.5 Repeat parts (b) through (d) of Exercise 2.9.2, for the same random variables X
and Y , if instead Z Y 4 and W X4.
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2.9.6 Suppose the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise.

Let Z X Y , W X Y , A X2 Y 2, and B 2X 3Y 2.
(a) Compute the joint probability function pZ W z .
(b) Compute the joint probability function pA B a b .
(c) Compute the joint probability function pZ A z a .
(d) Compute the joint probability function pW B b .
2.9.7 Let X have probability function

pX x

1 3 x 0
1 2 x 2
1 6 x 3
0 otherwise

and let Y have probability function

pY y

1 6 y 2
1 12 y 5
3 4 y 9
0 otherwise.

Suppose X and Y are independent. Let Z X Y . Compute pZ z for all z R1.

2.9.8 Let X Geometric 1 4 , and let Y have probability function

pY y

1 6 y 2
1 12 y 5
3 4 y 9
0 otherwise.

Let W X Y . Suppose X and Y are independent. Compute pW for all R1.
2.9.9 Suppose X and Y are discrete, with P X 1 Y 1 P X 1 Y 2
P X 1 Y 3 P X 2 Y 2 P X 2 Y 3 1 5, otherwise
P X x Y y 0. Let Z X Y 2 and W X2 5Y .
(a) Compute the joint probability function pZ W z for all z R1.
(b) Compute the marginal probability function pZ z for Z .
(c) Compute the marginal probability function pW for W .
2.9.10 Suppose X has density fX x x3 4 for 0 x 2, otherwise fX x 0,
and Y has density fY y 5y4 32 for 0 y 2, otherwise fY y 0. Assume X
and Y are independent, and let Z X Y .
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(a) Compute the joint density fX Y x y for all x y R1.
(b) Compute the density fZ z for Z .

PROBLEMS

2.9.11 Suppose again that X has density fX x x3 4 for 0 x 2, otherwise
fX x 0, that Y has density fY y 5y4 32 for 0 y 2, otherwise fY y 0,
and that X and Y are independent. Let Z X Y and W 4X 3Y .
(a) Compute the joint density fZ W z for all z R1.
(b) Compute the marginal density fZ z for Z .
(c) Compute the marginal density fW for W .

2.9.12 Let X Binomial n1 independent of Y Binomial n2 . Let Z
X Y . Use Theorem 2.9.3(a) to prove that Z Binomial n1 n2 .

2.9.13 Let X and Y be independent, with X NegativeBinomial r1 and Y
NegativeBinomial r2 . Let Z X Y . Use Theorem 2.9.3(a) to prove that Z
NegativeBinomial r1 r2 .
2.9.14 Let X and Y be independent, with X N 1

2
1 and Y N 2

2
2 . Let

Z X Y . Use Theorem 2.9.3(b) to prove that Z N 1 2
2
1

2
2 .

2.9.15 Let X and Y be independent, with X Gamma 1 and Y Gamma 2 .
Let Z X Y . Use Theorem 2.9.3(b) to prove that Z Gamma 1 2 .
2.9.16 (MV) Show that when Z1 Z2 are i.i.d. N 0 1 and X Y are given by (2.7.1),
then X Y Bivariate Normal 1 2 1 2

2.10 Simulating Probability Distributions
So far, we have been concerned primarily with mathematical theory and manipulations
of probabilities and random variables. However, modern highspeed computers can
be used to simulate probabilities and random variables numerically. Such simulations
have many applications, including:

To approximate quantities that are too difficult to compute mathematically

To graphically simulate complicated physical or biological systems

To randomly sample from large data sets to search for errors or illegal activities, etc.

To implement complicated algorithms to sharpen pictures, recognize speech, etc.

To simulate intelligent behavior

To encrypt data or generate passwords

To solve puzzles or break codes by trying lots of random solutions

To generate random choices for online quizzes, computer games, etc.
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Indeed, as computers become faster and more widespread, probabilistic simulations are
becoming more and more common in software applications, scientific research, quality
control, marketing, law enforcement, etc.

In most applications of probabilistic simulation, the first step is to simulate ran
dom variables having certain distributions. That is, a certain probability distribution
will be specified, and we want to generate one or more random variables having that
distribution.

Now, nearly all modern computer languages come with a pseudorandom number
generator, which is a device for generating a sequence U1 U2 of random values
that are approximately independent and have approximately the uniform distribution
on [0 1]. Now, in fact, the Ui are usually generated from some sort of deterministic
iterative procedure, which is designed to “appear” random. So the Ui are, in fact, not
random, but rather pseudorandom.

Nevertheless, we shall ignore any concerns about pseudorandomness and shall sim
ply assume that

U1 U2 U3 Uniform[0 1] (2.10.1)

i.e., the Ui are i.i.d. Uniform[0 1]
Hence, if all we ever need are Uniform[0 1] random variables, then according

to (2.10.1), we are all set. However, in most applications, other kinds of randomness
are also required. We therefore consider how to use the uniform random variables
of (2.10.1) to generate random variables having other distributions.

EXAMPLE 2.10.1 The Uniform[L R] Distribution
Suppose we want to generate X Uniform[L R]. According to Exercise 2.6.1, we
can simply set

X R L U1 L

to ensure that X Uniform[L R].

2.10.1 Simulating Discrete Distributions

We now consider the question of how to simulate from discrete distributions.

EXAMPLE 2.10.2 The Bernoulli Distribution
Suppose we want to generate X Bernoulli , where 0 1. We can simply set

X
1 U1
0 U1

Then clearly, we always have either X 0 or X 1. Furthermore, P X 1
P U1 because U1 Uniform[0 1]. Hence, we see that X Bernoulli .

EXAMPLE 2.10.3 The Binomial n Distribution
Suppose we want to generate Y Binomial n , where 0 1 and n 1. There
are two natural methods for doing this.
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First, we can simply define Y as follows:

Y min j :
j

k 0

n

k
k 1 n k U1

That is, we let Y be the largest value of j such that the sum of the binomial probabilities
up to j 1 is still no more than U1. In that case,

P Y y P
y 1
k 0

n
k

k 1 n k U1

and y
k 0

n
k

k 1 n k U1

P
y 1

k 0

n

k
k 1 n k U1

y

k 0

n

k
k 1 n k

y

k 0

n

k
k 1 n k

y 1

k 0

n

k
k 1 n k

n

y
y 1 n y

Hence, we have Y Binomial n , as desired.
Alternatively, we can set

X i
1 Ui
0 Ui

for i 1 2 3 . Then, by Example 2.10.2, we have X i Bernoulli for each i ,
with the Xi independent because the Ui are independent. Hence, by the observation
at the end of Example 2.3.3, if we set Y X1 Xn, then we will again have
Y Binomial n .

In Example 2.10.3, the second method is more elegant and is also simpler compu
tationally (as it does not require computing any binomial coefficients). On the other
hand, the first method of Example 2.10.3 is more general, as the following theorem
shows.

Theorem 2.10.1 Let p be a probability function for a discrete probability distri
bution. Let x1 x2 x3 be all the values for which p xi 0. Let
U1 Uniform[0 1]. Define Y by

Y min x j :
j

k 1

p xk U1

Then Y is a discrete random variable, having probability function p.
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PROOF We have

P Y xi P
i 1

k 1

p xk U1 and
i

k 1

p xk U1

P
i 1

k 1

p xk U1

i

k 1

p xk

i

k 1

p xk

i 1

k 1

p xk p xi

Also, clearly P Y y 0 if y x1 x2 . Hence, for all y R1, we have
P Y y p y , as desired.

EXAMPLE 2.10.4 The Geometric Distribution
To simulate Y Geometric , we again have two choices. Using Theorem 2.10.1,
we can let U1 Uniform[0 1] and then set

Y min j :
j

k 0

1 k U1 min j : 1 1 j 1 U1

min j : j
log 1 U1

log 1
1

log 1 U1

log 1

where r means to round down r to the next integer value, i.e., r is the greatest
integer not exceeding r (sometimes called the oor of r ).

Alternatively, using the definition of Geometric from Example 2.3.4, we can set

Xi
1 Ui
0 Ui

for i 1 2 3 (where Ui Uniform[0 1]), and then let Y min i : Xi 1
Either way, we have Y Geometric , as desired.

2.10.2 Simulating Continuous Distributions

We next turn to the subject of simulating absolutely continuous distributions. In gen
eral, this is not an easy problem. However, for certain particular continuous distribu
tions, it is not difficult, as we now demonstrate.

EXAMPLE 2.10.5 The Uniform[L R] Distribution
We have already seen in Example 2.10.1 that if U1 Uniform[0 1], and we set

X R L U1 L

then X Uniform[L R]. Thus, simulating from any uniform distribution is straight
forward.
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EXAMPLE 2.10.6 The Exponential Distribution
We have also seen, in Example 2.6.6, that if U1 Uniform[0 1], and we set

Y ln 1 U1

then Y Exponential 1 . Thus, simulating from the Exponential 1 distribution is
straightforward.

Furthermore, we know from Exercise 2.6.4 that once Y Exponential 1 , then if
0 and we set

Z Y ln 1 U1

then Z Exponential . Thus, simulating from any Exponential distribution is
also straightforward.

EXAMPLE 2.10.7 The N 2 Distribution
Simulating from the standard normal distribution, N 0 1 , may appear to be more
difficult. However, by Example 2.9.3, if U1 Uniform[0 1] and U2 Uniform[0 1],
with U1 and U2 independent, and we set

X 2 log 1 U1 cos 2 U2 Y 2 log 1 U1 sin 2 U2 (2.10.2)

then X N 0 1 and Y N 0 1 (and furthermore, X and Y are independent). So,
using this trick, the standard normal distribution can be easily simulated as well.

It then follows from Exercise 2.6.3 that, once we have X N 0 1 , if we set
Z X then Z N 2 . Hence, it is straightforward to sample from any
normal distribution.

These examples illustrate that, for certain special continuous distributions, sam
pling from them is straightforward. To provide a general method of sampling from a
continuous distribution, we first state the following definition.

Definition 2.10.1 Let X be a random variable, with cumulative distribution func
tion F . Then the inverse cdf (or quantile function) of X is the function F 1 defined
by

F 1 t min x : F x t

for 0 t 1

In Figure 2.10.1, we have provided a plot of the inverse cdf of an N 0 1 distribu
tion. Note that this function goes to as the argument goes to 0, and goes to as
the argument goes to 1.
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1.00.90.80.70.60.50.40.30.20.10.0

3

2

1

0

1

2

3

Figure 2.10.1: The inverse cdf of the N 0 1 distribution.

Using the inverse cdf, we obtain a general method of sampling from a continuous
distribution, as follows.

Theorem 2.10.2 (Inversion method for generating random variables) Let F be any
cumulative distribution function, and let U Uniform[0 1]. Define a random
variable Y by Y F 1 U Then P Y y F y , i.e., Y has cumulative
distribution function given by F .

PROOF We begin by noting that P Y y P F 1 U y . But F 1 U is the
smallest value x such that F x U . Hence, F 1 U y if and only if F y U ,
i.e., U F y . Therefore,

P Y y P F 1 U y P U F y

But 0 F y 1, and U Uniform[0 1], so P U F y F y . Thus,

P Y y P U F y F y

It follows that F is the cdf of Y , as claimed.

We note that Theorem 2.10.2 is valid for any cumulative distribution function, whether
it corresponds to a continuous distribution, a discrete distribution, or a mixture of the
two (as in Section 2.5.4). In fact, this was proved for discrete distributions in Theorem
2.10.1.

EXAMPLE 2.10.8 Generating from an Exponential Distribution
Let F be the cdf of an Exponential 1 random variable. Then

F x
x

0
e t dt 1 e x

It then follows that

F 1 t min x : F x t min x : 1 e x t

min x : x ln 1 t ln 1 t ln 1 1 t
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Therefore, by Theorem 2.10.2, if U Uniform[0 1], and we set

Y F 1 U ln 1 1 U (2.10.3)

then Y Exponential 1 .
Now, we have already seen from Example 2.6.6 that, if U Uniform[0 1], and we

set Y ln 1 U , then Y Exponential 1 . This is essentially the same as (2.10.3),
except that we have replaced U by 1 U . On the other hand, this is not surprising,
because we already know by Exercise 2.6.2 that, if U Uniform[0 1], then also
1 U Uniform[0 1].

EXAMPLE 2.10.9 Generating from the Standard Normal Distribution
Let be the cdf of a N 0 1 random variable, as in Definition 2.5.2. Then

1 t min x : x t

and there is no simpler formula for 1 t . By Theorem 2.10.2, if
U Uniform[0 1], and we set

Y 1 U (2.10.4)

then Y N 0 1 .
On the other hand, due to the difficulties of computing with and 1, the

method of (2.10.4) is not very practical. It is far better to use the method of (2.10.2), to
simulate a normal random variable.

For distributions that are too complicated to sample using the inversion method of
Theorem 2.10.2, and for which no simple trick is available, it may still be possible to
do sampling using Markov chain methods, which we will discuss in later chapters, or
by rejection sampling (see Challenge 2.10.21).

Summary of Section 2.10

It is important to be able to simulate probability distributions.

If X is discrete, taking the value xi with probability pi , where x1 x2 ,
and U Uniform[0 1], and Y min x j : j

k 1 pk U , then Y has the same
distribution as X . This method can be used to simulate virtually any discrete
distribution.

If F is any cumulative distribution with inverse cdf F 1, U Uniform[0 1],
and Y F 1 U , then Y has cumulative distribution function F . This allows
us to simulate virtually any continuous distribution.

There are simple methods of simulating many standard distributions, including
the binomial, uniform, exponential, and normal.
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EXERCISES

2.10.1 Let Y be a discrete random variable with P Y 7 1 2, P Y 2
1 3, and P Y 5 1 6. Find a formula for Z in terms of U , such that if U
Uniform[0 1], then Z has the same distribution as Y .
2.10.2 For each of the following cumulative distribution functions F , find a formula
for X in terms of U , such that if U Uniform[0 1], then X has cumulative distribution
function F .
(a)

F x
0 x 0
x 0 x 1
1 x 1

(b)

F x
0 x 0
x2 0 x 1
1 x 1

(c)

F x
0 x 0
x2 9 0 x 3
1 x 3

(d)

F x
0 x 1
x2 9 1 x 3
1 x 3

(e)

F x
0 x 0
x5 32 0 x 2
1 x 2

(f)

F x

0 x 0
1 3 0 x 7
3 4 7 x 11
1 x 11

2.10.3 Suppose U Uniform[0 1], and Y ln 1 U 3. What is the distribution of
Y?
2.10.4 Generalizing the previous question, suppose U Uniform[0 1] and W
ln 1 U for some fixed 0.
(a) What is the distribution of W?
(b) Does this provide a way of simulating from a certain wellknown distribution?
Explain.
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2.10.5 Let U1 Uniform[0 1] and U2 Uniform[0 1] be independent, and let X
c1 log 1 U1 cos 2 U2 c2. Find values of c1 and c2 such that X N 5 9 .
2.10.6 Let U Uniform[0 1]. Find a formula for Y in terms of U , such that P Y
3 P Y 4 2 5 and P Y 7 1 5, otherwise P Y y 0.
2.10.7 Suppose P X 1 1 3, P X 2 1 6, P X 4 1 2, and
P X x 0 otherwise.
(a) Compute the cdf FX x for all x R1.
(b) Compute the inverse cdf F 1

X t for all t R1.
(c) Let U Uniform[0 1]. Find a formula for Y in terms of U , such that Y has cdf
FX .
2.10.8 Let X have density function fX x 3 x 2 for 0 x 1, otherwise
fX x 0.
(a) Compute the cdf FX x for all x R1.
(b) Compute the inverse cdf F 1

X t for all t R1.
(c) Let U Uniform[0 1]. Find a formula for Y in terms of U , such that Y has density
f .
2.10.9 Let U Uniform[0 1]. Find a formula for Z in terms of U , such that Z has
density fZ z 4 z3 for 0 z 1, otherwise fZ z 0.

COMPUTER EXERCISES

2.10.10 For each of the following distributions, use the computer (you can use any
algorithms available to you as part of a software package) to simulate X1 X2 X N
i.i.d. having the given distribution. (Take N 1000 at least, with N 10,000 or N

100,000 if possible.) Then compute X 1 N N
i 1 Xi and 1 N N

i 1 Xi X
2
.

(a) Uniform[0 1]
(b) Uniform[5 8]
(c) Bernoulli 1 3
(d) Binomial 12 1 3
(e) Geometric 1 5
(f) Exponential 1
(g) Exponential 13
(h) N 0 1
(i) N 5 9

PROBLEMS

2.10.11 Let G x p1F1 x p2 F2 x pk Fk x , where pi 0, i pi
1, and Fi are cdfs, as in (2.5.3). Suppose we can generate Xi to have cdf Fi , for
i 1 2 k. Describe a procedure for generating a random variable Y that has cdf
G.
2.10.12 Let X be an absolutely continuous random variable, with density given by
fX x x 2 for x 1, with fX x 0 otherwise. Find a formula for Z in terms of
U , such that if U Uniform[0 1], then Z has the same distribution as X .
2.10.13 Find the inverse cdf of the logistic distribution of Problem 2.4.18. (Hint: See
Problem 2.5.20.)
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2.10.14 Find the inverse cdf of the Weibull distribution of Problem 2.4.19. (Hint:
See Problem 2.5.21.)
2.10.15 Find the inverse cdf of the Pareto distribution of Problem 2.4.20. (Hint:
See Problem 2.5.22.)
2.10.16 Find the inverse cdf of the Cauchy distribution of Problem 2.4.21. (Hint: See
Problem 2.5.23.)
2.10.17 Find the inverse cdf of the Laplace distribution of Problem 2.4.22. (Hint: See
Problem 2.5.24.)

2.10.18 Find the inverse cdf of the extreme value distribution of Problem 2.4.23. (Hint:
See Problem 2.5.25.)

2.10.19 Find the inverse cdfs of the beta distributions in Problem 2.4.24(b) through
(d). (Hint: See Problem 2.5.26.)
2.10.20 (Method of composition) If we generate X fX obtaining x and then gener
ate Y from fY X x prove that Y fY

CHALLENGES

2.10.21 (Rejection sampling) Suppose f is a complicated density function. Suppose g
is a density function from which it is easy to sample (e.g., the density of a uniform or
exponential or normal distribution). Suppose we know a value of c such that f x
cg x for all x R1. The following provides a method, called rejection sampling, for
sampling from a complicated density f by using a simpler density g, provided only
that we know f x cg x for all x R1.
(a) Suppose Y has density g. Let U Uniform[0 c], with U and Y independent.
Prove that

P a Y b f Y Ucg Y
b

a
f x dx

(Hint: Use Theorem 2.8.1 to show that P a Y b f Y cUg Y
b

a g y P f Y cUg Y Y y dy.)
(b) Suppose that Y1 Y2 are i.i.d., each with density g, and independently U1 U2
are i.i.d. Uniform[0 c]. Let i0 0, and for n 1, let in min j in 1 : U j f Y j
cg Y j . Prove that X i1 X i2 are i.i.d., each with density f (Hint: Prove this for
Xi1 Xi2 .)

2.11 Further Proofs (Advanced)

Proof of Theorem 2.4.2

We want to prove that the function given by (2.4.9) is a density function.
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Clearly x 0 for all x . To proceed, we set I x dx . Then, using
multivariable calculus,

I 2 x dx
2

x dx y dy

x y dx dy
1

2
e x2 y2 2 dx dy

We now switch to polar coordinates r , so that x r cos and y r sin ,
where r 0 and 0 2 . Then x2 y2 r2 and, by the multivariable change of
variable theorem from calculus, dx dy r dr d . Hence,

I 2
2

0 0

1

2
e r2 2r dr d

0
e r2 2r dr

e r2 2
r

r 0
0 1 1

and we have I 2 1. But clearly I 0 (because 0), so we must have I 1, as
claimed.

Proof of Theorem 2.6.2

We want to prove that, when X is an absolutely continuous random variable, with den
sity function fX and Y h X , where h : R1 R1 is a function that is differentiable
and strictly increasing, then Y is also absolutely continuous, and its density function
fY is given by

fY y fX h 1 y h h 1 y (2.11.1)

where h is the derivative of h, and where h 1 y is the unique number x such that
h x y.

We must show that whenever a b, we have

P a Y b
b

a
fY y dy

where fY is given by (2.11.1). To that end, we note that, because h is strictly increasing,
so is h 1. Hence, applying h 1 preserves inequalities, so that

P a Y b P h 1 a h 1 Y h 1 b P h 1 a X h 1 b
h 1 b

h 1 a
fX x dx

We then make the substitution y h x , so that x h 1 y , and

dx
d

dy
h 1 y dy
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But by the inverse function theorem from calculus, d
dy h 1 y 1 h h 1 y . Fur

thermore, as x goes from h 1 a to h 1 b , we see that y h x goes from a to b.
We conclude that

P a Y b
h 1 b

h 1 a
fX x dx

b

a
fX h 1 y 1 h h 1 y dy

b

a
fY y dy

as required.

Proof of Theorem 2.6.3

We want to prove that when X is an absolutely continuous random variable, with den
sity function fX and Y h X , where h : R1 R1 is a function that is differentiable
and strictly decreasing, then Y is also absolutely continuous, and its density function
fY may again be defined by (2.11.1).

We note that, because h is strictly decreasing, so is h 1. Hence, applying h 1

reverses the inequalities, so that

P a Y b P h 1 b h 1 Y h 1 a P h 1 b X h 1 a
h 1 a

h 1 b
fX x dx

We then make the substitution y h x , so that x h 1 y , and

dx
d

dy
h 1 y dy

But by the inverse function theorem from calculus,

d

dy
h 1 y

1

h h 1 y

Furthermore, as x goes from h 1 b to h 1 a , we see that y h x goes from a to b.
We conclude that

P a Y b
h 1 a

h 1 b
fX x dx

b

a
fX h 1 y 1 h h 1 y dy

b

a
fY y dy

as required.
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Proof of Theorem 2.9.2

We want to prove the following result. Let X and Y be jointly absolutely continuous,
with joint density function fX Y . Let Z h1 X Y and W h2 X Y , where h1 h2 :
R2 R1 are differentiable functions. Define the joint function h h1 h2 : R2

R2 by
h x y h1 x y h2 x y

Assume that h is onetoone, at least on the region x y : f x y 0 , i.e., if
h1 x1 y1 h1 x2 y2 and h2 x1 y1 h2 x2 y2 , then x1 x2 and y1 y2. Then
Z and W are also jointly absolutely continuous, with joint density function f Z W given
by

fZ W z fX Y h 1 z J h 1 z

where J is the Jacobian derivative of h, and where h 1 z is the unique pair x y
such that h x y z .

We must show that whenever a b and c d, we have

P a Z b c W d
d

c

b

a
fZ W z d dz

If we let S [a b] [c d] be the twodimensional rectangle, then we can rewrite this
as

P Z W S
S

fZ W z dz d

Now, using the theory of multivariable calculus, and making the substitution x y
h 1 z (which is permissible because h is onetoone), we have

S
fZ W z dz d

S
fX Y h 1 z J h 1 z dz d

h 1 S
fX Y x y J x y J x y dx dy

h 1 S
fX Y x y dx dy P X Y h 1 S

P h 1 Z W h 1 S P Z W S

as required.
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Expectation

CHAPTER OUTLINE

Section 1 The Discrete Case
Section 2 The Absolutely Continuous Case
Section 3 Variance, Covariance, and Correlation
Section 4 Generating Functions
Section 5 Conditional Expectation
Section 6 Inequalities
Section 7 General Expectations (Advanced)
Section 8 Further Proofs (Advanced)

In the first two chapters we learned about probability models, random variables, and
distributions. There is one more concept that is fundamental to all of probability theory,
that of expected value.

Intuitively, the expected value of a random variable is the average value that the
random variable takes on. For example, if half the time X 0, and the other half of
the time X 10, then the average value of X is 5. We shall write this as E X 5.
Similarly, if onethird of the time Y 6 while twothirds of the time Y 15, then
E Y 12.

Another interpretation of expected value is in terms of fair gambling. Suppose
someone offers you a ticket (e.g., a lottery ticket) worth a certain random amount X .
How much would you be willing to pay to buy the ticket? It seems reasonable that you
would be willing to pay the expected value E X of the ticket, but no more. However,
this interpretation does have certain limitations; see Example 3.1.12.

To understand expected value more precisely, we consider discrete and absolutely
continuous random variables separately.

3.1 The Discrete Case
We begin with a definition.

129
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Definition 3.1.1 Let X be a discrete random variable. Then the expected value (or
mean value or mean) of X , written E X (or X ), is defined by

E X
x R1

x P X x
x R1

x pX x

We will have P X x 0 except for those values x that are possible values of X .
Hence, an equivalent definition is the following.

Definition 3.1.2 Let X be a discrete random variable, taking on distinct values
x1 x2 , with pi P X xi . Then the expected value of X is given by

E X
i

xi pi

The definition (in either form) is best understood through examples.

EXAMPLE 3.1.1
Suppose, as above, that P X 0 P X 10 1 2. Then

E X 0 1 2 10 1 2 5

as predicted.

EXAMPLE 3.1.2
Suppose, as above, that P Y 6 1 3, and P Y 15 2 3. Then

E Y 6 1 3 15 2 3 2 10 12

again as predicted.

EXAMPLE 3.1.3
Suppose that P Z 3 0 2, and P Z 11 0 7, and P Z 31 0 1. Then

E Z 3 0 2 11 0 7 31 0 1 0 6 7 7 3 1 10 2

EXAMPLE 3.1.4
Suppose that P W 3 0 2, and P W 11 0 7, and P W 31 0 1.
Then

E W 3 0 2 11 0 7 31 0 1 0 6 7 7 3 1 5 2

In this case, the expected value of W is negative.

We thus see that, for a discrete random variable X , once we know the probabilities that
X x (or equivalently, once we know the probability function pX ), it is straightfor
ward (at least in simple cases) to compute the expected value of X .

We now consider some of the common discrete distributions introduced in Sec
tion 2.3.
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EXAMPLE 3.1.5 Degenerate Distributions
If X c is a constant, then P X c 1, so

E X c 1 c

as it should.

EXAMPLE 3.1.6 The Bernoulli Distribution and Indicator Functions
If X Bernoulli , then P X 1 and P X 0 1 , so

E X 1 0 1

As a particular application of this, suppose we have a response s taking values in a
sample S and A S Letting X s IA s we have that X is the indicator function
of the set A and so takes the values 0 and 1 Then we have that P X 1 P A
and so X Bernoulli P A This implies that

E X E IA P A

Therefore, we have shown that the expectation of the indicator function of the set A is
equal to the probability of A

EXAMPLE 3.1.7 The Binomial n Distribution
If Y Binomial n , then

P Y k
n

k
k 1 n k

for k 0 1 n. Hence,

E Y
n

k 0

k P Y k
n

k 0

k
n

k
k 1 n k

n

k 0

k
n!

k! n k !
k 1 n k

n

k 1

n!

k 1 ! n k !
k 1 n k

n

k 1

n n 1 !

k 1 ! n k !
k 1 n k

n

k 1

n
n 1

k 1
k 1 n k

Now, the binomial theorem says that for any a and b and any positive integer m,

a b m
m

j 0

m

j
a j bm j

Using this, and setting j k 1, we see that

E Y
n

k 1

n
n 1

k 1
k 1 n k

n 1

j 0

n
n 1

j
j 1 1 n j 1

n
n 1

j 0

n 1

j
j 1 n j 1 n 1 n 1 n
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Hence, the expected value of Y is n . Note that this is precisely n times the ex
pected value of X , where X Bernoulli as in Example 3.1.6. We shall see in
Example 3.1.15 that this is not a coincidence.

EXAMPLE 3.1.8 The Geometric Distribution
If Z Geometric , then P Z k 1 k for k 0 1 2 . Hence,

E Z
k 0

k 1 k (3.1.1)

Therefore, we can write

1 E Z
0

1 1

Using the substitution k 1, we compute that

1 E Z
k 1

k 1 1 k (3.1.2)

Subtracting (3.1.2) from (3.1.1), we see that

E Z E Z 1 E Z
k 1

k k 1 1 k

k 1

1 k 1

1 1
1

Hence, E Z 1 , and we obtain E Z 1 .

EXAMPLE 3.1.9 The Poisson Distribution
If X Poisson , then P X k e k k! for k 0 1 2 . Hence, setting

k 1,

E X
k 0

ke
k

k!
k 1

e
k

k 1 !
e

k 1

k 1

k 1 !

e
0

!
e e

and we conclude that E X .

It should be noted that expected values can sometimes be infinite, as the following
example demonstrates.

EXAMPLE 3.1.10
Let X be a discrete random variable, with probability function pX given by

pX 2k 2 k
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for k 1 2 3 with pX x 0 for other values of x . That is, pX 2 1 2,
pX 4 1 4, pX 8 1 8, etc., while pX 1 pX 3 pX 5 pX 6 0.

Then it is easily checked that pX is indeed a valid probability function (i.e., pX x
0 for all x , with x pX x 1). On the other hand, we compute that

E X
k 1

2k 2 k

k 1

1

We therefore say that E X , i.e., that the expected value of X is infinite.

Sometimes the expected value simply does not exist, as in the following example.

EXAMPLE 3.1.11
Let Y be a discrete random variable, with probability function pY given by

pY y
1 2y y 2 4 8 16
1 2 y y 2 4 8 16
0 otherwise.

That is, pY 2 pY 2 1 4, pY 4 pY 4 1 8, pY 8 pY 8
1 16, etc. Then it is easily checked that pY is indeed a valid probability function (i.e.,
pY y 0 for all y, with y pY y 1).

On the other hand, we compute that

E Y
y

y pY y
k 1

2k 1 2 2k

k 1

2k 1 2 2k

k 1

1 2
k 1

1 2

which is undefined. We therefore say that E Y does not exist, i.e., that the expected
value of Y is undefined in this case.

EXAMPLE 3.1.12 The St. Petersburg Paradox
Suppose someone makes you the following deal. You will repeatedly ip a fair coin
and will receive an award of 2Z pennies, where Z is the number of tails that appear
before the first head. How much would you be willing to pay for this deal?

Well, the probability that the award will be 2z pennies is equal to the probability that
you will ip z tails and then one head, which is equal to 1 2z 1. Hence, the expected
value of the award (in pennies) is equal to

z 0

2z 1 2z 1

z 0

1 2

In words, the average amount of the award is infinite!
Hence, according to the “fair gambling” interpretation of expected value, as dis

cussed at the beginning of this chapter, it seems that you should be willing to pay an
infinite amount (or, at least, any finite amount no matter how large) to get the award
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promised by this deal! How much do you think you should really be willing to pay for
it?1

EXAMPLE 3.1.13 The St. Petersburg Paradox, Truncated
Suppose in the St. Petersburg paradox (Example 3.1.12), it is agreed that the award will
be truncated at 230 cents (which is just over $10 million!). That is, the award will be
the same as for the original deal, except the award will be frozen once it exceeds 230

cents. Formally, the award is now equal to 2min 30 Z pennies, where Z is as before.
How much would you be willing to pay for this new award? Well, the expected

value of the new award (in cents) is equal to

z 1

2min 30 z 1 2z 1
30

z 1

2z 1 2z 1

z 31

230 1 2z 1

30

z 1

1 2 230 1 231 31 2 15 5

That is, truncating the award at just over $10 million changes its expected value enor
mously, from infinity to less than 16 cents!

In utility theory, it is often assumed that each person has a utility function U such
that, if they win x cents, their amount of “utility” (i.e., benefit or joy or pleasure) is
equal to U x . In this context, the truncation of Example 3.1.13 may be thought of
not as changing the rules of the game but as corresponding to a utility function of the
form U x min x 230 . In words, this says that your utility is equal to the amount
of money you get, until you reach 230 cents (approximately $10 million), after which
point you don’t care about money2 anymore. The result of Example 3.1.13 then says
that, with this utility function, the St. Petersburg paradox is only worth 15.5 cents to
you — even though its expected value is infinite.

We often need to compute expected values of functions of random variables. For
tunately, this is not too difficult, as the following theorem shows.

Theorem 3.1.1
(a) Let X be a discrete random variable, and let g : R1 R1 be some function

such that the expectation of the random variable g X exists. Then

E g X
x

g x P X x

(b) Let X and Y be discrete random variables, and let h : R2 R1 be some
function such that the expectation of the random variable h X Y exists. Then

E h X Y
x y

h x y P X x Y y

1When one of the authors first heard about this deal, he decided to try it and agreed to pay $1. In fact, he
got four tails before the first head, so his award was 16 cents, but he still lost 84 cents overall.

2Or, perhaps, you think it is unlikely you will be able to collect the money!
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PROOF We prove part (b) here. Part (a) then follows by simply setting h x y
g x and noting that

x y
g x P X x Y y

x
g x P X x

Let Z h X Y We have that

E Z
z

z P Z z
z

z P h X Y z

z
z

x y
h x y z

P X x Y y
x y z

z h x y

z P X x Y y

x y
h x y P X x Y y

as claimed.

One of the most important properties of expected value is that it is linear, stated as
follows.

Theorem 3.1.2 (Linearity of expected values) Let X and Y be discrete random
variables, let a and b be real numbers, and put Z aX bY . Then E Z
aE X bE Y .

PROOF Let pX Y be the joint probability function of X and Y . Then using Theo
rem 3.1.1,

E Z
x y

ax by pX Y x y a
x y

x pX Y x y b
x y

y pX Y x y

a
x

x
y

pX Y x y b
y

y
x

pX Y x y

Because y pX Y x y pX x and x pX Y x y pY y we have that

E Z a
x

x pX x b
y

y pY y aE X bE Y

as claimed.

EXAMPLE 3.1.14
Let X Binomial n 1 , and let Y Geometric 2 . What is E 3X 2Y ?

We already know (Examples 3.1.6 and 3.1.7) that E X n 1 and E Y 1
2 2. Hence, by Theorem 3.1.2, E 3X 2Y 3E X 2E Y 3n 1 2 1
2 2

EXAMPLE 3.1.15
Let Y Binomial n . Then we know (cf. Example 2.3.3) that we can think of
Y X1 Xn, where each X i Bernoulli (in fact, Xi 1 if the i th coin is
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heads, otherwise X i 0). Because E Xi for each i , it follows immediately from
Theorem 3.1.2 that

E Y E X1 E Xn n

This gives the same answer as Example 3.1.7, but much more easily.

Suppose that X is a random variable and Y c is a constant. Then from Theorem
3.1.2, we have that E X c E X c From this we see that the mean value X
of X is a measure of the location of the probability distribution of X For example, if
X takes the value x with probability p and the value y with probability 1 p then the
mean of X is X px 1 p y which is a value between x and y For a constant c
the probability distribution of X c is concentrated on the points x c and y c with
probabilities p and 1 p respectively. The mean of X c is X c which is between
the points x c and y c i.e., the mean shifts with the probability distribution. It is
also true that if X is concentrated on the finite set of points x1 x2 xk then
x1 X xk and the mean shifts exactly as we shift the distribution. This is depicted
in Figure 3.1.1 for a distribution concentrated on k 4 points. Using the results of
Section 2.6.1, we have that pX c x pX x c

x1 x2 x3 x4

pX


E(X)

x1+c x2+c x3+c x4+c


E(X+c)

pX+c

Figure 3.1.1: The probability functions and means of discrete random variables X and X c.

Theorem 3.1.2 says, in particular, that E X Y E X E Y , i.e., that ex
pectation preserves sums. It is reasonable to ask whether the same property holds for
products. That is, do we necessarily have E XY E X E Y ? In general, the
answer is no, as the following example shows.
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EXAMPLE 3.1.16
Let X and Y be discrete random variables, with joint probability function given by

pX Y x y

1 2 x 3 y 5
1 6 x 3 y 9
1 6 x 6 y 5
1 6 x 6 y 9
0 otherwise.

Then

E X
x

x P X x 3 1 2 1 6 6 1 6 1 6 4

and

E Y
y

y P Y y 5 1 2 1 6 9 1 6 1 6 19 3

while

E XY
z

z P XY z

3 5 1 2 3 9 1 6 6 5 1 6 6 9 1 6

26

Because 4 19 3 26, we see that E X E Y E XY in this case.

On the other hand, if X and Y are independent, then we do have E X E Y
E XY .

Theorem 3.1.3 Let X and Y be discrete random variables that are independent.
Then E XY E X E Y .

PROOF Independence implies (see Theorem 2.8.3) that P X x Y y
P X x P Y y . Using this, we compute by Theorem 3.1.1 that

E XY
x y

xy P X x Y y
x y

xy P X x P Y y

x
x P X x

y
y P Y y E X E Y

as claimed.

Theorem 3.1.3 will be used often in subsequent chapters, as will the following impor
tant property.

Theorem 3.1.4 (Monotonicity) Let X and Y be discrete random variables, and
suppose that X Y . (Remember that this means X s Y s for all s S.) Then
E X E Y .
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PROOF Let Z Y X . Then Z is also discrete. Furthermore, because X Y ,
we have Z 0, so that all possible values of Z are nonnegative. Hence, if we list the
possible values of Z as z1 z2 then zi 0 for all i , so that

E Z
i

zi P Z zi 0

But by Theorem 3.1.2, E Z E Y E X . Hence, E Y E X 0, so that
E Y E X .

Summary of Section 3.1

The expected value E X of a random variable X represents the longrun average
value that it takes on.

If X is discrete, then E X x x P X x .

The expected values of the Bernoulli, binomial, geometric, and Poisson distrib
utions were computed.

Expected value has an interpretation in terms of fair gambling, but such interpre
tations require utility theory to accurately reect human behavior.

Expected values of functions of one or two random variables can also be com
puted by summing the function values times the probabilities.

Expectation is linear and monotone.

If X and Y are independent, then E XY E X E Y . But without indepen
dence, this property may fail.

EXERCISES

3.1.1 Compute E X when the probability function of X is given by each of the fol
lowing.
(a)

pX x

1 7 x 4
2 7 x 0
4 7 x 3
0 otherwise

(b)

pX x
2 x 1 x 0 1 2
0 otherwise

(c)

pX x
2 x 6 x 7 8 9
0 otherwise
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3.1.2 Let X and Y have joint probability function given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

as in Example 2.7.5. Compute each of the following.
(a) E X
(b) E Y
(c) E 3X 7Y
(d) E X2

(e) E Y 2

(f) E XY
(g) E XY 14
3.1.3 Let X and Y have joint probability function given by

pX Y x y

1 2 x 2 y 10
1 6 x 7 y 10
1 12 x 2 y 12
1 12 x 7 y 12
1 12 x 2 y 14
1 12 x 7 y 14
0 otherwise

Compute each of the following.
(a) E X
(b) E Y
(c) E X2

(d) E Y 2

(e) E X2 Y 2

(f) E XY 4Y

3.1.4 Let X Bernoulli 1 and Y Binomial n 2 . Compute E 4X 3Y .
3.1.5 Let X Geometric and Y Poisson . Compute E 8X Y 12 .
3.1.6 Let Y Binomial 100 0 3 , and Z Poisson 7 . Compute E Y Z .
3.1.7 Let X Binomial 80 1 4 , and let Y Poisson 3 2 . Assume X and Y are
independent. Compute E XY .
3.1.8 Starting with one penny, suppose you roll one fair sixsided die and get paid an
additional number of pennies equal to three times the number showing on the die. Let
X be the total number of pennies you have at the end. Compute E X .

3.1.9 Suppose you start with eight pennies and ip one fair coin. If the coin comes up
heads, you get to keep all your pennies; if the coin comes up tails, you have to give
half of them back. Let X be the total number of pennies you have at the end. Compute
E X .
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3.1.10 Suppose you ip two fair coins. Let Y 3 if the two coins show the same
result, otherwise let Y 5. Compute E Y .
3.1.11 Suppose you roll two fair sixsided dice.
(a) Let Z be the sum of the two numbers showing. Compute E Z .

(b) Let W be the product of the two numbers showing. Compute E W .
3.1.12 Suppose you ip one fair coin and roll one fair sixsided die. Let X be the
product of the numbers of heads (i.e., 0 or 1) times the number showing on the die.
Compute E X . (Hint: Do not forget Theorem 3.1.3.)
3.1.13 Suppose you roll one fair sixsided die and then ip as many coins as the num
ber showing on the die. (For example, if the die shows 4, then you ip four coins.) Let
Y be the number of heads obtained. Compute E Y .
3.1.14 Suppose you roll three fair coins, and let X be the cube of the number of heads
showing. Compute E X .

PROBLEMS

3.1.15 Suppose you start with one penny and repeatedly ip a fair coin. Each time you
get heads, before the first time you get tails, you get two more pennies. Let X be the
total number of pennies you have at the end. Compute E X .
3.1.16 Suppose you start with one penny and repeatedly ip a fair coin. Each time you
get heads, before the first time you get tails, your number of pennies is doubled. Let X
be the total number of pennies you have at the end. Compute E X .
3.1.17 Let X Geometric , and let Y min X 100 .
(a) Compute E Y .
(b) Compute E Y X .
3.1.18 Give an example of a random variable X such that E min X 100 E X .

3.1.19 Give an example of a random variable X such that E min X 100 E X 2.
3.1.20 Give an example of a joint probability function pX Y for random variables X
and Y , such that X Bernoulli 1 4 and Y Bernoulli 1 2 , but E XY 1 8.
3.1.21 For X Hypergeometric N M n , prove that E X nM N
3.1.22 For X NegativeBinomial r , prove that E X r 1 (Hint:
Argue that if X1 Xr are independent and identically distributed Geometric
then X X1 Xr NegativeBinomial r )
3.1.23 Suppose that X1 X2 X3 Multinomial n 1 2 3 Prove that
E Xi n i

CHALLENGES

3.1.24 Let X Geometric . Compute E X2 .
3.1.25 Suppose X is a discrete random variable, such that E min X M E X .
Prove that P X M 0.
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DISCUSSION TOPICS

3.1.26 How much would you be willing to pay for the deal corresponding to the
St. Petersburg paradox (see Example 3.1.12)? Justify your answer.
3.1.27 What utility function U (as in the text following Example 3.1.13) best describes
your own personal attitude toward money? Why?

3.2 The Absolutely Continuous Case
Suppose now that X is absolutely continuous, with density function fX . How can
we compute E X then? By analogy with the discrete case, we might try computing

x x P X x , but because P X x is always zero, this sum is always zero as
well.

On the other hand, if is a small positive number, then we could try approximating
E X by

E X
i

i P i X i 1

where the sum is over all integers i . This makes sense because, if is small and
i X i 1 , then X i .

Now, we know that

P i X i 1
i 1

i
fX x dx

This tells us that

E X
i

i 1

i
i fX x dx

Furthermore, in this integral, i x i 1 . Hence, i x . We therefore see that

E X
i

i 1

i
x fX x dx x fX x dx

This prompts the following definition.

Definition 3.2.1 Let X be an absolutely continuous random variable, with density
function fX . Then the expected value of X is given by

E X x fX x dx

From this definition, it is not too difficult to compute the expected values of many
of the standard absolutely continuous distributions.

EXAMPLE 3.2.1 The Uniform[0 1] Distribution
Let X Uniform[0 1] so that the density of X is given by

fX x
1 0 x 1
0 otherwise.
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Hence,

E X x fX x dx
1

0
x dx

x2

2

x 1

x 0
1 2

as one would expect.

EXAMPLE 3.2.2 The Uniform[L R] Distribution
Let X Uniform[L R] so that the density of X is given by

fX x
1 R L L x R
0 otherwise.

Hence,

E X x fX x dx
R

L
x

1

R L
dx

x2

2 R L

x R

x L

R2 L2

2 R L

R L R L

2 R L

R L

2

again as one would expect.

EXAMPLE 3.2.3 The Exponential Distribution
Let Y Exponential so that the density of Y is given by

fY y
e y y 0

0 y 0

Hence, integration by parts, with u y and d e y (so du dy e y),
leads to

E Y y fY y dy
0

y e y dy ye y
0

0
e y dy

0
e y dy

e y

0

0 1 1

In particular, if 1, then Y Exponential 1 and E Y 1.

EXAMPLE 3.2.4 The N 0 1 Distribution
Let Z N 0 1 so that the density of Z is given by

fZ z z
1

2
e z2 2

Hence,

E Z z fZ z dz

z
1

2
e z2 2 dz

0

z
1

2
e z2 2 dz

0
z

1

2
e z2 2 dz (3.2.1)
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But using the substitution z, we see that

0

z
1

2
e z2 2 dz

0

1

2
e

2 2 d

Then the two integrals in (3.2.1) cancel each other out, and leaving us with E Z 0.

As with discrete variables, means of absolutely continuous random variables can
also be infinite or undefined.

EXAMPLE 3.2.5
Let X have density function given by

fX x
1 x2 x 1
0 otherwise.

Then

E X x fX x dx
1

x 1 x2 dx
1

1 x dx log x
x

x 1

Hence, the expected value of X is infinite.

EXAMPLE 3.2.6
Let Y have density function given by

fY y
1 2y2 y 1
1 2y2 y 1
0 otherwise.

Then

E Y y fY y dy
1

y 1 y2 dy
1

y 1 y2 dy

1
1 y dy

1
1 y dy

which is undefined. Hence, the expected value of Y is undefined (i.e., does not exist)
in this case.

Theorem 3.1.1 remains true in the continuous case, as follows.
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Theorem 3.2.1
(a) Let X be an absolutely continuous random variable, with density function fX ,
and let g : R1 R1 be some function. Then when the expectation of g X exists,

E g X g x fX x dx

(b) Let X and Y be jointly absolutely continuous random variables, with joint den
sity function fX Y , and let h : R2 R1 be some function. Then when the expecta
tion of h X Y exists,

E h X Y h x y fX Y x y dx dy

We do not prove Theorem 3.2.1 here; however, we shall use it often. For a first use
of this result, we prove that expected values for absolutely continuous random variables
are still linear.

Theorem 3.2.2 (Linearity of expected values) Let X and Y be jointly absolutely
continuous random variables, and let a and b be real numbers. Then E aX bY
aE X bE Y .

PROOF Let fX Y be the joint density function of X and Y . Then using Theo
rem 3.2.1, we compute that

E Z ax by fX Y x y dx dy

a x fX Y x y dx dy b y fX Y x y dx dy

a x fX Y x y dy dx

b y fX Y x y dx dy

But fX Y x y dy fX x and fX Y x y dx fY y so

E Z a x fX x dx b y fY y dy aE X bE Y

as claimed.

Just as in the discrete case, we have that E X c E X c for an absolutely
continuous random variable X Note, however, that this is not implied by Theorem
3.2.2 because the constant c is a discrete, not absolutely continuous, random variable.
In fact, we need a more general treatment of expectation to obtain this result (see Sec
tion 3.7). In any case, the result is true and we again have that the mean of a random
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variable serves as a measure of the location of the probability distribution of X In
Figure 3.2.1, we have plotted the densities and means of the absolutely continuous ran
dom variables X and X c The change of variable results from Section 2.6.2 give
fX c x fX x c


E(X)


E(X+c)

fX

fX+c

x

x

Figure 3.2.1: The densities and means of absolutely continuous random variables X and
X c.

EXAMPLE 3.2.7 The N 2 Distribution
Let X N 2 . Then we know (cf. Exercise 2.6.3) that if Z X , then
Z N 0 1 . Hence, we can write X Z , where Z N 0 1 . But we know
(see Example 3.2.4) that E Z 0 and (see Example 3.1.5) that E . Hence,
using Theorem 3.2.2, E X E Z E E Z 0

If X and Y are independent, then the following results show that we again have
E XY E X E Y .

Theorem 3.2.3 Let X and Y be jointly absolutely continuous random variables that
are independent. Then E XY E X E Y .

PROOF Independence implies (Theorem 2.8.3) that fX Y x y fX x fY y .
Using this, along with Theorem 3.2.1, we compute

E XY xy fX Y x y dx dy xy fX x fY y dx dy

x fX x dx y fY y dy E X E Y

as claimed.

The monotonicity property (Theorem 3.1.4) still holds as well.
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Theorem 3.2.4 (Monotonicity) Let X and Y be jointly continuous random vari
ables, and suppose that X Y . Then E X E Y .

PROOF Let fX Y be the joint density function of X and Y . Because X Y , the
density fX Y can be chosen so that fX Y x y 0 whenever x y. Now let Z
Y X . Then by Theorem 3.2.1(b),

E Z y x fX Y x y dx dy

Because fX Y x y 0 whenever x y, this implies that E Z 0. But by Theo
rem 3.2.2, E Z E Y E X . Hence, E Y E X 0, so that E Y E X .

Summary of Section 3.2

If X is absolutely continuous, then E X x fX x dx .

The expected values of the uniform, exponential, and normal distributions were
computed.

Expectation for absolutely continuous random variables is linear and monotone.

If X and Y are independent, then we still have E XY E X E Y .

EXERCISES

3.2.1 Compute C and E X when the density function of X is given by each of the
following.
(a)

fX x
C 5 x 9
0 otherwise

(b)

fX x
C x 1 6 x 8
0 otherwise

(c)

fX x
Cx4 5 x 2
0 otherwise

3.2.2 Let X and Y have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise

as in Examples 2.7.6 and 2.7.7. Compute each of the following.
(a) E X
(b) E Y
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(c) E 3X 7Y
(d) E X2

(e) E Y 2

(f) E XY
(g) E XY 14
3.2.3 Let X and Y have joint density

fX Y x y
4xy 3x2y2 18 0 x 1 0 y 3

0 otherwise

Compute each of the following.
(a) E X
(b) E Y
(c) E X2

(d) E Y 2

(e) E Y 4

(f) E X2Y 3

3.2.4 Let X and Y have joint density

fX Y x y
6xy 9 2 x2y2 0 y x 1
0 otherwise

Compute each of the following.
(a) E X
(b) E Y
(c) E X2

(d) E Y 2

(e) E Y 4

(f) E X2Y 3

3.2.5 Let X Uniform[3 7] and Y Exponential 9 . Compute E 5X 6Y .
3.2.6 Let X Uniform[ 12 9] and Y N 8 9 . Compute E 11X 14Y 3 .
3.2.7 Let Y Exponential 9 and Z Exponential 8 . Compute E Y Z .

3.2.8 Let Y Exponential 9 and Z Gamma 5 4 . Compute E Y Z . (You
may use Problem 3.2.16 below.)
3.2.9 Suppose X has density function f x 3 20 x2 x3 for 0 x 2, otherwise
f x 0. Compute each of E X , E X2 , and E X3 , and rank them from largest to
smallest.
3.2.10 Suppose X has density function f x 12 7 x2 x3 for 0 x 1, oth
erwise f x 0. Compute each of E X , E X2 , and E X3 and rank them from
largest to smallest.
3.2.11 Suppose men’s heights (in centimeters) follow the distribution N 174 202 ,
while those of women follow the distribution N 160 152 . Compute the mean total
height of a man–woman married couple.
3.2.12 Suppose X and Y are independent, with E X 5 and E Y 6. For each of
the following variables Z , either compute E Z or explain why we cannot determine
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E Z from the available information:
(a) Z X Y
(b) Z XY
(c) Z 2X 4Y
(d) Z 2X 3 4Y
(e) Z 2 X 3 4Y
(f) Z 2 X 3X 4Y
3.2.13 Suppose darts are randomly thrown at a wall. Let X be the distance (in cen
timeters) from the left edge of the dart’s point to the left end of the wall, and let Y be
the distance from the right edge of the dart’s point to the left end of the wall. Assume
the dart’s point is 0 1 centimeters thick, and that E X 214. Compute E Y .
3.2.14 Let X be the mean height of all citizens measured from the top of their head,
and let Y be the mean height of all citizens measured from the top of their head or hat
(whichever is higher). Must we have E Y E X ? Why or why not?
3.2.15 Suppose basketball teams A and B each have five players and that each member
of team A is being “guarded” by a unique member of team B. Suppose it is noticed that
each member of team A is taller than the corresponding guard from team B. Does it
necessarily follow that the mean height of team A is larger than the mean height of
team B? Why or why not?

PROBLEMS

3.2.16 Let 0 and 0, and let X Gamma . Prove that E X .
(Hint: The computations are somewhat similar to those of Problem 2.4.15. You will
also need property (2.4.7) of the gamma function.)
3.2.17 Suppose that X follows the logistic distribution (see Problem 2.4.18). Prove
that E X 0
3.2.18 Suppose that X follows the Weibull distribution (see Problem 2.4.19). Prove
that E X 1 1
3.2.19 Suppose that X follows the Pareto distribution (see Problem 2.4.20) for
1. Prove that E X 1 1 What is E X when 0 1?
3.2.20 Suppose that X follows the Cauchy distribution (see Problem 2.4.21). Argue
that E X does not exist (Hint: Compute the integral in two parts, where the integrand
is positive and where the integrand is negative.)
3.2.21 Suppose that X follows the Laplace distribution (see Problem 2.4.22). Prove
that E X 0
3.2.22 Suppose that X follows the Beta a b distribution (see Problem 2.4.24). Prove
that E X a a b
3.2.23 Suppose that X1 X2 Dirichlet 1 2 3 (see Problem 2.7.17). Prove
that E X i i 1 2 3
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3.3 Variance, Covariance, and Correlation
Now that we understand expected value, we can use it to define various other quantities
of interest. The numerical values of these quantities provide information about the
distribution of random variables.

Given a random variable X , we know that the average value of X will be E X .
However, this tells us nothing about how far X tends to be from E X . For that, we
have the following definition.

Definition 3.3.1 The variance of a random variable X is the quantity

2
X Var X E X X

2 (3.3.1)

where X E X is the mean of X .

We note that it is also possible to write (3.3.1) as Var X E X E X 2 ; how
ever, the multiple uses of “E” may be confusing. Also, because X X

2 is always
nonnegative, its expectation is always defined, so the variance of X is always defined.

Intuitively, the variance Var X is a measure of how spread out the distribution of
X is, or how random X is, or how much X varies, as the following example illustrates.

EXAMPLE 3.3.1
Let X and Y be two discrete random variables, with probability functions

pX x
1 x 10
0 otherwise

and

pY y
1 2 y 5
1 2 y 15
0 otherwise

respectively.
Then E X E Y 10. However,

Var X 10 10 2 1 0

while
Var Y 5 10 2 1 2 15 10 2 1 2 25

We thus see that, while X and Y have the same expected value, the variance of Y is
much greater than that of X . This corresponds to the fact that Y is more random than
X ; that is, it varies more than X does.

EXAMPLE 3.3.2
Let X have probability function given by

pX x

1 2 x 2
1 6 x 3
1 6 x 4
1 6 x 5
0 otherwise.
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Then E X 2 1 2 3 1 6 4 1 6 5 1 6 3 Hence,

Var X 2 3 2 1

2
3 3 2 1

6
4 3 2 1

6
5 3 2 1

6
4 3.

EXAMPLE 3.3.3
Let Y Bernoulli . Then E Y . Hence,

Var Y E Y 2 1 2 0 2 1

2 2 3 2 3 2 1 .

The square in (3.3.1) implies that the “scale” of Var X is different from the scale
of X . For example, if X were measuring a distance in meters (m), then Var X would
be measuring in meters squared (m2). If we then switched from meters to feet, we
would have to multiply X by about 3 28084 but would have to multiply Var X by
about 3 28084 2.

To correct for this “scale” problem, we can simply take the square root, as follows.

Definition 3.3.2 The standard deviation of a random variable X is the quantity

X Sd X Var X E X X
2

It is reasonable to ask why, in (3.3.1), we need the square at all. Now, if we simply
omitted the square and considered E X X , we would always get zero (because

X E X ), which is useless. On the other hand, we could instead use E X X .
This would, like (3.3.1), be a valid measure of the average distance of X from X .
Furthermore, it would not have the “scale problem” that Var X does. However, we
shall see that Var X has many convenient properties. By contrast, E X X is
very difficult to work with. Thus, it is purely for convenience that we define variance
by E X X

2 instead of E X X .
Variance will be very important throughout the remainder of this book. Thus, we

pause to present some important properties of Var.

Theorem 3.3.1 Let X be any random variable, with expected value X E X ,
and variance Var X . Then the following hold true:
(a) Var X 0.
(b) If a and b are real numbers, Var aX b a2 Var X .
(c) Var X E X2

X
2 E X2 E X 2. (That is, variance is equal to the

second moment minus the square of the first moment.)
(d) Var X E X2 .

PROOF (a) This is immediate, because we always have X X
2 0.

(b) We note that aX b E aX b aE X b a X b, by linearity. Hence,
again using linearity,

Var aX b E aX b a X b
2 E aX b a X b 2

a2 E X X
2 a2 Var X
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(c) Again, using linearity,

Var X E X X
2 E X2 2X X X

2

E X2 2E X X X
2 E X2 2 X

2
X

2

E X2
X

2

(d) This follows immediately from part (c) because we have X
2 0.

Theorem 3.3.1 often provides easier ways of computing variance, as in the follow
ing examples.

EXAMPLE 3.3.4 Variance of the Exponential Distribution
Let W Exponential , so that fW e . Then E W 1 . Also, using
integration by parts,

E W 2

0

2 e d
0

2 e d

2
0

e d 2 E W 2 2

Hence, by part (c) of Theorem 3.3.1,

Var W E W 2 E W 2 2 2 1 2 1 2

EXAMPLE 3.3.5
Let W Exponential , and let Y 5W 3. Then from the above example,
Var W 1 2. Then, using part (b) of Theorem 3.3.1,

Var Y Var 5W 3 25 Var W 25 2

Because a2 a , part (b) of Theorem 3.3.1 immediately implies a correspond
ing fact about standard deviation.

Corollary 3.3.1 Let X be any random variable, with standard deviation Sd X , and
let a be any real number. Then Sd aX a Sd X .

EXAMPLE 3.3.6
Let W Exponential , and let Y 5W 3. Then using the above examples, we

see that Sd W Var W 1 2 1 2 1 2
1 Also, Sd Y Var Y 1 2

25 2 1 2
5 This agrees with Corollary 3.3.1, since Sd Y 5 Sd W .

EXAMPLE 3.3.7 Variance and Standard Deviation of the N 2 Distribution
Suppose that X N 2 In Example 3.2.7 we established that E X Now
we compute Var X

First consider Z N 0 1 Then from Theorem 3.3.1(c) we have that

Var Z E Z2 z2 1

2
exp

z2

2
dz
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Then, putting u z d z exp z2 2 (so du 1 exp z2 2 ), and using
integration by parts, we obtain

Var Z
1

2
z exp

z2

2

1

2
exp

z2

2
dz 1

and Sd Z 1
Now, for 0 put X Z We then have X N 2 . From Theorem

3.3.1(b) we have that

Var X Var Z 2 Var Z 2

and Sd X This establishes the variance of the N 2 distribution as 2 and
the standard deviation as

In Figure 3.3.1, we have plotted three normal distributions, all with mean 0 but
different variances.

5 4 3 2 1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

x

f

Figure 3.3.1: Plots of the the N 0 1 (solid line), the N 0 1 4 (dashed line) and the
N 0 4 (dotted line) density functions.

The effect of the variance on the amount of spread of the distribution about the mean
is quite clear from these plots. As 2 increases, the distribution becomes more diffuse;
as it decreases, it becomes more concentrated about the mean 0.

So far we have considered the variance of one random variable at a time. How
ever, the related concept of covariance measures the relationship between two random
variables.

Definition 3.3.3 The covariance of two random variables X and Y is given by

Cov X Y E X X Y Y

where X E X and Y E Y .

EXAMPLE 3.3.8
Let X and Y be discrete random variables, with joint probability function pX Y given
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by

pX Y x y

1 2 x 3 y 4
1 3 x 3 y 6
1 6 x 5 y 6
0 otherwise.

Then E X 3 1 2 3 1 3 5 1 6 10 3, and E Y 4 1 2
6 1 3 6 1 6 5. Hence,

Cov X Y E X 10 3 Y 5

3 10 3 4 5 2 3 10 3 6 5 3 5 10 3 6 5 6

1 3

EXAMPLE 3.3.9
Let X be any random variable with Var X 0. Let Y 3X , and let Z 4X . Then

Y 3 X and Z 4 X . Hence,

Cov X Y E X X Y Y E X X 3X 3 X

3 E X X
2 3 Var X

while

Cov X Z E X X Z Z E X X 4 X 4 X

4 E X X
2 4 Var X

Note in particular that Cov X Y 0, while Cov X Z 0. Intuitively, this says that
Y increases when X increases, whereas Z decreases when X increases.

We begin with some simple facts about covariance. Obviously, we always have
Cov X Y Cov Y X We also have the following result.

Theorem 3.3.2 (Linearity of covariance) Let X , Y , and Z be three random vari
ables. Let a and b be real numbers. Then

Cov aX bY Z a Cov X Z b Cov Y Z

PROOF Note that by linearity, aX bY E aX bY aE X bE Y
a X b Y . Hence,

Cov aX bY Z E aX bY a X bY Z Z

E aX bY a X b Y Z Z

E aX a X bY b Y Z Z

aE X X Z Z bE Y Y Z Z

a Cov X Z b Cov Y Z

and the result is established.

We also have the following identity, which is similar to Theorem 3.3.1(c).
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Theorem 3.3.3 Let X and Y be two random variables. Then

Cov X Y E XY E X E Y

PROOF Using linearity, we have

Cov X Y E X X Y Y E XY X Y X Y X Y

E XY X E Y E X Y X Y

E XY X Y X Y X Y E XY X Y

Corollary 3.3.2 If X and Y are independent, then Cov X Y 0.

PROOF Because X and Y are independent, we know (Theorems 3.1.3 and 3.2.3)
that E XY E X E Y . Hence, the result follows immediately from Theorem 3.3.3.

We note that the converse to Corollary 3.3.2 is false, as the following example
shows.

EXAMPLE 3.3.10 Covariance 0 Does Not Imply Independence.
Let X and Y be discrete random variables, with joint probability function pX Y given
by

pX Y x y

1 4 x 3 y 5
1 4 x 4 y 9
1 4 x 7 y 5
1 4 x 6 y 9
0 otherwise.

Then E X 3 1 4 4 1 4 7 1 4 6 1 4 5 E Y 5 1 4
9 1 4 5 1 4 9 1 4 7 and E XY 3 5 1 4 4 9 1 4
7 5 1 4 6 9 1 4 35 We obtain Cov X Y E XY E X E Y

35 5 7 0
On the other hand, X and Y are clearly not independent. For example, P X

4 0 and P Y 5 0, but P X 4 Y 5 0, so P X 4 Y 5
P X 4 P Y 5 .

There is also an important relationship between variance and covariance.

Theorem 3.3.4
(a) For any random variables X and Y ,

Var X Y Var X Var Y 2 Cov X Y

(b) More generally, for any random variables X1 Xn ,

Var
i

Xi
i

Var Xi 2
i j

Cov Xi X j
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PROOF We prove part (b) here; part (a) then follows as the special case n 2.
Note that by linearity,

i Xi
E

i

Xi
i

E Xi
i

Xi

Therefore, we have that

Var
i

X i

E
i

X i i Xi

2

E
i

X i
i

i

2

E
i

Xi i

2

E
i

Xi i
j

X j j

E
i j

Xi i X j j
i j

E Xi i X j j

i j

E Xi i X j j 2
i j

E Xi i X j j

i

Var Xi 2
i j

Cov Xi X j

Combining Theorem 3.3.4 with Corollary 3.3.2, we obtain the following.

Corollary 3.3.3
(a) If X and Y are independent, then Var X Y Var X Var Y
(b) If X1 Xn are independent, then Var n

i 1 Xi
n
i 1Var Xi

One use of Corollary 3.3.3 is the following.

EXAMPLE 3.3.11
Let Y Binomial n . What is Var Y ? Recall that we can write

Y X1 X2 Xn

where the Xi are independent, with Xi Bernoulli . We have already seen that
Var Xi 1 . Hence, from Corollary 3.3.3,

Var Y Var X1 Var X2 Var Xn

1 1 1 n 1 .

Another concept very closely related to covariance is correlation.
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Definition 3.3.4 The correlation of two random variables X and Y is given by

Corr X Y
Cov X Y

Sd X Sd Y

Cov X Y

Var X Var Y

provided 0 Var X and 0 Var Y

EXAMPLE 3.3.12
As in Example 3.3.2, let X be any random variable with Var X 0, let Y 3X , and
let Z 4X . Then Cov X Y 3 Var X and Cov X Z 4 Var X . But by
Corollary 3.3.1, Sd Y 3 Sd X and Sd Z 4 Sd X . Hence,

Corr X Y
Cov X Y

Sd X Sd Y

3 Var X

Sd X 3 Sd X

Var X

Sd X 2
1

because Sd X 2 Var X . Also, we have that

Corr X Z
Cov X Z

Sd X Sd Z

4 Var X

Sd X 4 Sd X

Var X

Sd X 2
1

Intuitively, this again says that Y increases when X increases, whereas Z decreases
when X increases. However, note that the scale factors 3 and 4 have cancelled out;
only their signs were important.

We shall see later, in Section 3.6, that we always have 1 Corr X Y 1, for
any random variables X and Y . Hence, in Example 3.3.12, Y has the largest possible
correlation with X (which makes sense because Y increases whenever X does, without
exception), while Z has the smallest possible correlation with X (which makes sense
because Z decreases whenever X does). We will also see that Corr X Y is a measure
of the extent to which a linear relationship exists between X and Y .

EXAMPLE 3.3.13 The Bivariate Normal 1 2 1 2 Distribution
We defined this distribution in Example 2.7.9. It turns out that when X Y follows this
joint distribution then, (from Problem 2.7.13) X N 1

2
1 and Y N 2

2
2

Further, we have that (see Problem 3.3.17) Corr X Y In the following graphs,
we have plotted samples of n 1000 values of X Y from bivariate normal distrib
utions with 1 2 0 2

1
2
2 1 and various values of Note that we used

(2.7.1) to generate these samples.
From these plots we can see the effect of on the joint distribution. Figure 3.3.2

shows that when 0 the point cloud is roughly circular. It becomes elliptical in
Figure 3.3.3 with 0 5 and more tightly concentrated about a line in Figure 3.3.4
with 0 9 As we will see in Section 3.6, the points will lie exactly on a line when

1
Figure 3.3.5 demonstrates the effect of a negative correlation. With positive corre

lations, the value of Y tends to increase with X as reected in the upward slope of the
point cloud. With negative correlations, Y tends to decrease with X as reected in the
negative slope of the point cloud.
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Figure 3.3.2: A sample of n 1000 values X Y from the Bivariate Normal 0 0 1 1 0
distribution.
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Figure 3.3.3: A sample of n 1000 values X Y from the Bivariate Normal
0 0 1 1 0 5 distribution.
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Figure 3.3.4: A sample of n 1000 values X Y from the Bivariate Normal
0 0 1 1 0 9 distribution.
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Figure 3.3.5: A sample of n 1000 values X Y from the Bivariate Normal
0 0 1 1 0 9 distribution.
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Summary of Section 3.3

The variance of a random variable X measures how far it tends to be from its
mean and is given by Var X E X X

2 E X2 E X 2.

The variances of many standard distributions were computed.

The standard deviation of X equals Sd X Var X .

Var X 0, and Var aX b a2 Var X ; also Sd aX b a Sd X .

The covariance of random variables X and Y measures how they are related and
is given by Cov X Y E X X Y y E XY E X E Y .

If X and Y are independent, then Cov X Y 0.

Var X Y Var X Var Y 2 Cov X Y . If X and Y are independent,
this equals Var X Var Y .

The correlation of X and Y is Corr X Y Cov X Y Sd X Sd Y

EXERCISES

3.3.1 Suppose the joint probability function of X and Y is given by

pX Y x y

1 2 x 3 y 5
1 6 x 3 y 9
1 6 x 6 y 5
1 6 x 6 y 9
0 otherwise

with E X 4, E Y 19 3, and E XY 26, as in Example 3.1.16.
(a) Compute Cov X Y .
(b) Compute Var X and Var Y .
(c) Compute Corr X Y .
3.3.2 Suppose the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

as in Example 2.7.5.
(a) Compute E X and E Y .
(b) Compute Cov X Y .
(c) Compute Var X and Var Y .
(d) Compute Corr X Y .

3.3.3 Let X and Y have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise
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as in Exercise 3.2.2. Compute Corr X Y .

3.3.4 Let X and Y have joint density

fX Y x y
15x3y4 6x2y7 0 x 1 0 y 1
0 otherwise

Compute E X , E Y , Var X , Var Y , Cov X Y , and Corr X Y .
3.3.5 Let Y and Z be two independent random variables, each with positive variance.
Prove that Corr Y Z 0.
3.3.6 Let X , Y , and Z be three random variables, and suppose that X and Z are inde
pendent. Prove that Cov X Y Z Cov Y Z .
3.3.7 Let X Exponential 3 and Y Poisson 5 . Assume X and Y are independent.
Let Z X Y .
(a) Compute Cov X Z .
(b) Compute Corr X Z .
3.3.8 Prove that the variance of the Uniform[L R] distribution is given by the expres
sion R L 2 12
3.3.9 Prove that Var X E X X 1 E X E X 1 Use this to compute
directly from the probability function that when X Binomial n then Var X
n 1
3.3.10 Suppose you ip three fair coins. Let X be the number of heads showing, and
let Y X2. Compute E X , E Y , Var X , Var Y , Cov X Y , and Corr X Y .
3.3.11 Suppose you roll two fair sixsided dice. Let X be the number showing on the
first die, and let Y be the sum of the numbers showing on the two dice. Compute E X ,
E Y , E XY , and Cov X Y .

3.3.12 Suppose you ip four fair coins. Let X be the number of heads showing, and
let Y be the number of tails showing. Compute Cov X Y and Corr X Y .
3.3.13 Let X and Y be independent, with X Bernoulli 1 2 and Y Bernoulli 1 3 .
Let Z X Y and W X Y . Compute Cov Z W and Corr Z W .
3.3.14 Let X and Y be independent, with X Bernoulli 1 2 and Y N 0 1 . Let
Z X Y and W X Y . Compute Var Z , Var W , Cov Z W , and Corr Z W .
3.3.15 Suppose you roll one fair sixsided die and then ip as many coins as the num
ber showing on the die. (For example, if the die shows 4, then you ip four coins.) Let
X be the number showing on the die, and Y be the number of heads obtained. Compute
Cov X Y .

PROBLEMS

3.3.16 Let X N 0 1 , and let Y cX .
(a) Compute limc 0 Cov X Y .
(b) Compute limc 0 Cov X Y .
(c) Compute limc 0 Corr X Y .
(d) Compute limc 0 Corr X Y .
(e) Explain why the answers in parts (c) and (d) are not the same.
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3.3.17 Let X and Y have the bivariate normal distribution, as in Example 2.7.9. Prove
that Corr X Y . (Hint: Use (2.7.1).)
3.3.18 Prove that the variance of the Geometric distribution is given by 1 2

(Hint: Use Exercise 3.3.9 and 1 x x x 1 1 x 2 )
3.3.19 Prove that the variance of the NegativeBinomial r distribution is given by
r 1 2 (Hint: Use Problem 3.3.18.)
3.3.20 Let 0 and 0, and let X Gamma . Prove that Var X 2.
(Hint: Recall Problem 3.2.16.)

3.3.21 Suppose that X Weibull distribution (see Problem 2.4.19). Prove that
Var X 2 1 2 1 1 (Hint: Recall Problem 3.2.18.)

3.3.22 Suppose that X Pareto (see Problem 2.4.20) for 2. Prove that
Var X 1 2 2 . (Hint: Recall Problem 3.2.19.)
3.3.23 Suppose that X follows the Laplace distribution (see Problem 2.4.22). Prove
that Var X 2 (Hint: Recall Problem 3.2.21.)
3.3.24 Suppose that X Beta a b (see Problem 2.4.24). Prove that Var X
ab a b 2 a b 1 (Hint: Recall Problem 3.2.22.)
3.3.25 Suppose that X1 X2 X3 Multinomial n 1 2 3 . Prove that

Var Xi n i 1 i Cov Xi X j n i j when i j

(Hint: Recall Problem 3.1.23.)
3.3.26 Suppose that X1 X2 Dirichlet 1 2 3 (see Problem 2.7.17). Prove
that

Var Xi
i 1 2 3 i

1 2 3
2

1 2 3 1

Cov X1 X2
1 2

1 2 3
2

1 2 3 1

(Hint: Recall Problem 3.2.23.)
3.3.27 Suppose that X Hypergeometric N M n . Prove that

Var X n
M

N
1

M

N

N n

N 1

(Hint: Recall Problem 3.1.21 and use Exercise 3.3.9.)
3.3.28 Suppose you roll one fair sixsided die and then ip as many coins as the num
ber showing on the die. (For example, if the die shows 4, then you ip four coins.) Let
X be the number showing on the die, and Y be the number of heads obtained. Compute
Corr X Y .

CHALLENGES

3.3.29 Let Y be a nonnegative random variable. Prove that E Y 0 if and only if
P Y 0 1. (You may assume for simplicity that Y is discrete, but the result is true
for any Y .)
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3.3.30 Prove that Var X 0 if and only if there is a real number c with P X c
1 (You may use the result of Challenge 3.3.29.)
3.3.31 Give an example of a random variable X , such that E X 5, and Var X

.

3.4 Generating Functions
Let X be a random variable. Recall that the cumulative distribution function of X ,
defined by FX x P X x , contains all the information about the distribution of
X (see Theorem 2.5.1). It turns out that there are other functions — the probability
generating function and the momentgenerating function — that also provide informa
tion (sometimes all the information) about X and its expected values.

Definition 3.4.1 Let X be a random variable (usually discrete). Then we define its
probabilitygenerating function, rX , by rX t E t X for t R1

Consider the following examples of probabilitygenerating functions.

EXAMPLE 3.4.1 The Binomial n Distribution
If X Binomial n , then

rX t E t X
n

i 0

P X i t i

n

i 0

n

i
i 1 n i t i

n

i 0

n

i
t i 1 n i t 1 n

using the binomial theorem.

EXAMPLE 3.4.2 The Poisson Distribution
If Y Poisson then

rY t E tY

i 0

P Y i t i

i 0

e
i

i!
t i

i 0

e
t i

i!
e e t e t 1

The following theorem tells us that once we know the probabilitygenerating func
tion rX t , then we can compute all the probabilities P X 0 , P X 1 , P X 2 ,
etc.
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Theorem 3.4.1 Let X be a discrete random variable, whose possible values are all
nonnegative integers. Assume that rX t0 for some t0 0. Then

rX 0 P X 0

rX 0 P X 1

rX 0 2 P X 2

etc. In general,
r k

X 0 k! P X k

where r k
X is the kth derivative of rX .

PROOF Because the possible values are all nonnegative integers of the form i
0 1 2 we have

rX t E t X

x
t x P X x

i 0

t i P X i

t0 P X 0 t1 P X 1 t2 P X 2 t3 P X 3

so that

rX t 1P X 0 t1 P X 1 t2 P X 2 t3 P X 3 . (3.4.1)

Substituting t 0 into (3.4.1), every term vanishes except the first one, and we obtain
rX 0 P X 0 . Taking derivatives of both sides of (3.4.1), we obtain

rX t 1P X 1 2t1 P X 2 3t2 P X 3

and setting t 0 gives rX 0 P X 1 . Taking another derivative of both sides
gives

rX t 2P X 2 3 2 t1 P X 3

and setting t 0 gives rX 0 2 P X 2 . Continuing in this way, we obtain the
general formula.

We now apply Theorem 3.4.1 to the binomial and Poisson distributions.

EXAMPLE 3.4.3 The Binomial n Distribution
From Example 3.4.1, we have that

rX 0 1 n

rX 0 n t 1 n 1

t 0
n 1 n 1

rX 0 n n 1 t 1 n 2

t 0
n n 1 1 n 2 2

etc. It is thus verified directly that

P X 0 rX 0

P X 1 rX 0

2 P X 2 rX 0
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etc.

EXAMPLE 3.4.4 The Poisson Distribution
From Example 3.4.2, we have that

rX 0 e

rX 0 e

rX 0 2e

etc. It is again verified that

P X 0 rX 0

P X 1 rX 0

2 P X 2 rX 0

etc.

From Theorem 3.4.1, we can see why rX is called the probabilitygenerating func
tion. For, at least in the discrete case with the distribution concentrated on the non
negative integers, we can indeed generate the probabilities for X from rX We thus
see immediately that for a random variable X that takes values only in 0 1 2 ,
rX is unique. By this we mean that if X and Y are concentrated on 0 1 2 and
rX rY then X and Y have the same distribution. This uniqueness property of the
probabilitygenerating function can be very useful in trying to determine the distribu
tion of a random variable that takes only values in 0 1 2

It is clear that the probabilitygenerating function tells us a lot — in fact, everything
— about the distribution of random variables concentrated on the nonnegative integers.
But what about other random variables? It turns out that there are other quantities,
called moments, associated with random variables that are quite informative about their
distributions.

Definition 3.4.2 Let X be a random variable, and let k be a positive integer. Then
the kth moment of X is the quantity E Xk provided this expectation exists.

Note that if E Xk exists and is finite, it can be shown that E X l exists and is finite
when 0 l k.

The first moment is just the mean of the random variable. This can be taken as
a measure of where the central mass of probability for X lies in the real line, at least
when this distribution is unimodal (has a single peak) and is not too highly skewed. The
second moment E X2 together with the first moment, gives us the variance through
Var X E X2 E X 2 Therefore, the first two moments of the distribution tell
us about the location of the distribution and the spread, or degree of concentration, of
that distribution about the mean. In fact, the higher moments also provide information
about the distribution.

Many of the most important distributions of probability and statistics have all of
their moments finite; in fact, they have what is called a momentgenerating function.
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Definition 3.4.3 Let X be any random variable. Then its momentgenerating func
tion m X is defined by m X s E es X at s R1.

The following example computes the momentgenerating function of a wellknown
distribution.

EXAMPLE 3.4.5 The Exponential Distribution
Let X Exponential . Then for s ,

m X s E es X esx fX x dx
0

esx e x dx

0
e s x dx

e s x

s

x

x 0

e s 0

s

s
s 1

A comparison of Definitions 3.4.1 and 3.4.3 immediately gives the following.

Theorem 3.4.2 Let X be any random variable. Then m X s rX es .

This result can obviously help us evaluate some momentgenerating functions when
we have rX already.

EXAMPLE 3.4.6
Let Y Binomial n . Then we know that rY t t 1 n Hence, mY s
rY es es 1 n

EXAMPLE 3.4.7
Let Z Poisson . Then we know that rZ t e t 1 Hence, mZ s rZ es

e es 1

The following theorem tells us that once we know the momentgenerating function
mX t , we can compute all the moments E X , E X2 , E X3 , etc.

Theorem 3.4.3 Let X be any random variable. Suppose that for some s0 0, it is
true that mX s whenever s s0 s0 . Then

m X 0 1

m X 0 E X

m X 0 E X2

etc. In general,
m k

X 0 E Xk

where m k
X is the kth derivative of m X .

PROOF We know that m X s E es X . We have

m X 0 E e0X E e0 E 1 1
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Also, taking derivatives, we see3 that m X s E X es X , so

m X 0 E X e0X E Xe0 E X

Taking derivatives again, we see that m X s E X2es X , so

m X 0 E X2 e0X E X2e0 E X2

Continuing in this way, we obtain the general formula.

We now consider an application of Theorem 3.4.3

EXAMPLE 3.4.8 The Mean and Variance of the Exponential Distribution
Using the momentgenerating function computed in Example 3.4.5, we have

m X s 1 s 2 1 s 2

Therefore,
E X m X 0 0 2 2 1

as it should. Also,

E X2 m X 0 2 0 3 1 2 3 2 2

so we have

Var X E X2 E X 2 2 2 1 2 1 2

This provides an easy way of computing the variance of X .

EXAMPLE 3.4.9 The Mean and Variance of the Poisson Distribution
In Example 3.4.7, we obtained m Z s exp es 1 So we have

E X m X 0 e0 exp e0 1

E X2 m X 0 e0 exp e0 1 e0
2

exp e0 1 2

Therefore, Var X E X2 E X 2 2 2

Computing the momentgenerating function of a normal distribution is also impor
tant, but it is somewhat more difficult.

Theorem 3.4.4 If X N 0 1 then m X s es2 2.

PROOF Because X has density x 2 1 2 e x2 2, we have that

m X s E es X esx x dx esx 1

2
e x2 2 dx

1

2
esx x2 2 dx

1

2
e x s 2 2 s2 2 dx

es2 2 1

2
e x s 2 2 dx

3Strictly speaking, interchanging the order of derivative and expectation is justified by analytic function
theory and requires that m X s whenever s s0.
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Setting y x s (so that dy dx), this becomes (using Theorem 2.4.2)

m X s es2 2 1

2
e y2 2 dy es2 2 y dy es2 2

as claimed.

One useful property of both probabilitygenerating and momentgenerating func
tions is the following.

Theorem 3.4.5 Let X and Y be random variables that are independent. Then we
have
(a) rX Y t rX t rY t , and
(b) m X Y t m X t mY t .

PROOF Because X and Y are independent, so are t X and tY (by Theorem 2.8.5).
Hence, we know (by Theorems 3.1.3 and 3.2.3) that E t X tY E t X E tY . Using
this, we have

rX Y t E t X Y E t X tY E t X E tY rX t rY t

Similarly,

mX Y t E et X Y E et X etY E et X E etY mX t mY t

EXAMPLE 3.4.10
Let Y Binomial n . Then, as in Example 3.1.15, we can write

Y X1 Xn

where the Xi are i.i.d. with Xi Bernoulli . Hence, Theorem 3.4.5 says we must
have rY t rX1 t rX2 t rXn t But for any i ,

rXi t
x

t x P X x t1 t0 1 t 1

Hence, we must have

rY t t 1 t 1 t 1 t 1 n

as already verified in Example 3.4.1.

Momentgenerating functions, when defined in a neighborhood of 0, completely
define a distribution in the following sense. (We omit the proof, which is advanced.)

Theorem 3.4.6 (Uniqueness theorem) Let X be a random variable, such that for
some s0 0, we have m X s whenever s s0 s0 . Then if Y is some
other random variable with mY s mX s whenever s s0 s0 , then X and Y
have the same distribution.
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Theorems 3.4.1 and 3.4.6 provide a powerful technique for identifying distribu
tions. For example, if we determine that the momentgenerating function of X is
m X t exp s2 2 then we know, from Theorems 3.4.4 and 3.4.6, that X
N 0 1 We can use this approach to determine the distributions of some complicated
random variables.

EXAMPLE 3.4.11
Suppose that Xi N i

2
i for i 1 n and that these random variables are

independent. Consider the distribution of Y n
i 1 Xi

When n 1 we have (from Problem 3.4.15)

mY s exp 1s
2
1s2

2

Then, using Theorem 3.4.5, we have that

mY s
n

i 1

m Xi s
n

i 1

exp i s
2
i s2

2

exp
n

i 1
i s

n
i 1

2
i s2

2

From Problem 3.4.15, and applying Theorem 3.4.6, we have that

Y N
n

i 1
i

n

i 1

2
i

Generating functions can also help us with compound distributions, which are de
fined as follows.

Definition 3.4.4 Let X1 X2 be i.i.d., and let N be a nonnegative, integervalued
random variable which is independent of the Xi . Let

S
N

i 1

Xi (3.4.2)

Then S is said to have a compound distribution.

A compound distribution is obtained from a sum of i.i.d. random variables, where
the number of terms in the sum is randomly distributed independently of the terms in
the sum. Note that S 0 when N 0 Such distributions have applications in ar
eas like insurance, where the X1 X2 are claims and N is the number of claims
presented to an insurance company during a period. Therefore, S represents the total
amount claimed against the insurance company during the period. Obviously, the in
surance company wants to study the distribution of S, as this will help determine what
it has to charge for insurance to ensure a profit.

The following theorem is important in the study of compound distributions.
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Theorem 3.4.7 If S has a compound distribution as in (3.4.2), then
(a) E S E X1 E N .
(b) mS s rN m X1 s .

PROOF See Section 3.8 for the proof of this result.

3.4.1 Characteristic Functions (Advanced)

One problem with momentgenerating functions is that they can be infinite in any open
interval about s 0. Consider the following example.

EXAMPLE 3.4.12
Let X be a random variable having density

fX x
1 x2 x 1
0 otherwise.

Then

m X s E es X

1
esx 1 x2 dx

For any s 0, we know that esx grows faster than x2, so that limx esx x2 .
Hence, m X s whenever s 0.

Does X have any finite moments? We have that

E X
1

x 1 x2 dx
1

1 x dx ln x x
x 1

so, in fact, the first moment does not exist. From this we conclude that X does not have
any moments.

The random variable X in the above example does not satisfy the condition of
Theorem 3.4.3 that m X s whenever s s0, for some s0 0. Hence, The
orem 3.4.3 (like most other theorems that make use of momentgenerating functions)
does not apply. There is, however, a similarly defined function that does not suffer
from this defect, given by the following definition.

Definition 3.4.5 Let X be any random variable. Then we define its characteristic
function, cX , by

cX s E ei sX (3.4.3)

for s R1

So the definition of cX is just like the definition of m X , except for the introduction
of the imaginary number i 1. Using properties of complex numbers, we see
that (3.4.3) can also be written as cX s E cos s X i E sin sX for s R1

Consider the following examples.
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EXAMPLE 3.4.13 The Bernoulli Distribution
Let X Bernoulli . Then

cX s E ei sX ei s0 1 ei s1

1 1 ei s 1 eis

1 cos s i sin s

EXAMPLE 3.4.14
Let X have probability function given by

pX x

1 6 x 2
1 3 x 3
1 2 x 4
0 otherwise.

Then

cX s E ei sX eis2 1 6 ei s3 1 3 ei s4 1 2

1 6 cos 2s 1 3 cos 3s 1 2 cos 4s

1 6 i sin 2s 1 3 i sin 3s i 1 2 sin 4s

EXAMPLE 3.4.15
Let Z have probability function given by

pZ z
1 2 z 1
1 2 z 1
0 otherwise.

Then

cZ s E eis Z ei s 1 2 e i s 1 2

1 2 cos s 1 2 cos s 1 2 sin s 1 2 sin s

1 2 cos s 1 2 cos s 1 2 sin s 1 2 sin s cos s

Hence, in this case, cZ s is a real (not complex) number for all s R1.
Once we overcome our “fear” of imaginary and complex numbers, we can see

that the characteristic function is actually much better in some ways than the moment
generating function. The main advantage is that, because ei sX cos s X i sin s X
and ei sX 1, the characteristic function (unlike the momentgenerating function) is
always finite (although it could be a complex number).

Theorem 3.4.8 Let X be any random variable, and let s be any real number. Then
cX s is finite.

The characteristic function has many properties similar to the momentgenerating
function. In particular, we have the following. (The proof is just like the proof of
Theorem 3.4.3.)
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Theorem 3.4.9 Let X be any random variable with its first k moments finite. Then
cX 0 1, cX 0 i E X , cX 0 i2E X2 E X2 , etc. In general,

c k
X 0 ik E Xk , where i 1, and where c k

X is the kth derivative of cX .

We also have the following. (The proof is just like the proof of Theorem 3.4.5.)

Theorem 3.4.10 Let X and Y be random variables which are independent. Then
cX Y s cX s cY s .

For simplicity, we shall generally not use characteristic functions in this book.
However, it is worth keeping in mind that whenever we do anything with moment
generating functions, we could usually do the same thing in greater generality using
characteristic functions.

Summary of Section 3.4

The probabilitygenerating function of a random variable X is rX t E t X .

If X is discrete, then the derivatives of rX satisfy r k
X 0 k! P X k .

The kth moment of a random variable X is E Xk .

The momentgenerating function of a random variable X is mX s E es X

rX es .

The derivatives of m X satisfy m k
X 0 E Xk , for k 0 1 2 .

If X and Y are independent, then rX Y t rX t rY y and mX Y s
m X s mY s .

If m X s is finite in a neighborhood of s 0, then it uniquely characterizes the
distribution of X .

The characteristic function cX s E ei sX can be used in place of mX s to
avoid infinities.

EXERCISES

3.4.1 Let Z be a discrete random variable with P Z z 1 2z for z 1 2 3 .
(a) Compute rZ t . Verify that rZ 0 P Z 1 and rZ 0 2 P Z 2 .
(b) Compute m Z t . Verify that m Z 0 E Z and mZ 0 E Z2 .
3.4.2 Let X Binomial n . Use mX to prove that Var X n 1 .
3.4.3 Let Y Poisson . Use mY to compute the mean and variance of Y .
3.4.4 Let Y 3X 4. Compute rY t in terms of rX .

3.4.5 Let Y 3X 4. Compute mY s in terms of mX .
3.4.6 Let X Binomial n . Compute E X3 , the third moment of X .
3.4.7 Let Y Poisson . Compute E Y 3 , the third moment of Y .
3.4.8 Suppose P X 2 1 2, P X 5 1 3, and P X 7 1 6.
(a) Compute rX t for t R1.
(b) Verify that rX 0 P X 1 and rX 0 2P X 2 .
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(c) Compute m X s for s R1.
(d) Verify that m X 0 E X and m X 0 E X2 .

PROBLEMS

3.4.9 Suppose fX x 1 10 for 0 x 10, with fX x 0 otherwise.
(a) Compute m X s for s R1.
(b) Verify that m X 0 E X (Hint: L’Hôpital’s rule.)
3.4.10 Let X Geometric . Compute rX t and rX 0 2.
3.4.11 Let X NegativeBinomial r . Compute rX t and rX 0 2.
3.4.12 Let X Geometric .
(a) Compute m X s .
(b) Use m X to compute the mean of X .
(c) Use mX to compute the variance of X .
3.4.13 Let X NegativeBinomial r .
(a) Compute m X s .
(b) Use m X to compute the mean of X .
(c) Use mX to compute the variance of X .
3.4.14 If Y a bX where a and b are constants, then show that rY t tarX tb

and mY t eatm X bt
3.4.15 Let Z N 2 . Show that

mZ s exp s
2s2

2

(Hint: Write Z X where X N 0 1 , and use Theorem 3.4.4.)

3.4.16 Let Y be distributed according to the Laplace distribution (see Problem 2.4.22).
(a) Compute mY s . (Hint: Break up the integral into two pieces.)
(b) Use mY to compute the mean of Y .
(c) Use mY to compute the variance of Y .

3.4.17 Compute the kth moment of the Weibull distribution in terms of (see
Problem 2.4.19).

3.4.18 Compute the kth moment of the Pareto distribution (see Problem 2.4.20).
(Hint: Make the transformation u 1 x 1 and recall the beta distribution.)
3.4.19 Compute the kth moment of the Lognormal distribution (see Problem 2.6.17).
(Hint: Make the transformation z ln x and use Problem 3.4.15.)
3.4.20 Prove that the momentgenerating function of the Gamma distribution is
given by t when t .
3.4.21 Suppose that Xi Poisson i and X1 Xn are independent. Using moment
generating functions, determine the distribution of Y n

i 1 X i

3.4.22 Suppose that Xi NegativeBinomial ri and X1 Xn are independent.
Using momentgenerating functions, determine the distribution of Y n

i 1 Xi

3.4.23 Suppose that Xi Gamma i and X1 Xn are independent. Using
momentgenerating functions, determine the distribution of Y n

i 1 Xi
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3.4.24 Suppose X1 X2 is i.i.d. Exponential and N Poisson independent
of the X i . Determine the momentgenerating function of SN Determine the first
moment of this distribution by differentiating this function.
3.4.25 Suppose X1 X2 are i.i.d. Exponential random variables and N
Geometric independent of the X i . Determine the momentgenerating function
of SN Determine the first moment of this distribution by differentiating this function.
3.4.26 Let X Bernoulli . Use cX s to compute the mean of X .
3.4.27 Let Y Binomial n .
(a) Compute the characteristic function cY s . (Hint: Make use of cX s in Problem
3.4.26.)
(b) Use cY s to compute the mean of Y .

3.4.28 The characteristic function of the Cauchy distribution (see Problem 2.4.21) is
given by c t e t Use this to determine the characteristic function of the sample
mean

X
1

n

n

i 1

X i

based on a sample of n from the Cauchy distribution. Explain why this implies that the
sample mean is also Cauchy distributed. What do you find surprising about this result?

3.4.29 The kth cumulant (when it exists) of a random variable X is obtained by cal
culating the kth derivative of ln cX s with respect to s evaluating this at s 0 and
dividing by ik Evaluate cX s and all the cumulants of the N 2 distribution.

3.5 Conditional Expectation
We have seen in Sections 1.5 and 2.8 that conditioning on some event, or some random
variable, can change various probabilities. Now, because expectations are defined in
terms of probabilities, it seems reasonable that expectations should also change when
conditioning on some event or random variable. Such modified expectations are called
conditional expectations, as we now discuss.

3.5.1 Discrete Case

The simplest case is when X is a discrete random variable, and A is some event of
positive probability. We have the following.

Definition 3.5.1 Let X be a discrete random variable, and let A be some event with
P A 0. Then the conditional expectation of X given A, is equal to

E X A
x R1

x P X x A
x R1

x
P X x A

P A

EXAMPLE 3.5.1
Consider rolling a fair sixsided die, so that S 1 2 3 4 5 6 . Let X be the number
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showing, so that X s s for s S. Let A 3 5 6 be the event that the die shows
3, 5, or 6. What is E X A ?

Here we know that

P X 3 A P X 3 X 3 5 or 6 1 3

and that, similarly, P X 5 A P X 6 A 1 3. Hence,

E X A
x R1

x P X x A

3 P X 3 A 5 P X 5 A 6 P X 6 A

3 1 3 5 1 3 6 1 3 14 3

Often we wish to condition on the value of some other random variable. If the other
random variable is also discrete, and if the conditioned value has positive probability,
then this works as above.

Definition 3.5.2 Let X and Y be discrete random variables, with P Y y 0.
Then the conditional expectation of X given Y y, is equal to

E X Y y
x R1

x P X x Y y
x R1

x
pX Y x y

pY y

EXAMPLE 3.5.2
Suppose the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

Then

E X Y 0
x R1

x P X x Y 0

5P X 5 Y 0 8P X 8 Y 0

5
P X 5 Y 0

P Y 0
8

P X 8 Y 0

P Y 0

5
1 7

1 7 3 7
8

3 7

1 7 3 7

29

4

Similarly,

E X Y 4
x R1

x P X x Y 4

5P X 5 Y 4 8P X 8 Y 4

5
1 7

1 7 1 7
8

1 7

1 7 1 7
13 2
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Also,

E X Y 3
x R1

x P X x Y 3 5P X 5 Y 3

5
1 7

1 7
5

Sometimes we wish to condition on a random variable Y , without specifying in ad
vance on what value of Y we are conditioning. In this case, the conditional expectation
E X Y is itself a random variable — namely, it depends on the (random) value of Y
that occurs.

Definition 3.5.3 Let X and Y be discrete random variables. Then the conditional
expectation of X given Y , is the random variable E X Y which is equal to
E X Y y when Y y. In particular, E X Y is a random variable that
depends on the random value of Y .

EXAMPLE 3.5.3
Suppose again that the joint probability function of X and Y is given by

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

We have already computed that E X Y 0 29 4, E X Y 4 13 2, and
E X Y 3 5. We can express these results together by saying that

E X Y
29 4 Y 0
5 Y 3
13 2 Y 4

That is, E X Y is a random variable, which depends on the value of Y . Note that,
because P Y y 0 for y 0 3 4, the random variable E X Y is undefined in
that case; but this is not a problem because that case will never occur.

Finally, we note that just like for regular expectation, conditional expectation is
linear.

Theorem 3.5.1 Let X1 X2, and Y be random variables; let A be an event; let a b,
and y be real numbers; and let Z aX1 bX2. Then
(a) E Z A aE X1 A bE X2 A .
(b) E Z Y y aE X1 Y y bE X2 Y y .
(c) E Z Y aE X1 Y bE X2 Y .
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3.5.2 Absolutely Continuous Case

Suppose now that X and Y are jointly absolutely continuous. Then conditioning on
Y y, for some particular value of y, seems problematic, because P Y y 0.
However, we have already seen in Section 2.8.2 that we can define a conditional density
fX Y x y that gives us a density function for X , conditional on Y y. And because
density functions give rise to expectations, similarly conditional density functions give
rise to conditional expectations, as follows.

Definition 3.5.4 Let X and Y be jointly absolutely continuous random variables,
with joint density function fX Y x y . Then the conditional expectation of X given
Y y, is equal to

E X Y y
x R1

x fX Y x y dx
x R1

x
fX Y x y

fY y
dx

EXAMPLE 3.5.4
Let X and Y be jointly absolutely continuous, with joint density function fX Y given
by

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.

Then for 0 y 1,

fY y fX Y x y dx
1

0
4x2y 2y5 dx 4y 3 2y5

Hence,

E X Y y
x R1

x
fX Y x y

fY y
dx

1

0
x

4x2y 2y5

4y 3 2y5 dx

y y5

4y 3 2y5

1 y4

4 3 2y4

As in the discrete case, we often wish to condition on a random variable without
specifying in advance the value of that variable. Thus, E X Y is again a random
variable, depending on the random value of Y .

Definition 3.5.5 Let X and Y be jointly absolutely continuous random variables.
Then the conditional expectation of X given Y , is the random variable E X Y
which is equal to E X Y y when Y y. Thus, E X Y is a random variable
that depends on the random value of Y .

EXAMPLE 3.5.5
Let X and Y again have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.
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We already know that E X Y y 1 y4 4 3 2y4 This formula is valid
for any y between 0 and 1, so we conclude that E X Y 1 Y 4 4 3 2Y 4

Note that in this last formula, Y is a random variable, so E X Y is also a random
variable.

Finally, we note that in the absolutely continuous case, conditional expectation is
still linear, i.e., Theorem 3.5.1 continues to hold.

3.5.3 Double Expectations

Because the conditional expectation E X Y is itself a random variable (as a function
of Y ), it makes sense to take its expectation, E E X Y . This is a double expectation.
One of the key results about conditional expectation is that it is always equal to E X .

Theorem 3.5.2 (Theorem of total expectation) If X and Y are random variables,
then E E X Y E X .

This theorem follows as a special case of Theorem 3.5.3 on the next page. But it
also makes sense intuitively. Indeed, conditioning on Y will change the conditional
value of X in various ways, sometimes making it smaller and sometimes larger, de
pending on the value of Y . However, if we then average over all possible values of Y ,
these various effects will cancel out, and we will be left with just E X .

EXAMPLE 3.5.6
Suppose again that X and Y have joint probability function

pX Y x y

1 7 x 5 y 0
1 7 x 5 y 3
1 7 x 5 y 4
3 7 x 8 y 0
1 7 x 8 y 4
0 otherwise

Then we know that

E X Y y
29 4 y 0
5 y 3
13 2 y 4

Also, P Y 0 1 7 3 7 4 7, P Y 3 1 7, and P Y 4
1 7 1 7 2 7. Hence,

E E X Y

y R1

E X Y y P Y y

E X Y 0 P Y 0 E X Y 3 P Y 3 E X Y 4 P Y 4

29 4 4 7 5 1 7 13 2 2 7 47 7
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On the other hand, we compute directly that E X 5P X 5 8P X 8
5 3 7 8 4 7 47 7. Hence, E E X Y E X , as claimed.

EXAMPLE 3.5.7
Let X and Y again have joint density

fX Y x y
4x2y 2y5 0 x 1 0 y 1
0 otherwise.

We already know that

E X Y 1 Y 4 4 3 2Y 4

and that fY y 4y 3 2y5 for 0 y 1. Hence,

E E X Y

E
1 Y 4

4 3 2Y 4 E X Y y fY y dy

1

0

1 y4

4 3 2y4 4y 3 2y5 dy
1

0
y y5 dy 1 2 1 6 2 3

On the other hand,

E X x fX Y x y dy dx
1

0

1

0
x 4x2 y 2y5 dy dx

1

0
x 2x2 2 6 dx

1

0
2x3 x 3 dx 2 4 1 6 2 3

Hence, E E X Y E X , as claimed.

Theorem 3.5.2 is a special case (with g y 1) of the following more general
result, which in fact characterizes conditional expectation.

Theorem 3.5.3 Let X and Y be random variables, and let g : R1 R1 be any
function. Then E g Y E X Y E g Y X

PROOF See Section 3.8 for the proof of this result.

We also note the following related result. It says that, when conditioning on Y , any
function of Y can be factored out since it is effectively a constant.

Theorem 3.5.4 Let X and Y be random variables, and let g : R1 R1 be any
function. Then E g Y X Y g Y E X Y .

PROOF See Section 3.8 for the proof of this result.

Finally, because conditioning twice on Y is the same as conditioning just once on
Y , we immediately have the following.

Theorem 3.5.5 Let X and Y be random variables. Then E E X Y Y E X Y .
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3.5.4 Conditional Variance (Advanced)

In addition to defining conditional expectation, we can define conditional variance. As
usual, this involves the expected squared distance of a random variable to its mean.
However, in this case, the expectation is a conditional expectation. In addition, the
mean is a conditional mean.

Definition 3.5.6 If X is a random variable, and A is an event with P A 0, then
the conditional variance of X given A, is equal to

Var X A E X E X A 2 A E X2 A E X A 2

Similarly, if Y is another random variable, then

Var X Y y E X E X Y y 2 Y y

E X2 Y y E X Y y 2

and Var X Y E X E X Y 2 Y E X2 Y E X Y 2

EXAMPLE 3.5.8
Consider again rolling a fair sixsided die, so that S 1 2 3 4 5 6 , with P s
1 6 and X s s for s S, and with A 3 5 6 . We have already computed that
P X s A 1 3 for s A, and that E X A 14 3. Hence,

Var X A E X E X A 2 A

E X 14 3 2 A
s S

s 14 3 2 P X s A

3 14 3 2 1 3 5 14 3 2 1 3 6 14 3 2 1 3 14 9 1 56

By contrast, because E X 7 2, we have

Var X E X E X 2
6

x 1

x 7 2 2 1 6 35 12 2 92

Hence, we see that the conditional variance Var X A is much smaller than the uncon
ditional variance Var X . This indicates that, in this example, once we know that event
A has occurred, we know more about the value of X than we did originally.

EXAMPLE 3.5.9
Suppose X and Y have joint density function

fX Y x y
8xy 0 x y 1
0 otherwise.

We have fY y 4y3, fX Y x y 8xy 4y3 2x y2 for 0 x y and so

E X Y y
y

0
x

2x

y2 dx
y

0

2x2

y2 dx
2y3

3y2

2y

3



180 Section 3.5: Conditional Expectation

Therefore,

Var X Y y E X E X Y y 2 Y y

y

0
x

2y

3

2 2x

y2
dx

1

2y2

8

9y

4

9

Finally, we note that conditional expectation and conditional variance satisfy the
following useful identity.

Theorem 3.5.6 For random variables X and Y ,

Var X Var E X Y E Var X Y

PROOF See Section 3.8 for the proof of this result.

Summary of Section 3.5

If X is discrete, then the conditional expectation of X given an event A is equal
to E X A x R1 x P X x A .

If X and Y are discrete random variables, then E X Y is itself a random vari
able, with E X Y equal to E X Y y when Y y.

If X and Y are jointly absolutely continuous, then E X Y is itself a random
variable, with E X Y equal to E X Y y when Y y where E X Y
y x fX Y x y dx .

Conditional expectation is linear.

We always have that E g Y E X Y E g Y X , and E E X Y Y
E X Y .

Conditional variance is given by Var X Y E X2 Y E X Y 2.

EXERCISES

3.5.1 Suppose X and Y are discrete, with

pX Y x y

1 5 x 2 y 3
1 5 x 3 y 2
1 5 x 3 y 3
1 5 x 2 y 2
1 5 x 3 y 17
0 otherwise

(a) Compute E X Y 3 .
(b) Compute E Y X 3 .
(c) Compute E X Y .
(d) Compute E Y X .
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3.5.2 Suppose X and Y are jointly absolutely continuous, with

fX Y x y
9 xy x5y5 16 000 900 0 x 4 0 y 5
0 otherwise

(a) Compute fX x .
(b) Compute fY y .
(c) Compute E X Y .
(d) Compute E Y X .
(e) Compute E E X Y , and verify that it is equal to E X .
3.5.3 Suppose X and Y are discrete, with

pX Y x y

1 11 x 4 y 2
2 11 x 4 y 3
4 11 x 4 y 7
1 11 x 6 y 2
1 11 x 6 y 3
1 11 x 6 y 7
1 11 x 6 y 13
0 otherwise

(a) Compute E Y X 6 .
(b) Compute E Y X 4 .
(c) Compute E Y X .
3.5.4 Let pX Y be as in the previous exercise.
(a) Compute E X Y 2 .
(b) Compute E X Y 3 .
(c) Compute E X Y 7 .
(d) Compute E X Y 13 .
(e) Compute E X Y .
3.5.5 Suppose that a student must choose one of two summer job offers. If it is not nec
essary to take a summer course, then a job as a waiter will produce earnings (rounded
to the nearest $1000) with the following probability distribution.

$1000 $2000 $3000 $4000
0 1 0 3 0 4 0 2

If it is necessary to take a summer course, then a parttime job at a hotel will produce
earnings (rounded to the nearest $1000) with the following probability distribution.

$1000 $2000 $3000 $4000
0 3 0 4 0 2 0 1

If the probability that the student will have to take the summer course is 0 6, then
determine the student’s expected summer earnings.
3.5.6 Suppose you roll two fair sixsided dice. Let X be the number showing on the
first die, and let Z be the sum of the two numbers showing.
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(a) Compute E X .
(b) Compute E Z X 1 .
(c) Compute E Z X 6 .
(d) Compute E X Z 2 .
(e) Compute E X Z 4 .
(f) Compute E X Z 6 .
(g) Compute E X Z 7 .
(h) Compute E X Z 11 .
3.5.7 Suppose you roll two fair sixsided dice. Let Z be the sum of the two numbers
showing, and let W be the product of the two numbers showing.
(a) Compute E Z W 4 .
(b) Compute E W Z 4 .
3.5.8 Suppose you roll one fair sixsided die and then ip as many coins as the number
showing on the die. (For example, if the die shows 4, then you ip four coins.) Let X
be the number showing on the die, and Y be the number of heads obtained.
(a) Compute E Y X 5 .
(b) Compute E X Y 0 .
(c) Compute E X Y 2 .
3.5.9 Suppose you ip three fair coins. Let X be the number of heads obtained, and
let Y 1 if the first coin shows heads, otherwise Y 0.
(a) Compute E X Y 0 .
(b) Compute E X Y 1 .
(c) Compute E Y X 0 .
(d) Compute E Y X 1 .
(e) Compute E Y X 2 .
(f) Compute E Y X 3 .
(g) Compute E Y X .
(h) Verify directly that E[E Y X ] E Y .
3.5.10 Suppose you ip one fair coin and roll one fair sixsided die. Let X be the
number showing on the die, and let Y 1 if the coin is heads with Y 0 if the coin is
tails. Let Z XY .
(a) Compute E Z .
(b) Compute E Z X 4 .
(c) Compute E Y X 4 .
(d) Compute E Y Z 4 .
(e) Compute E X Z 4 .
3.5.11 Suppose X and Y are jointly absolutely continuous, with joint density function
fX Y x y 6 19 x2 y3 for 0 x 2 and 0 y 1, otherwise fX Y x y
0.
(a) Compute E X .
(b) Compute E Y .
(c) Compute E X Y .
(d) Compute E Y X .
(e) Verify directly that E[E X Y ] E X .
(f) Verify directly that E[E Y X ] E Y .
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PROBLEMS

3.5.12 Suppose there are two urns. Urn I contains 100 chips: 30 are labelled 1, 40
are labelled 2, and 30 are labelled 3. Urn 2 contains 100 chips: 20 are labelled 1,
50 are labelled 2, and 30 are labelled 3. A coin is tossed and if a head is observed,
then a chip is randomly drawn from urn 1, otherwise a chip is randomly drawn from
urn 2. The value Y on the chip is recorded. If an occurrence of a head on the coin
is denoted by X 1, a tail by X 0 and X Bernoulli 3 4 then determine
E X Y E Y X E Y and E X
3.5.13 Suppose that five coins are each tossed until the first head is obtained on each
coin and where each coin has probability of producing a head. If you are told that the
total number of tails observed is Y 10 then determine the expected number of tails
observed on the first coin.
3.5.14 (Simpson’s paradox) Suppose that the conditional distributions of Y given X
are shown in the following table. For example, pY X 1 i could correspond to the
probability that a randomly selected heart patient at hospital i has a successful treat
ment.

pY X 0 1 pY X 1 1
0 030 0 970

pY X 0 2 pY X 1 2
0 020 0 980

(a) Compute E Y X
(b) Now suppose that patients are additionally classified as being seriously ill (Z 1),
or not seriously ill (Z 0). The conditional distributions of Y given X Z , are
shown in the following tables. Compute E Y X Z

pY X Z 0 1 0 pY X Z 1 1 0
0 010 0 990

pY X Z 0 2 0 pY X Z 1 2 0
0 013 0 987

pY X Z 0 1 1 pY X Z 1 1 1
0 038 0 962

pY X Z 0 2 1 pY X Z 1 2 1
0 040 0 960

(c) Explain why the conditional distributions in part (a) indicate that hospital 2 is the
better hospital for a patient who needs to undergo this treatment, but all the conditional
distributions in part (b) indicate that hospital 1 is the better hospital. This phenomenon
is known as Simpson’s paradox.
(d) Prove that, in general, pY X y x z pY X Z y x z pZ X z x and E Y X

E E Y X Z X
(e) If the conditional distributions pZ X x corresponding to the example discussed
in parts (a) through (c) are given in the following table, verify the result in part (d)
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numerically and explain how this resolves Simpson’s paradox.

pZ X 0 1 pZ X 1 1
0 286 0 714

pZ X 0 2 pZ X 1 2
0 750 0 250

3.5.15 Present an example of a random variable X , and an event A with P A 0,
such that Var X A Var X . (Hint: Suppose S 1 2 3 with X s s, and
A 1 3 .)
3.5.16 Suppose that X , given Y y, is distributed Gamma y and that the marginal
distribution of Y is given by 1 Y Exponential Determine E X
3.5.17 Suppose that X Y Bivariate Normal 1 2 1 2 . Use (2.7.1) (when
given Y y and its analog (when given X x to determine E X Y , E Y X ,
Var X Y and Var Y X
3.5.18 Suppose that X1 X2 X3 Multinomial n 1 2 3 . Determine E X1 X2
and Var X1 X2 . (Hint: Show that X1 given X2 x2 has a binomial distribution.)
3.5.19 Suppose that X1 X2 Dirichlet 1 2 3 . Determine E X1 X2 and
Var X1 X2 (Hint: First show that X1 1 x2 given X2 x2 has a beta dis
tribution and then use Problem 3.3.24.)
3.5.20 Let fX Y be as in Exercise 3.5.2.
(a) Compute Var X .
(b) Compute Var E X Y .
(c) Compute Var X Y .
(d) Verify that Var X Var E X Y E Var X Y .

3.5.21 Suppose we have three discrete random variables X Y and Z We say that X
and Y are conditionally independent, given Z if

pX Y Z x y z pX Z x z pY Z y z

for every x y and z such that P Z z 0 Prove that when X and Y are condition
ally independent, given Z then

E g X h Y Z E g X Z E h Y Z .

3.6 Inequalities
Expectation and variance are closely related to the underlying distributions of random
variables. This relationship allows us to prove certain inequalities that are often very
useful. We begin with a classic result, Markov’s inequality, which is very simple but
also very useful and powerful.
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Theorem 3.6.1 (Markov’s inequality) If X is a nonnegative random variable, then
for all a 0,

P X a
E X

a
That is, the probability that X exceeds any given value a is no more than the mean
of X divided by a.

PROOF Define a new random variable Z by

Z
a X a
0 X a

Then clearly Z X , so that E Z E X by monotonicity. On the other hand,

E Z a P Z a 0 P Z 0 a P Z a a P X a

So, E X E Z a P X a . Rearranging, P X a E X a, as claimed.

Intuitively, Markov’s inequality says that if the expected value of X is small, then
it is unlikely that X will be too large. We now consider some applications of Theorem
3.6.1.

EXAMPLE 3.6.1
Suppose P X 3 1 2, P X 4 1 3, and P X 7 1 6. Then E X
3 1 2 4 1 3 7 1 6 4. Hence, setting a 6, Markov’s inequality says that
P X 6 4 6 2 3. In fact, P X 6 1 6 2 3.

EXAMPLE 3.6.2
Suppose P X 2 P X 8 1 2. Then E X 2 1 2 8 1 2 5.
Hence, setting a 8, Markov’s inequality says that P X 8 5 8. In fact,
P X 8 1 2 5 8.

EXAMPLE 3.6.3
Suppose P X 0 P X 2 1 2. Then E X 0 1 2 2 1 2 1.
Hence, setting a 2, Markov’s inequality says that P X 2 1 2. In fact,
P X 2 1 2, so Markov’s inequality is an equality in this case.

Markov’s inequality is also used to prove Chebychev’s inequality, perhaps the most
important inequality in all of probability theory.

Theorem 3.6.2 (Chebychev’s inequality) Let Y be an arbitrary random variable,
with finite mean Y . Then for all a 0,

P Y Y a
Var Y

a2

PROOF Set X Y Y
2. Then X is a nonnegative random variable. Thus, using

Theorem 3.6.1, we have P Y Y a P X a2 E X a2 Var Y a2

and this establishes the result
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Intuitively, Chebychev’s inequality says that if the variance of Y is small, then it
is unlikely that Y will be too far from its mean value Y . We now consider some
examples.

EXAMPLE 3.6.4
Suppose again that P X 3 1 2, P X 4 1 3, and P X 7 1 6.
Then E X 4 as above. Also, E X2 9 1 2 16 1 3 49 1 6 18, so
that Var X 18 42 2. Hence, setting a 1, Chebychev’s inequality says
that P X 4 1 2 12 2, which tells us nothing because we always have
P X 4 1 1. On the other hand, setting a 3, we get P X 4 3
2 32 2 9, which is true because in fact P X 4 3 P X 7 1 6 2 9.

EXAMPLE 3.6.5
Let X Exponential 3 , and let a 5. Then E X 1 3 and Var X 1 9. Hence,
by Chebychev’s inequality with a 1 2, P X 1 3 1 2 1 9 1 2 2 4 9.
On the other hand, because X 0, P X 1 3 1 2 P X 5 6 , and
by Markov’s inequality, P X 5 6 1 3 5 6 2 5. Because 2 5 4 9, we
actually get a better bound from Markov’s inequality than from Chebychev’s inequality
in this case.

EXAMPLE 3.6.6
Let Z N 0 1 , and a 5. Then by Chebychev’s inequality, P Z 5 1 5.

EXAMPLE 3.6.7
Let X be a random variable having very small variance. Then Chebychev’s inequality
says that P X X a is small whenever a is not too small. In other words, usually
X X is very small, i.e., X X . This makes sense, because if the variance of X

is very small, then usually X is very close to its mean value X .

Inequalities are also useful for covariances, as follows.

Theorem 3.6.3 (Cauchy–Schwartz inequality) Let X and Y be arbitrary random
variables, each having finite, nonzero variance. Then

Cov X Y Var X Var Y

Furthermore, if Var Y 0, then equality is attained if and only if X X
Y Y where Cov X Y Var Y .

PROOF See Section 3.8 for the proof.

The Cauchy–Schwartz inequality says that if the variance of X or Y is small, then
the covariance of X and Y must also be small.

EXAMPLE 3.6.8
Suppose X C is a constant. Then Var X 0. It follows from the Cauchy–
Schwartz inequality that, for any random variable Y , we must have Cov X Y
Var X Var Y 1 2 0 Var Y 1 2 0 so that Cov X Y 0.
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Recalling that the correlation of X and Y is defined by

Corr X Y
Cov X Y

Var X Var Y

we immediately obtain the following important result (which has already been referred
to, back when correlation was first introduced).

Corollary 3.6.1 Let X and Y be arbitrary random variables, having finite means
and finite, nonzero variances. Then Corr X Y 1 Furthermore, Corr X Y
1 if and only if

X X
Cov X Y

Var Y
Y Y

So the correlation between two random variables is always between 1 and 1. We
also see that X and Y are linearly related if and only if Corr X Y 1 and that
this relationship is increasing (positive slope) when Corr X Y 1 and decreasing
(negative slope) when Corr X Y 1

3.6.1 Jensen’s Inequality (Advanced)

Finally, we develop a more advanced inequality that is sometimes very useful. A func
tion f is called convex if for every x y, the line segment from x f x to y f y
lies entirely above the graph of f as depicted in Figure 3.6.1.

2 3 4 5

100

200

300

400

500

600

x

 f

Figure 3.6.1: Plot of the convex function f x x4 and the line segment joining 2 f 2 to
4 f 4 .

In symbols, we require that for every x y and every 0 1, we have
f x 1 f y f x 1 y . Examples of convex functions include

f x x2, f x x4, and f x max x C for any real number C . We have the
following.

Theorem 3.6.4 (Jensen’s inequality) Let X be an arbitrary random variable, and let
f : R1 R1 be a convex function such that E f X is finite. Then f E X
E f X Equality occurs if and only if f X a bX for some a and b
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PROOF Because f is convex, we can find a linear function g x ax b such
that g E X f E X and g x f x for all x R1 (see, for example, Figure
3.6.2).

2.5 3.0 3.5 4.0
0

50

100

150

200

250

x

 f

Figure 3.6.2: Plot of the convex function f x x4 and the function
g x 81 108 x 3 satisfying g x f x on the interval 2 4

But then using monotonicity and linearity, we have E f X E g X
E aX b aE X b g E X f E X as claimed.

We have equality if and only if 0 E f X g X Because f X g X 0
this occurs (using Challenge 3.3.29) if and only if f X g X aX b with
probability 1.

EXAMPLE 3.6.9
Let X be a random variable with finite variance. Then setting f x x2, Jensen’s
inequality says that E X2 E X 2. Of course, we already knew this because
E X2 E X 2 Var X 0.

EXAMPLE 3.6.10
Let X be a random variable with finite fourth moment. Then setting f x x4,
Jensen’s inequality says that E X4 E X 4.

EXAMPLE 3.6.11
Let X be a random variable with finite mean, and let M R1. Then setting f x
max x M , we have that E max X M max E X M by Jensen’s inequality. In
fact, we could also have deduced this from the monotonicity property of expectation,
using the two inequalities max X M X and max X M M.

Summary of Section 3.6

For nonnegative X Markov’s inequality says P X a E X a.

Chebychev’s inequality says P Y Y a Var Y a2.

The Cauchy–Schwartz inequality says Cov X Y Var X Var Y 1 2, so
that Corr X Y 1.
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Jensen’s inequality says f E X E f X whenever f is convex.

EXERCISES

3.6.1 Let Z Poisson 3 . Use Markov’s inequality to get an upper bound on P Z
7 .
3.6.2 Let X Exponential 5 . Use Markov’s inequality to get an upper bound on
P X 3 and compare it with the precise value.
3.6.3 Let X Geometric 1 2 .
(a) Use Markov’s inequality to get an upper bound on P X 9 .
(b) Use Markov’s inequality to get an upper bound on P X 2 .
(c) Use Chebychev’s inequality to get an upper bound on P X 1 1 .
(d) Compare the answers obtained in parts (b) and (c).
3.6.4 Let Z N 5 9 . Use Chebychev’s inequality to get an upper bound on P Z
5 30 .
3.6.5 Let W Binomial 100 1 2 , as in the number of heads when ipping 100 fair
coins. Use Chebychev’s inequality to get an upper bound on P W 50 10 .
3.6.6 Let Y N 0 100 , and let Z Binomial 80 1 4 . Determine (with explana
tion) the largest and smallest possible values of Cov Y Z .
3.6.7 Let X Geometric 1 11 . Use Jensen’s inequality to determine a lower bound
on E X4 , in two different ways.
(a) Apply Jensen’s inequality to X with f x x4.
(b) Apply Jensen’s inequality to X2 with f x x2.
3.6.8 Let X be the number showing on a fair sixsided die. What bound does Cheby
chev’s inequality give for P X 5 or X 2 ?
3.6.9 Suppose you ip four fair coins. Let Y be the number of heads obtained.
(a) What bound does Chebychev’s inequality give for P Y 3 or Y 1 ?
(b) What bound does Chebychev’s inequality give for P Y 4 or Y 0 ?

3.6.10 Suppose W has density function f 3 2 for 0 1, otherwise
f 0.
(a) Compute E W .
(b) What bound does Chebychev’s inequality give for P W E W 1 4 ?

3.6.11 Suppose Z has density function f z z3 4 for 0 z 2, otherwise f z
0.
(a) Compute E Z .
(b) What bound does Chebychev’s inequality give for P Z E Z 1 2 ?

3.6.12 Suppose Var X 4 and Var Y 9.
(a) What is the largest possible value of Cov X Y ?
(b) What is the smallest possible value of Cov X Y ?
(c) Suppose Z 3X 2. Compute Var Z and Cov X Z , and compare your answer
with part (a).
(d) Suppose W 3X 2. Compute Var W and Cov X W , and compare your
answer with part (b).
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3.6.13 Suppose a species of beetle has length 35 millimeters on average. Find an upper
bound on the probability that a randomly chosen beetle of this species will be over 80
millimeters long.

PROBLEMS

3.6.14 Prove that for any 0 and 0, there is a positive integer M, such that if X
is the number of heads when ipping M fair coins, then P X M 1 2 .
3.6.15 Prove that for any and 2 0, there is a 0 and a random variable X with
E X and Var X 2, such that Chebychev’s inequality holds with equality,
i.e., such that P X a 2 a2.
3.6.16 Suppose that X Y is uniform on the set x1 y1 xn yn where the
x1 xn are distinct values and the y1 yn are distinct values.

(a) Prove that X is uniformly distributed on x1 xn with mean given by x
n 1 n

i 1 xi and variance given by s2
X n 1 n

i 1 xi x 2

(b) Prove that the correlation coefficient between X and Y is given by

rXY

n
i 1 xi x yi y

n
i 1 xi x 2 n

i 1 yi y 2

sXY

sX sY

where sXY n 1 n
i 1 xi x yi y The value sXY is referred to as the sample

covariance and rXY is referred to as the sample correlation coefficient when the values
x1 y1 xn yn are an observed sample from some bivariate distribution.

(c) Argue that rXY is also the correlation coefficient between X and Y when we drop
the assumption of distinctness for the xi and yi .
(d) Prove that 1 rXY 1 and state the conditions under which rXY 1
3.6.17 Suppose that X is uniformly distributed on x1 xn and so has mean x
n 1 n

i 1 xi and variance s2
X n 1 n

i 1 xi x 2 (see Problem 3.6.16(a)) What is
the largest proportion of the values xi that can lie outside x 2sX x 2sX ?

3.6.18 Suppose that X is distributed with density given by fX x 2 x3 for x 1
and is 0 otherwise.
(a) Prove that fX is a density.
(b) Calculate the mean of X
(c) Compute P X k and compare this with the upper bound on this quantity given
by Markov’s inequality.
(d) What does Chebyshev’s inequality say in this case?

3.6.19 Let g x max x 10 .
(a) Verify that g is a convex function.
(b) Suppose Z Exponential 5 . Use Jensen’s inequality to obtain a lower bound on
E g Z .

3.6.20 It can be shown that a function f with continuous second derivative, is convex
on a b if f x 0 for all x a b
(a) Use the above fact to show that f x x p is convex on 0 whenever p 1
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(b) Use part (a) to prove that E X p 1 p E X whenever p 1
(c) Prove that Var X 0 if and only if X is degenerate at a constant c

CHALLENGES

3.6.21 Determine (with proof) all functions that are convex and whose negatives are
also convex. (That is, find all functions f such that f is convex, and also f is
convex.)

3.7 General Expectations (Advanced)
So far we have considered expected values separately for discrete and absolutely con
tinuous random variables only. However, this separation into two different “cases” may
seem unnatural. Furthermore, we know that some random variables are neither discrete
nor continuous — for example, mixtures of discrete and continuous distributions.

Hence, it seems desirable to have a more general definition of expected value. Such
generality is normally considered in the context of general measure theory, an advanced
mathematical subject. However, it is also possible to give a general definition in ele
mentary terms, as follows.

Definition 3.7.1 Let X be an arbitrary random variable (perhaps neither discrete
nor continuous). Then the expected value of X is given by

E X
0

P X t dt
0

P X t dt

provided either 0 P X t dt or 0 P X t dt

This definition appears to contradict our previous definitions of E X . However, in
fact, there is no contradiction, as the following theorem shows.

Theorem 3.7.1
(a) Let X be a discrete random variable with distinct possible values x1 x2
and put pi P X xi . Then Definition 3.7.1 agrees with the previous definition
of E X . That is,

0
P X t dt

0
P X t dt

i

xi pi

(b) Let X be an absolutely continuous random variable with density fX . Then
Definition 3.7.1 agrees with the previous definition of E X . That is,

0
P X t dt

0

P X t dt x fX x dx

PROOF The key to the proof is switching the order of the integration/summation.
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(a) We have

0
P X t dt

0 i xi t

pi dt
i

pi

xi

0
dt

i

pi xi

as claimed.

(b) We have

0
P X t dt

0 t
fX x dx dt

0

x

0
fX x dt dx

0
x fX x dx

Similarly,

0

P X t dt
0 t

fX x dx dt
0 0

x
fX x dt dx

0
x fX x dx

Hence,

0
P X t dt

0

P X t dt
0

x fX x dx
0

x fX x dx

x fX x dx

as claimed.

In other words, Theorem 3.7.1 says that Definition 3.7.1 includes our previous defi
nitions of expected value, for both discrete and absolutely continuous random variables,
while working for any random variable at all. (Note that to apply Definition 3.7.1 we
take an integral, not a sum, regardless of whether X is discrete or continuous!)

Furthermore, Definition 3.7.1 preserves the key properties of expected value, as
the following theorem shows. (We omit the proof here, but see Challenge 3.7.10 for a
proof of part (c).)

Theorem 3.7.2 Let X and Y be arbitrary random variables, perhaps neither discrete
nor continuous, with expected values defined by Definition 3.7.1.
(a) (Linearity) If a and b are any real numbers, then E aX bY aE X bE Y
(b) If X and Y are independent, then E XY E X E Y .
(c) (Monotonicity) If X Y , then E X E Y .

Definition 3.7.1 also tells us about expected values of mixture distributions, as fol
lows.
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Theorem 3.7.3 For 1 i k, let Yi be a random variable with cdf Fi . Let X be
a random variable whose cdf corresponds to a finite mixture (as in Section 2.5.4)
of the cdfs of the Yi , so that FX x i pi Fi x where pi 0 and i pi 1.
Then E X i pi E Yi

PROOF We compute that

P X t 1 FX t 1
i

pi Fi t

i

pi 1 Fi t
i

pi P Yi t

Similarly,

P X t FX t
i

pi Fi t
i

pi P Yi t

Hence, from Definition 3.7.1,

E X
0

P X t dt
0

P X t dt

0 i

pi P Yi t dt
0

i

pi P Yi t dt

i

pi
0

P Yi t dt
0

P Yi t dt

i

pi E Yi

as claimed.

Summary of Section 3.7

For general random variables, we can define a general expected value by E X

0 P X t dt 0 P X t dt .

This definition agrees with our previous one, for discrete or absolutely continu
ous random variables.

General expectation is still linear and monotone.

EXERCISES

3.7.1 Let X1, X2, and Y be as in Example 2.5.6, so that Y is a mixture of X1 and X2.
Compute E X1 , E X2 , and E Y .
3.7.2 Suppose we roll a fair sixsided die. If it comes up 1, then we roll the same die
again and let X be the value showing. If it comes up anything other than 1, then we
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instead roll a fair eightsided die (with the sides numbered 1 through 8), and let X be
the value showing on the eightsided die. Compute the expected value of X .
3.7.3 Let X be a positive constant random variable, so that X C for some constant
C 0. Prove directly from Definition 3.7.1 that E X C .
3.7.4 Let Z be a general random variable (perhaps neither discrete nor continuous),
and suppose that P Z 100 1. Prove directly from Definition 3.7.1 that E Z
100.
3.7.5 Suppose we are told only that P X x 1 x2 for x 1, and P X x 1
for x 1, but we are not told if X is discrete or continuous or neither. Compute E X .
3.7.6 Suppose P Z z 1 for z 5, P Z z 8 z 3 for 5 z 8, and
P Z z 0 for z 8. Compute E Z .
3.7.7 Suppose P W e 5 for 0 and P W 1 for 0.
Compute E W .

3.7.8 Suppose P Y y e y2 2 for y 0 and P Y y 1 for y 0. Compute
E Y . (Hint: The density of a standard normal might help you solve the integral.)
3.7.9 Suppose the cdf of W is given by FW 0 for 10, FW 10
for 10 11, and by FW 1 for 11. Compute E W . (Hint: Remember
that FW P W 1 P W .)

CHALLENGES

3.7.10 Prove part (c) of Theorem 3.7.2. (Hint: If X Y , then how does the event
X t compare to the event Y t ? Hence, how does P X t compare to

P Y t ? And what about X t and Y t ?)

3.8 Further Proofs (Advanced)
Proof of Theorem 3.4.7

We want to prove that if S has a compound distribution as in (3.4.2), then (a) E S
E X1 E N and (b) mS s rN m X1 s .

Because the Xi are i.i.d., we have E X i E X1 for all i . Define Ii by Ii
I 1 N i . Then we can write S i 1 Xi Ii Also note that i 1 Ii N .

Because N is independent of Xi , so is Ii and we have

E S E
i 1

Xi Ii
i 1

E Xi Ii

i 1

E X i E Ii
i 1

E X1 E Ii

E X1
i 1

E Ii E X1 E
i 1

Ii

E X1 E N
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This proves part (a).

Now, using an expectation version of the law of total probability (see Theorem
3.5.3), and recalling that E exp n

i 1 s Xi m X1 s n because the Xi are i.i.d.,
we compute that

mS s

E exp
n

i 1

sXi
n 0

P N n E exp
n

i 1

s Xi N n

n 0

P N n E exp
n

i 1

s Xi
n 0

P N n mX1 s n

E mX1 s N rN m X1 s

thus proving part (b).

Proof of Theorem 3.5.3

We want to show that when X and Y are random variables, and g : R1 R1 is any
function, then E g Y E X Y E g Y X

If X and Y are discrete, then

E g Y E X Y
y R1

g y E X Y y P Y y

y R1

g y
x R1

x P X x Y y P Y y

y R1

g y
x R1

x
P X x Y y

P Y y
P Y y

x R1 y R1

g y x P X x Y y E g Y X ,

as claimed.
Similarly, if X and Y are jointly absolutely continuous, then

E g Y E X Y g y E X Y y fY y dy

g y x fX Y x y dx fY y dy

g y x
fX Y x y

fY y
dx fY y dy

g y x fX Y x y dx dy E g Y X

as claimed.
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Proof of Theorem 3.5.4

We want to prove that, when X and Y are random variables, and g : R1 R1 is any
function, then E g Y X Y g Y E X Y

For simplicity, we assume X and Y are discrete; the jointly absolutely continuous
case is similar. Then for any y with P Y y 0,

E g Y X Y y
x R1 z R1

g z x P X x Y z Y y

x R1

g y x P X x Y y

g y
x R1

x P X x Y y g y E X Y y .

Because this is true for any y, we must have E g Y X Y g Y E X Y , as
claimed.

Proof of Theorem 3.5.6

We need to show that for random variables X and Y , Var X Var E X Y
E Var X Y

Using Theorem 3.5.2, we have that

Var X E X X
2 E E X X

2 Y . (3.8.1)

Now,

X X
2 X E X Y E X Y X

2

X E X Y 2 E X Y X
2

2 X E X Y E X Y X (3.8.2)

But E X E X Y 2 Y Var X Y
Also, again using Theorem 3.5.2,

E E E X Y X
2 Y E E X Y X

2 Var E X Y

Finally, using Theorem 3.5.4 and linearity (Theorem 3.5.1), we see that

E X E X Y E X Y X Y

E X Y X E X E X Y Y

E X Y X E X Y E E X Y Y

E X Y X E X Y E X Y 0

From (3.8.1), (3.8.2), and linearity, we have that Var X E Var X Y
Var E X Y 0 which completes the proof.
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Proof of Theorem 3.6.3 (Cauchy–Schwartz inequality)

We will prove that whenever X and Y are arbitrary random variables, each having
finite, nonzero variance, then

Cov X Y Var X Var Y

Furthermore, if Var Y 0, then equality is attained if and only if X X Y

Y where Cov X Y Var Y .
If Var Y 0 then Challenge 3.3.30 implies that Y Y with probability 1

(because Var Y E Y Y
2 0). This implies that

Cov X Y E X X Y Y 0 Var X Var Y

and the Cauchy–Schwartz inequality holds.
If Var Y 0 let Z X X and W Y Y . Then for any real number ,

we compute, using linearity, that

E Z W 2 E Z2 2 E ZW 2E W2

Var X 2 Cov X Y 2 Var Y

a 2 b c

where a Var Y 0 b 2 Cov X Y , and c Var X . On the other hand,
clearly E Z W 2 0 for all . Hence, we have a quadratic equation that is
always nonnegative, and so has at most one real root.

By the quadratic formula, any quadratic equation has two real roots provided that
the discriminant b2 4ac 0. Because that is not the case here, we must have
b2 4ac 0, i.e.,

4 Cov X Y 2 4 Var Y Var X 0

Dividing by 4, rearranging, and taking square roots, we see that

Cov X Y Var X Var Y 1 2

as claimed.
Finally, Cov X Y Var X Var Y 1 2 if and only if b2 4ac 0, which

means the quadratic has one real root. Thus, there is some real number such that
E Z W 2 0. Since Z W 2 0, it follows from Challenge 3.3.29 that this
happens if and only if Z W 0 with probability 1, as claimed. When this is the
case, then

Cov X Y E ZW E W 2 E W2 Var Y

and so Cov X Y Var Y when Var Y 0.
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Sampling Distributions and
Limits

CHAPTER OUTLINE
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Section 7 Further Proofs (Advanced)

In many applications of probability theory, we will be faced with the following prob
lem. Suppose that X1 X2 Xn is an identically and independently distributed
(i.i.d.) sequence, i.e., X1 X2 Xn is a sample from some distribution, and we
are interested in the distribution of a new random variable Y h X1 X2 Xn for
some function h In particular, we might want to compute the distribution function of
Y or perhaps its mean and variance. The distribution of Y is sometimes referred to as
its sampling distribution, as Y is based on a sample from some underlying distribution.

We will see that some of the methods developed in earlier chapters are useful in
solving such problems — especially when it is possible to compute an exact solution,
e.g., obtain an exact expression for the probability or density function of Y Section
4.6 contains a number of exact distribution results for a variety of functions of normal
random variables. These have important applications in statistics.

Quite often, however, exact results are impossible to obtain, as the problem is just
too complex. In such cases, we must develop an approximation to the distribution of
Y

For many important problems, a version of Y is defined for each sample size n (e.g.,
a sample mean or sample variance), so that we can consider a sequence of random
variables Y1 Y2 etc. This leads us to consider the limiting distribution of such
a sequence so that, when n is large, we can approximate the distribution of Yn by the

199
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limit, which is often much simpler. This approach leads to a famous result, known as
the central limit theorem, discussed in Section 4.4.

Sometimes we cannot even develop useful approximations for large n due to the
difficulty of the problem or perhaps because n is just too small in a particular applica
tion. Fortunately, however, we can then use the Monte Carlo approach where the power
of the computer becomes available. This is discussed in Section 4.5.

In Chapter 5 we will see that, in statistical applications, we typically do not know
much about the underlying distribution of the Xi from which we are sampling. We then
collect a sample and a value, such as Y that will serve as an estimate of a characteristic
of the underlying distribution, e.g., the sample mean X will serve as an estimate of
the mean of the distribution of the Xi We then want to know what happens to these
estimates as n grows. If we have chosen our estimates well, then the estimates will
converge to the quantities we are estimating as n increases. Such an estimate is called
consistent. In Sections 4.2 and 4.3, we will discuss the most important consistency
theorems — namely, the weak and strong laws of large numbers.

4.1 Sampling Distributions
Let us consider a very simple example.

EXAMPLE 4.1.1
Suppose we obtain a sample X1 X2 of size n 2 from the discrete distribution with
probability function given by

pX x

1 2 x 1
1 4 x 2
1 4 x 3
0 otherwise

Let us take Y2 X1 X2
1 2 This is the geometric mean of the sample values (the

geometric mean of n positive numbers x1 xn is defined as x1 xn
1 n).

To determine the distribution of Y2 we first list the possible values for Y2 the
samples that give rise to these values, and their probabilities of occurrence. The values
of these probabilities specify the sampling distribution of Y We have the following
table.

y Sample pY2 y
1 1 1 1 2 1 2 1 4
2 1 2 2 1 1 2 1 4 1 4 1 2 1 4
3 1 3 1 3 1 2 1 4 1 4 1 2 1 4
2 2 2 1 4 1 4 1 16
6 2 3 3 2 1 4 1 4 1 4 1 4 1 8
3 3 3 1 4 1 4 1 16

Now suppose instead we have a sample X1 X20 of size n 20 and we want to
find the distribution of Y20 X1 X20

1 20 Obviously, we can proceed as above,
but this time the computations are much more complicated, as there are now 320

3,486,784,401 possible samples, as opposed to the 32 9 samples used to form the
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previous table. Directly computing pY20 , as we have done for pY2 , would be onerous
— even for a computer! So what can we do here?

One possibility is to look at the distribution of Yn X1 Xn
1 n when n is large

and see if we can approximate this in some fashion. The results of Section 4.4.1 show
that

ln Yn
1

n

n

i 1

ln X i

has an approximate normal distribution when n is large. In fact, the approximating nor
mal distribution when n 20 turns out to be an N 0 447940 0 105167 distribution.
We have plotted this density in Figure 4.1.1.

Another approach is to use the methods of Section 2.10 to generate N samples of
size n 20 from pX , calculate ln Y20 for each (ln is a 11 transformation, and we
transform to avoid the potentially large values assumed by Y20), and then use these
N values to approximate the distribution of ln Y20 For example, in Figure 4.1.2 we
have provided a plot of a density histogram (see Section 5.4.3 for more discussion of
histograms) of N 104 values of ln Y20 calculated from N 104 samples of size n
20 generated (using the computer) from pX The area of each rectangle corresponds
to the proportion of values of ln Y20 that were in the interval given by the base of the
rectangle. As we will see in Sections 4.2, 4.3, and 4.4, these areas approximate the
actual probabilities that ln Y20 falls in these intervals. These approximations improve
as we increase N

Notice the similarity in the shapes of Figures 4.1.1 and 4.1.2. Figure 4.1.2 is not
symmetrical about its center, however, as it is somewhat skewed. This is an indication
that the normal approximation is not entirely adequate when n 20

1.00.50.0
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Figure 4.1.1: Plot of the approximating N 0 447940 0 105167 density to the distribution of
lnY20 in Example 4.1.1.
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Figure 4.1.2: Plot of N 104 values of ln Y20 obtained by generating N 104 samples from
pX in Example 4.1.1.

Sometimes we are lucky and can work out the sampling distribution of

Y h X1 X2 Xn

exactly in a form useful for computing probabilities and expectations for Y In general,
however, when we want to compute P Y B PY B we will have to determine
the set of samples X1 X2 Xn such that Y B as given by

h 1 B x1 x2 xn : h x1 x2 xn B ,

and then compute P X1 X2 Xn h 1 B . This is typically an intractable prob
lem and approximations or simulation (Monte Carlo) methods will be essential. Tech
niques for deriving such approximations will be discussed in subsequent sections of
this chapter. In particular, we will develop an important approximation to the sampling
distribution of the sample mean

X h X1 X2 Xn
1

n

n

i 1

X i

Summary of Section 4.1

A sampling distribution is the distribution of a random variable corresponding to
a function of some i.i.d. sequence.

Sampling distributions can sometimes be computed by direct computation or by
approximations such as the central limit theorem.
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EXERCISES

4.1.1 Suppose that X1 X2 X3 are i.i.d. from pX in Example 4.1.1. Determine the
exact distribution of Y3 X1 X2 X3

1 3

4.1.2 Suppose that a fair sixsided die is tossed n 2 independent times. Compute
the exact distribution of the sample mean.
4.1.3 Suppose that an urn contains a proportion p of chips labelled 0 and proportion
1 p of chips labelled 1. For a sample of n 2 drawn with replacement, determine
the distribution of the sample mean.
4.1.4 Suppose that an urn contains N chips labelled 0 and M chips labelled 1. For a
sample of n 2 drawn without replacement, determine the distribution of the sample
mean.
4.1.5 Suppose that a symmetrical die is tossed n 20 independent times. Work out
the exact sampling distribution of the maximum of this sample.

4.1.6 Suppose three fair dice are rolled, and let Y be the number of 6’s showing. Com
pute the exact distribution of Y .

4.1.7 Suppose two fair dice are rolled, and let W be the product of the two numbers
showing. Compute the exact distribution of W .
4.1.8 Suppose two fair dice are rolled, and let Z be the difference of the two numbers
showing (i.e., the first number minus the second number). Compute the exact distribu
tion of Z .
4.1.9 Suppose four fair coins are ipped, and let Y be the number of pairs of coins
which land the same way (i.e., the number of pairs that are either both heads or both
tails). Compute the exact distribution of Y .

COMPUTER EXERCISES

4.1.10 Generate a sample of N 103 values of Y50 in Example 4.1.1 Calculate the
mean and standard deviation of this sample.
4.1.11 Suppose that X1 X2 X10 is an i.i.d. sequence from an N 0 1 distribu
tion. Generate a sample of N 103 values from the distribution of max X1 X2
X10 Calculate the mean and standard deviation of this sample.

PROBLEMS

4.1.12 Suppose that X1 X2 Xn is a sample from the Poisson distribution. De
termine the exact sampling distribution of Y X1 X2 Xn (Hint: Determine
the momentgenerating function of Y and use the uniqueness theorem.)
4.1.13 Suppose that X1 X2 is a sample from the Uniform[0,1] distribution. Determine
the exact sampling distribution of Y X1 X2 (Hint: Determine the density of Y .)
4.1.14 Suppose that X1 X2 is a sample from the Uniform[0,1] distribution. Determine
the exact sampling distribution of Y X1 X2

1 2 (Hint: Determine the density of
ln Y and then transform.)
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4.2 Convergence in Probability
Notions of convergence are fundamental to much of mathematics. For example, if
an 1 1 n, then a1 0, a2 1 2, a3 2 3, a4 3 4, etc. We see that the
values of an are getting “closer and closer” to 1, and indeed we know from calculus
that limn an 1 in this case.

For random variables, notions of convergence are more complicated. If the values
themselves are random, then how can they “converge” to anything? On the other hand,
we can consider various probabilities associated with the random variables and see if
they converge in some sense.

The simplest notion of convergence of random variables is convergence in prob
ability, as follows. (Other notions of convergence will be developed in subsequent
sections.)

Definition 4.2.1 Let X1 X2 be an infinite sequence of random variables, and
let Y be another random variable. Then the sequence Xn converges in probability

to Y , if for all 0, limn P Xn Y 0 and we write Xn
P

Y

In Figure 4.2.1, we have plotted the differences Xn Y for selected values of n
for 10 generated sequences Xn Y for a typical situation where the random variables
Xn converge to a random variable Y in probability We have also plotted the horizontal
lines at for 0 25 From this we can see the increasing concentration of the
distribution of Xn Y about 0, as n increases, as required by Definition 4.2.1. In fact,
the 10 observed values of X100 Y all satisfy the inequality X100 Y 0 25

1005025101

2.00

1.00

0.25

0.25

1.00
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Figure 4.2.1: Plot of 10 replications of Xn Y illustrating the convergence in probability of
Xn to Y .

We consider some applications of this definition.
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EXAMPLE 4.2.1
Let Y be any random variable, and let X1 X2 X3 Y . (That is, the random
variables are all identical to each other.) In that case, Xn Y 0, so of course

lim
n

P Xn Y 0

for all 0. Hence, Xn
P

Y .

EXAMPLE 4.2.2
Suppose P Xn 1 1 n 1 and P Y 1 1. Then P Xn Y 0
whenever n 1 . Hence, P Xn Y 0 as n for all 0. Hence,
the sequence Xn converges in probability to Y . (Here, the distributions of Xn and Y
are all degenerate.)

EXAMPLE 4.2.3
Let U Uniform[0 1]. Define Xn by

Xn
3 U 2

3
1
n

8 otherwise,

and define Y by

Y
3 U 2

3
8 otherwise.

Then

P Xn Y P Xn Y P
2

3

1

n
U

2

3

1

n

Hence, P Xn Y 0 as n for all 0, and the sequence Xn con
verges in probability to Y . (This time, the distributions of Xn and Y are not degenerate.)

A common case is where the distributions of the Xn are not degenerate, but Y is
just a constant, as in the following example.

EXAMPLE 4.2.4
Suppose Zn Exponential n and let Y 0. Then

P Zn Y P Zn ne nx dx e n

Hence, again P Zn Y 0 as n for all 0, so the sequence Zn
converges in probability to Y .

4.2.1 The Weak Law of Large Numbers

One of the most important applications of convergence in probability is the weak law
of large numbers. Suppose X1 X2 is a sequence of independent random variables
that each have the same mean . For large n, what can we say about their average

Mn
1

n
X1 Xn ?
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We refer to Mn as the sample average, or sample mean, for X1 Xn When the
sample size n is fixed, we will often use X as a notation for sample mean instead of
Mn .

For example, if we ip a sequence of fair coins, and if X i 1 or Xi 0 as the i th
coin comes up heads or tails, then Mn represents the fraction of the first n coins that
came up heads. We might expect that for large n, this fraction will be close to 1 2, i.e.,
to the expected value of the Xi .

The weak law of large numbers provides a precise sense in which average values
Mn tend to get close to E Xi , for large n.

Theorem 4.2.1 (Weak law of large numbers) Let X1 X2 be a sequence of inde
pendent random variables, each having the same mean and each having variance
less than or equal to . Then for all 0, limn P Mn 0

That is, the averages converge in probability to the common mean or Mn
P

.

PROOF Using linearity of expected value, we see that E Mn . Also, using
independence, we have

Var Mn
1

n2 Var X1 Var X2 Var Xn

1

n2

1

n2 n n

Hence, by Chebychev’s inequality (Theorem 3.6.2), we have

P Mn Var Mn
2 2n

This converges to 0 as n , which proves the theorem.

It is a fact that, in Theorem 4.2.1, if we require the X i variables to be i.i.d. instead
of merely independent, then we do not even need the X i to have finite variance. But we
will not discuss this result further here. Consider some applications of the weak law of
large numbers.

EXAMPLE 4.2.5
Consider ipping a sequence of identical fair coins. Let Mn be the fraction of the first
n coins that are heads. Then Mn X1 Xn n, where Xi 1 if the i th coin
is heads, otherwise Xi 0. Hence, by the weak law of large numbers, we have

lim
n

P Mn 0 49 lim
n

P Mn 0 5 0 01

lim
n

P Mn 0 5 0 01 or Mn 0 5 0 01

lim
n

P Mn 0 5 0 01 0

and, similarly, limn P Mn 0 51 0. This illustrates that for large n, it is very
likely that Mn is very close to 0 5.
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EXAMPLE 4.2.6
Consider ipping a sequence of identical coins, each of which has probability p of
coming up heads. Let Mn again be the fraction of the first n coins that are heads. Then
by the weak law of large numbers, for any 0, limn P p Mn p 1.
We thus see that for large n, it is very likely that Mn is very close to p. (The previous
example corresponds to the special case p 1 2.)

EXAMPLE 4.2.7
Let X1 X2 be i.i.d. with distribution N 3 5 Then E Mn 3, and by the weak
law of large numbers, P 3 Mn 3 1 as n . Hence, for large n,
the average value Mn is very close to 3.

EXAMPLE 4.2.8
Let W1 W2 be i.i.d. with distribution Exponential 6 . Then E Mn 1 6, and by
the weak law of large numbers, P 1 6 Mn 1 6 1 as n .
Hence, for large n, the average value Mn is very close to 1 6.

Summary of Section 4.2

A sequence Xn of random variables converges in probability to Y if

lim
n

P Xn Y 0

The weak law of large numbers says that if Xn is i.i.d. (or is independent with
constant mean and bounded variance), then the averages Mn X1
Xn n converge in probability to E X i .

EXERCISES

4.2.1 Let U Uniform[5 10], and let Z IU [5 7 and Zn IU [5 7 1 n2 . Prove
that Zn Z in probability.
4.2.2 Let Y Uniform[0 1], and let Xn Y n . Prove that Xn 0 in probability.
4.2.3 Let W1 W2 be i.i.d. with distribution Exponential 3 . Prove that for some n,
we have P W1 W2 Wn n 2 0 999.
4.2.4 Let Y1 Y2 be i.i.d. with distribution N 2 5 . Prove that for some n, we have
P Y1 Y2 Yn n 0 999.
4.2.5 Let X1 X2 be i.i.d. with distribution Poisson 8 . Prove that for some n, we
have P X1 X2 Xn 9n 0 001.

4.2.6 Suppose X Uniform[0 1], and let Yn
n 1

n X . Prove that Yn
P

X .

4.2.7 Let Hn be the number of heads when ipping n fair coins, let Xn e Hn , and

let Y 0. Prove that Xn
P

Y .
4.2.8 Let Zn Uniform[0 n], let Wn 5Zn Zn 1 , and let W 5. Prove that

Wn
P

W .
4.2.9 Consider ipping n fair coins. Let Hn be the total number of heads, and let Fn
be the number of heads on coins 1 through n 1 (i.e., omitting the nth coin). Let

Xn Hn Hn 1 , and Yn Fn Hn 1 , and Z 0. Prove that Xn Yn
P

Z .
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4.2.10 Let Zn be the sum of the squares of the numbers showing when we roll n fair

dice. Find (with proof) a number m such that 1
n Zn

P
m. (Hint: Use the weak law of

large numbers.)
4.2.11 Consider ipping n fair nickels and n fair dimes. Let Xn equal 4 times the
number of nickels showing heads, plus 5 times the number of dimes showing heads.

Find (with proof) a number r such that 1
n Xn

P
r .

COMPUTER EXERCISES

4.2.12 Generate i.i.d. X1 Xn distributed Exponential 5 and compute Mn when
n 20 Repeat this N times, where N is large (if possible, take N 105 otherwise
as large as is feasible), and compute the proportion of values of Mn that lie between
0.19 and 0.21. Repeat this with n 50 What property of convergence in probability
do your results illustrate?
4.2.13 Generate i.i.d. X1 Xn distributed Poisson 7 and compute Mn when n
20 Repeat this N times, where N is large (if possible, take N 105 otherwise as
large as is feasible), and compute the proportion of values of Mn that lie between 6.99
and 7.01. Repeat this with n 100 What property of convergence in probability do
your results illustrate?

PROBLEMS

4.2.14 Give an example of random variables X1 X2 such that Xn converges to
0 in probability, but E Xn 1 for all n. (Hint: Suppose P Xn n 1 n and
P Xn 0 1 1 n.)

4.2.15 Prove that Xn
P

0 if and only if Xn
P

0.

4.2.16 Prove or disprove that Xn
P

5 if and only if Xn
P

5.

4.2.17 Suppose Xn
P

X , and Yn
P

Y . Let Zn Xn Yn and Z X Y . Prove

that Zn
P

Z .

CHALLENGES

4.2.18 Suppose Xn
P

X , and f is a continuous function. Prove that f Xn
P

f X .

4.3 Convergence with Probability 1
A notion of convergence for random variables that is closely associated with the con
vergence of a sequence of real numbers is provided by the concept of convergence with
probability 1. This property is given in the following definition.

Definition 4.3.1 Let X1 X2 be an infinite sequence of random variables. We
shall say that the sequence X i converges with probability 1 (or converges almost
surely (a.s.)) to a random variable Y , if P limn Xn Y 1 and we write
Xn

a s
Y



Chapter 4: Sampling Distributions and Limits 209

In Figure 4.3.1, we illustrate this convergence by graphing the sequence of differ
ences Xn Y for a typical situation where the random variables Xn converge to a
random variable Y with probability 1. We have also plotted the horizontal lines at
for 0 1 Notice that inevitably all the values Xn Y are in the interval 0 1 0 1
or, in other words, the values of Xn are within 0 1 of the values of Y

Definition 4.3.1 indicates that for any given 0 there will exist a value N
such that Xn Y for every n N The value of N will vary depending on
the observed value of the sequence Xn Y but it always exists. Contrast this with
the situation depicted in Figure 4.2.1, which only says that the probability distribution
Xn Y concentrates about 0 as n grows and not that the individual values of Xn Y
will necessarily all be near 0 (also see Example 4.3.2).

10005000

0.2

0.1

0.0

0.1

0.2

0.3

0.4

n

d
iff

e
re

n
ce

s

Figure 4.3.1: Plot of a single replication Xn Y illustrating the convergence with probability
1 of Xn to Y .

Consider an example of this.

EXAMPLE 4.3.1
Consider again the setup of Example 4.2.3, where U Uniform[0 1],

Xn
3 U 2

3
1
n

8 otherwise

and

Y
3 U 2

3
8 otherwise

If U 2 3, then Y 8 and also Xn 8 for all n, so clearly Xn Y . If U 2 3,
then for large enough n we will also have

U
2

3

1

n

so again Xn Y . On the other hand, if U 2 3, then we will always have Xn 8,
even though Y 3. Hence, Xn Y except when U 2 3. Because P U 2 3
0, we do have Xn Y with probability 1.



210 Section 4.3: Convergence with Probability 1

One might wonder what the relationship is between convergence in probability and
convergence with probability 1. The following theorem provides an answer.

Theorem 4.3.1 Let Z Z1 Z2 be random variables. Suppose Zn Z with
probability 1. Then Zn Z in probability. That is, if a sequence of random
variables converges almost surely, then it converges in probability to the same limit.

PROOF See Section 4.7 for the proof of this result.

On the other hand, the converse to Theorem 4.3.1 is false, as the following example
shows.

EXAMPLE 4.3.2
Let U have the uniform distribution on [0 1]. We construct an infinite sequence of
random variables Xn by setting

X1 I[0 1 2 U X2 I[1 2 1] U

X3 I[0 1 4 U X4 I[1 4 1 2 U X5 I[1 2 3 4 U X6 I[3 4 1] U

X7 I[0 1 8 U X8 I[1 8 1 4 U

where IA is the indicator function of the event A, i.e., IA s 1 if s A, and IA s
0 if s A

Note that we first subdivided [0 1] into two equallength subintervals and defined
X1 and X2 as the indicator functions for the two subintervals. Next we subdivided [0 1]
into four equallength subintervals and defined X3 X4 X5 and X6 as the indicator
functions for the four subintervals. We continued this process by next dividing [0 1]
into eight equallength subintervals, then 16 equallength subintervals, etc., to obtain
an infinite sequence of random variables.

Each of these random variables Xn takes the values 0 and 1 only and so must follow
a Bernoulli distribution. In particular, X1 Bernoulli 1 2 X2 Bernoulli 1 2 X3

Bernoulli 1 4 etc.
Then for 0 1 we have that P Xn 0 P Xn 1 . Because

the intervals for U that make Xn 0 are getting smaller and smaller, we see that
P Xn 1 is converging to 0. Hence, Xn converges to 0 in probability.

On the other hand, Xn does not converge to 0 almost surely. Indeed, no matter what
value U takes on, there will always be infinitely many different n for which Xn 1.
Hence, we will have Xn 1 infinitely often, so that we will not have Xn converging
to 0 for any particular value of U . Thus, P limn Xn 0 0, and Xn does not
converge to 0 with probability 1.

Theorem 4.3.1 and Example 4.3.2 together show that convergence with probability 1 is
a stronger notion than convergence in probability.

Now, the weak law of large numbers (Section 4.2.1) concludes only that the av
erages Mn are converging in probability to E X i . A stronger version of this result
would instead conclude convergence with probability 1. We consider that now.
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4.3.1 The Strong Law of Large Numbers

The following is a strengthening of the weak law of large numbers because it concludes
convergence with probability 1 instead of just convergence in probability.

Theorem 4.3.2 (Strong law of large numbers) Let X1 X2 be a sequence of
i.i.d. random variables, each having finite mean . Then

P lim
n

Mn 1

That is, the averages converge with probability 1 to the common mean or Mn
a s

.

PROOF See A First Look at Rigorous Probability Theory, Second Edition, by J. S.
Rosenthal (World Scientific Publishing Co., 2006) for a proof of this result.

This result says that sample averages converge with probability 1 to .
Like Theorem 4.2.1, it says that for large n the averages Mn are usually close to

E Xi for large n. But it says in addition that if we wait long enough (i.e., if n
is large enough), then eventually the averages will all be close to , for all sufficiently
large n. In other words, the sample mean is consistent for

Summary of Section 4.3

A sequence Xn of random variables converges with probability 1 (or converges
almost surely) to Y if, P limn Xn Y 1

Convergence with probability 1 implies convergence in probability.

The strong law of large numbers says that if Xn is i.i.d., then the averages
Mn X1 Xn n converge with probability 1 to E Xi .

EXERCISES

4.3.1 Let U Uniform[5 10], and let Z I[5 7 U (i.e., Z is the indicator function
of [5 7 ) and Zn I[5 7 1 n2 U . Prove that Zn Z with probability 1.
4.3.2 Let Y Uniform[0 1], and let Xn Y n. Prove that Xn 0 with probability
1.
4.3.3 Let W1 W2 be i.i.d. with distribution Exponential 3 . Prove that with prob
ability 1, for some n, we have W1 W2 Wn n 2.
4.3.4 Let Y1 Y2 be i.i.d. with distribution N 2 5 . Prove that with probability 1,
for some n, we have Y1 Y2 Yn n.
4.3.5 Suppose Xn X with probability 1, and also Yn Y with probability 1. Prove
that P Xn X and Yn Y 1.
4.3.6 Suppose Z1 Z2 are i.i.d. with finite mean . Let Mn Z1 Zn n.
Determine (with explanation) whether the following statements are true or false.
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(a) With probability 1, Mn for some n.
(b) With probability 1, 0 01 Mn 0 01 for some n.
(c) With probability 1, 0 01 Mn 0 01 for all but finitely many n.
(d) For any x R1, with probability 1, x 0 01 Mn x 0 01 for some n.
4.3.7 Let Xn be i.i.d., with Xn Uniform[3 7]. Let Yn X1 X2 Xn n.
Find (with proof) a number m such that Yn

a s
m. (Hint: Use the strong law of large

numbers.)

4.3.8 Let Zn be the sum of the squares of the numbers showing when we roll n fair
dice. Find (with proof) a number m such that 1

n Zn
a s

m.
4.3.9 Consider ipping n fair nickels and n fair dimes. Let Xn equal 4 times the
number of nickels showing heads, plus 5 times the number of dimes showing heads.
Find (with proof) a number r such that 1

n Xn
a s

r .

4.3.10 Suppose Yn
a s

Y . Does this imply that P Y5 Y Y4 Y 0? Explain.
4.3.11 Consider repeatedly ipping a fair coin. Let Hn be the number of heads on the
first n ips, and let Zn Hn n.
(a) Prove that there is some m such that Zn 1 2 0 001 for all n m.
(b) Let r be the smallest positive integer satisfying Zr 1 2 0 001. Must we have
Zn 1 2 0 001 for all n r? Why or why not?
4.3.12 Suppose P X 0 P X 1 1 2, and let Xn X for n 1 2 3 .
(That is, the random variables Xn are all identical.) Let Yn X1 X2 Xn n.
(a) Prove that P limn Yn 0 P limn Yn 1 1 2.
(b) Prove that there is no number m such that P limn Yn m 1.
(c) Why does part (b) not contradict the law of large numbers?

COMPUTER EXERCISES

4.3.13 Generate i.i.d. X1 Xn distributed Exponential 5 with n large (take n
105 if possible). Plot the values M1 M2 Mn . To what value are they converging?
How quickly?
4.3.14 Generate i.i.d. X1 Xn distributed Poisson 7 with n large (take n 105 if
possible). Plot the values M1 M2 Mn . To what value are they converging? How
quickly?
4.3.15 Generate i.i.d. X1 X2 Xn distributed N 4 3 with n large (take n 105

if possible). Plot the values M1 M2 Mn. To what value are they converging? How
quickly?

PROBLEMS

4.3.16 Suppose for each positive integer k, there are random variables Wk Xk 1 Xk 2
such that P limn Xk n Wk 1. Prove that P limn Xk n Wk for all k

1
4.3.17 Prove that Xn

a s
0 if and only if Xn

a s
0.

4.3.18 Prove or disprove that Xn
a s

5 if and only if Xn
a s

5.
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4.3.19 Suppose Xn
a s

X , and Yn
a s

Y . Let Zn Xn Yn and Z X Y . Prove
that Zn

a s
Z .

CHALLENGES

4.3.20 Suppose for each real number r [0 1], there are random variables Wr Xr 1
Xr 2 such that P limn Xr n Wr 1. Prove or disprove that we must have
P limn Xn r Wr for all r [0 1] 1.
4.3.21 Give an example of random variables X1 X2 such that Xn converges to
0 with probability 1, but E Xn 1 for all n.

4.3.22 Suppose Xn
a s

X , and f is a continuous function. Prove that f Xn
a s

f X .

4.4 Convergence in Distribution
There is yet another notion of convergence of a sequence of random variables that is
important in applications of probability and statistics.

Definition 4.4.1 Let X X1 X2 be random variables. Then we say that the
sequence Xn converges in distribution to X if for all x R1 such that P X

x 0 we have limn P Xn x P X x and we write Xn
D

X

Intuitively, Xn converges in distribution to X if for large n, the distribution of Xn
is close to that of X . The importance of this, as we will see, is that often the distribution
of Xn is difficult to work with, while that of X is much simpler. With Xn converging
in distribution to X however, we can approximate the distribution of Xn by that of X

EXAMPLE 4.4.1
Suppose P Xn 1 1 n, and P Xn 0 1 1 n. Let X 0 so that
P X 0 1. Then,

P Xn x
0 x 0

1 1 n 0 x 1
1 1 x

P X x
0 x 0
1 0 x

as n As P Xn x P X x for every x and in particular at all x
where P X x 0 we have that Xn converges in distribution to X . Intuitively, as
n , it is more and more likely that Xn will equal 0.

EXAMPLE 4.4.2
Suppose P Xn 1 1 2 1 n, and P Xn 0 1 2 1 n. Suppose further
that P X 0 P X 1 1 2. Then Xn converges in distribution to X because
P Xn 1 1 2 and P Xn 0 1 2 as n .

EXAMPLE 4.4.3
Let X Uniform[0 1], and let P Xn i n 1 n for i 1 2 n. Then X is
absolutely continuous, while Xn is discrete. On the other hand, for any 0 x 1, we
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have P X x x and letting x denote the greatest integer less than or equal to
x , we have

P Xn x
nx

n

Hence, P Xn x P X x 1 n for all n. Because limn 1 n 0, we do
indeed have Xn X in distribution.

EXAMPLE 4.4.4
Suppose X1 X2 are i.i.d. with finite mean , and Mn X1 Xn n Then
the weak law of large numbers says that for any 0 we have

P Mn 0 and P Mn 1

as n . It follows that limn P Mn x P M x for any x , where
M is the constant random variable M . Hence, Mn M in distribution. Note that
it is not necessarily the case that P Mn P M 1. However, this does
not contradict the definition of convergence in distribution because P M 0
so we do not need to worry about the case x .

EXAMPLE 4.4.5 Poisson Approximation to the Binomial
Suppose Xn Binomial n n and X Poisson . We have seen in Example
2.3.6 that

P Xn j
n

j n

j

1
n

n j e
j

j!

as n . This implies that FXn x FX x at every point x 0 1 2 and
these are precisely the points for which P X x 0 Therefore, Xn converges in
distribution to X . (Indeed, this was our original motivation for the Poisson distribution.)

Many more examples of convergence in distribution are given by the central limit
theorem, discussed in the next section. We first pause to consider the relationship of
convergence in distribution to our previous notions of convergence.

Theorem 4.4.1 If Xn
P

X , then Xn
D

X .

PROOF See Section 4.7 for the proof of this result.

The converse to Theorem 4.4.1 is false. Indeed, the fact that Xn converges in
distribution to X says nothing about the underlying relationship between Xn and X ,
it says only something about their distributions. The following example illustrates this.

EXAMPLE 4.4.6
Suppose X X1 X2 are i.i.d., each equal to 1 with probability 1 2 each. In this
case, P Xn x P X x for all n and for all x R1, so of course Xn converges
in distribution to X . On the other hand, because X and Xn are independent,

P X Xn 2
1

2
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for all n, which does not go to 0 as n . Hence, Xn does not converge to X in
probability (or with probability 1). So we can have convergence in distribution without
having convergence in probability or convergence with probability 1.

The following result, stated without proof, indicates how momentgenerating func
tions can be used to check for convergence in distribution. (This generalizes Theo
rem 3.4.6.)

Theorem 4.4.2 Let X be a random variable, such that for some s0 0, we have
mX s whenever s s0 s0 . If Z1 Z2 is a sequence of random vari
ables with mZn s and limn mZn s mX s for all s s0 s0 , then
Zn converges to X in distribution.

We will make use of this result to prove one of the most famous theorems of probability
— the central limit theorem.

Finally, we note that combining Theorem 4.4.1 with Theorem 4.3.1 reveals the
following.

Corollary 4.4.1 If Xn X with probability 1, then Xn
D

X

4.4.1 The Central Limit Theorem

We now present the central limit theorem, one of the most important results in all of
probability theory. Intuitively, it says that a large sum of i.i.d. random variables, prop
erly normalized, will always have approximately a normal distribution. This shows
that the normal distribution is extremely fundamental in probability and statistics —
even though its density function is complicated and its cumulative distribution function
is intractable.

Suppose X1 X2 is an i.i.d. sequence of random variables each having finite
mean and finite variance 2 Let Sn X1 Xn be the sample sum and
Mn Sn n be the sample mean. The central limit theorem is concerned with the
distribution of the random variable

Zn
Sn n

n

Mn

n
n

Mn

where 2 We know E Mn and Var Mn
2 n which implies that

E Zn 0 and Var Zn 1 The variable Zn is thus obtained from the sample mean
(or sample sum) by subtracting its mean and dividing by its standard deviation. This
transformation is referred to as standardizing a random variable, so that it has mean 0
and variance 1. Therefore, Zn is the standardized version of the sample mean (sample
sum).

Note that the distribution of Zn shares two characteristics with the N 0 1 distrib
ution, namely, it has mean 0 and variance 1. The central limit theorem shows that there
is an even stronger relationship.
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Theorem 4.4.3 (The central limit theorem) Let X1 X2 be i.i.d. with finite mean
and finite variance 2. Let Z N 0 1 . Then as n , the sequence Zn

converges in distribution to Z , i.e., Zn
D

Z .

PROOF See Section 4.7 for the proof of this result.

The central limit theorem is so important that we shall restate its conclusions in
several different ways.

Corollary 4.4.2 For each fixed x R1, limn P Zn x x where is
the cumulative distribution function for the standard normal distribution.

We can write this as follows.

Corollary 4.4.3 For each fixed x R1,

lim
n

P Sn n x n x and lim
n

P Mn x n x

In particular, Sn is approximately equal to n , with deviations from this value of
order n, and Mn is approximately equal to , with deviations from this value of
order 1 n.

We note that it is not essential in the central limit theorem to divide by , in which
case the theorem asserts instead that Sn n n (or n Mn ) converges in
distribution to the N 0 2 distribution. That is, the limiting distribution will still be
normal but will have variance 2 instead of variance 1.

Similarly, instead of dividing by exactly , it suffices to divide by any quantity n,
provided n

a s
. A simple modification of the proof of Theorem 4.4.2 leads to the

following result.

Corollary 4.4.4 If

Zn
Sn n

n n

Mn

n n
n

Mn

n

and limn n
a s

, then Zn
D

Z as n .

To illustrate the central limit theorem, we consider a simulation experiment.

EXAMPLE 4.4.7 The Central Limit Theorem Illustrated in a Simulation
Suppose we generate a sample X1 Xn from the Uniform[0 1] density. Note that
the Uniform[0 1] density is completely unlike a normal density. An easy calculation
shows that when X Uniform[0 1] then E X 1 2 and Var X 1 12

Now suppose we are interested in the distribution of the sample average Mn
Sn n X1 Xn n for various choices of n The central limit theorem tells
us that

Zn
Sn n 2

n 12
n

Mn 1 2

1 12
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converges in distribution to an N 0 1 distribution. But how large does n have to be
for this approximation to be accurate?

To assess this, we ran a Monte Carlo simulation experiment. In Figure 4.4.1, we
have plotted a density histogram of N 105 values from the N 0 1 distribution based
on 800 subintervals of 4 4 each of length l 0 01. Density histograms are more
extensively discussed in Section 5.4.3, but for now we note that above each interval
we have plotted the proportion of sampled values that fell in the interval, divided by
the length of the interval. As we increase N and decrease l these histograms will look
more and more like the density of the distribution from which we are sampling. Indeed,
Figure 4.4.1 looks very much like an N 0 1 density, as it should.

In Figure 4.4.2, we have plotted a density histogram (using the same values of N
and l) of Z1 Note that Z1 Uniform[ 12 2 12 2] and indeed the histogram
does look like a uniform density. Figure 4.4.3 presents a density histogram of Z2
which still looks very nonnormal — but note that the histogram of Z3 in Figure 4.4.4
is beginning to look more like a normal distribution. The histogram of Z10 in Fig
ure 4.4.5 looks very normal. In fact, the proportion of Z10 values in 1 96] for
this histogram, equals 0 9759 while the exact proportion for an N 0 1 distribution is
0 9750.
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Figure 4.4.1: Density histogram of 105 standard normal values.
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Figure 4.4.2: Density histogram for 105 values of Z1 in Example 4.4.7.
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Figure 4.4.3: Density histogram for 105 values of Z2 in Example 4.4.7.
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Figure 4.4.4: Density histogram for 105 values of Z3 in Example 4.4.7.
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Figure 4.4.5: Density histogram for 105 values of Z10 in Example 4.4.7.

So in this example, the central limit theorem has taken effect very quickly, even
though we are sampling from a very nonnormal distribution. As it turns out, it is
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primarily the tails of a distribution that determine how large n has to be for the central
limit theorem approximation to be accurate. When a distribution has tails no heavier
than a normal distribution, we can expect the approximation to be quite accurate for
relatively small sample sizes.

We consider some further applications of the central limit theorem.

EXAMPLE 4.4.8
For example, suppose X1 X2 are i.i.d. random variables, each with the Poisson 5
distribution. Recall that this implies that E X i 5 and 2 Var X i 5.
Hence, for each fixed x R1, we have

P Sn 5n x 5n x

as n

EXAMPLE 4.4.9 Normal Approximation to the Binomial Distribution
Suppose X1 X2 are i.i.d. random variables, each with the Bernoulli distribu
tion. Recall that this implies that E Xi and Var Xi 1 . Hence, for
each fixed x R1 we have

P Sn n x n 1 x (4.4.1)

as n
But now note that we have previously shown that Yn Sn Binomial n So

(4.4.1) implies that whenever we have a random variable Yn Binomial n then

P Yn y P
Yn n

n 1

y n

n 1

y n

n 1
(4.4.2)

for large n
Note that we are approximating a discrete distribution by a continuous distribu

tion here. Reecting this, a small improvement is often made to (4.4.2) when y is a
nonnegative integer. Instead, we use

P Yn y
y 0 5 n

n 1

Adding 0.5 to y is called the correction for continuity. In effect, this allocates all the
relevant normal probability in the interval y 0 5 y 0 5 to the nonnegative integer
y This has been shown to improve the approximation (4.4.2).

EXAMPLE 4.4.10 Approximating Probabilities Using the Central Limit Theorem
While there are tables for the binomial distribution (Table D.6), we often have to com
pute binomial probabilities for situations the tables do not cover. We can always use
statistical software for this, in fact, such software makes use of the normal approxima
tion we derived from the central limit theorem.

For example, suppose that we have a biased coin, where the probability of getting
a head on a single toss is 0 6 We will toss the coin n 1000 times and then
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calculate the probability of getting at least 550 heads and no more than 625 heads.
If Y denotes the number of heads obtained in the 1000 tosses, we have that Y
Binomial 1000 0 6 so

E Y 1000 0 6 600

Var Y 1000 0 6 0 4 240

Therefore, using the correction for continuity and Table D.2,

P 550 Y 625 P 550 0 5 Y 625 0 5

P
549 5 600

240

Y 600

240

625 5 600

240

P 3 2598
Y 600

240
1 646

1 65 3 26 0 9505 0 0006 0 9499

Note that it would be impossible to compute this probability using the formulas for the
binomial distribution.

One of the most important uses of the central limit theorem is that it leads to a
method for assessing the error in an average when this is estimating or approximating
some quantity of interest.

4.4.2 The Central Limit Theorem and Assessing Error

Suppose X1 X2 is an i.i.d. sequence of random variables, each with finite mean
and finite variance 2, and we are using the sample average Mn to approximate the

mean This situation arises commonly in many computational (see Section 4.5) and
statistical (see Chapter 6) problems. In such a context, we can generate the Xi but we
do not know the value of

If we approximate by Mn then a natural question to ask is: How much error is
there in the approximation? The central limit theorem tells us that

3 3 lim
n

P 3
Mn

n
3

lim
n

P Mn 3
n

Mn 3
n

Using Table D.2 (or statistical software), we have that 3 3 0 9987 1
0 9987 0 9974 So, for large n, we have that the interval

Mn 3 n Mn 3 n

contains the unknown value of with virtual certainty (actually with probability about
0 9974). Therefore, the halflength 3 n of this interval gives us an assessment of
the error in the approximation Mn. Note that Var Mn

2 n so the halflength of
the interval equals 3 standard deviations of the estimate Mn
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Because we do not know it is extremely unlikely that we will know (as its
definition uses ). But if we can find a consistent estimate n of , then we can use
Corollary 4.4.4 instead to construct such an interval.

As it turns out, the correct choice of n depends on what we know about the distri
bution we are sampling from (see Chapter 6 for more discussion of this). For example,
if X1 Bernoulli then and 2 Var X1 1 . By the strong law
of large numbers (Theorem 4.3.2), Mn

a s
and thus

n Mn 1 Mn
a s

1

Then, using the same argument as above, we have that, for large n the interval

Mn 3 Mn 1 Mn n Mn 3 Mn 1 Mn n (4.4.3)

contains the true value of with virtual certainty (again, with probability about 0 9974).
The halflength of (4.4.3) is a measure of the accuracy of the estimate Mn — no
tice that this can be computed from the values X1 Xn We refer to the quantity
Mn 1 Mn n 1 2 as the standard error of the estimate Mn

For a general random variable X1 let

2
n

1

n 1

n

i 1

Xi Mn
2 1

n 1

n

i 1

X2
i 2Mn

n

i 1

X i nM2
n

n

n 1

1

n

n

i 1

X2
i 2M2

n M2
n

n

n 1

1

n

n

i 1

X2
i M2

n

By the strong law of large numbers, we have that Mn
a s

and

1

n

n

i 1

X2
i

a s
E X2

1
2 2

Because n n 1 1 and M2
n

a s 2 as well, we conclude that 2
n

a s 2 This

implies that n
a s

hence n is consistent for It is common to call 2
n the sample

variance of the sample X1 Xn When the sample size n is fixed, we will often
denote this estimate of the variance by S2

Again, using the above argument, we have that, for large n the interval

Mn 3 n n Mn 3 n n Mn 3S n Mn 3S n (4.4.4)

contains the true value of with virtual certainty (also with probability about 0 9974).
Therefore, the halflength is a measure of the accuracy of the estimate Mn — notice
that this can be computed from the values X1 Xn The quantity S n is referred
to as the standard error of the estimate Mn.

We will make use of these estimates of the error in approximations in the following
section.



222 Section 4.4: Convergence in Distribution

Summary of Section 4.4

A sequence Xn of random variables converges in distribution to Y if, for all y
R1 with P Y y 0, we have limn FXn y FY y , i.e., limn P Xn

y P Y y .

If Xn converges to Y in probability (or with probability 1), then Xn converges
to Y in distribution.

The very important central limit theorem says that if Xn are i.i.d. with finite
mean and variance 2, then the random variables Zn Sn n n
converge in distribution to a standard normal distribution.

The central limit theorem allows us to approximate various distributions by nor
mal distributions, which is helpful in simulation experiments and in many other
contexts. Table D.2 (or any statistical software package) provides values for the
cumulative distribution function of a standard normal.

EXERCISES

4.4.1 Suppose P Xn i n i 3n 6 for i 1 2 3. Suppose also that
P X i 1 3 for i 1 2 3. Prove that Xn converges in distribution to X .
4.4.2 Suppose P Yn k 1 2 n 1 1 2k 1 for k 0 1 n. Let Y
Geometric 1 2 . Prove that Yn converges in distribution to Y .
4.4.3 Let Zn have density n 1 xn for 0 x 1, and 0 otherwise. Let Z 1.
Prove that Zn converges in distribution to Z .
4.4.4 Let Wn have density

1 x n

1 1 2n

for 0 x 1, and 0 otherwise. Let W Uniform[0 1]. Prove that Wn converges
in distribution to W .
4.4.5 Let Y1 Y2 be i.i.d. with distribution Exponential 3 . Use the central limit
theorem and Table D.2 (or software) to estimate the probability P 1600

i 1 Yi 540 .
4.4.6 Let Z1 Z2 be i.i.d. with distribution Uniform[ 20 10]. Use the central
limit theorem and Table D.2 (or software) to estimate the probability P 900

i 1 Zi
4470 .

4.4.7 Let X1 X2 be i.i.d. with distribution Geometric 1 4 . Use the central limit
theorem and Table D.2 (or software) to estimate the probability P 800

i 1 Xi 2450 .
4.4.8 Suppose Xn N 0 1 n , i.e., Xn has a normal distribution with mean 0 and
variance 1 n. Does the sequence Xn converge in distribution to some random vari
able? If yes, what is the distribution of the random variable?
4.4.9 Suppose P Xn i n 2i n n 1 for i 1 2 3 n. Let Z have density
function given by f z 2z for 0 z 1, otherwise f z 0.
(a) Compute P Z y for 0 y 1.
(b) Compute P Xn m n for some integer 1 m n. (Hint: Remember that

m
i 1 i m m 1 2.)
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(c) Compute P Xn y for 0 y 1.

(d) Prove that Xn
D

Z .

4.4.10 Suppose P Yn y 1 e 2ny n 1 for all y 0. Prove that Yn
D

Y where
Y Exponential for some 0 and compute .

4.4.11 Suppose P Zn z 1 1 3z
n

n for all 0 z n 3. Prove that Zn
D

Z
where Z Exponential for some 0 and compute . (Hint: Recall from calculus
that limn 1 c

n
n ec for any real number c.)

4.4.12 Suppose the service time, in minutes, at a bank has the Exponential distribution
with 1 2. Use the central limit theorem to estimate the probability that the average
service time of the first n customers is less than 2.5 minutes, when:
(a) n 16.
(b) n 36.
(c) n 100.
4.4.13 Suppose the number of kilograms of a metal alloy produced by a factory each
week is uniformly distributed between 20 and 30. Use the central limit theorem to esti
mate the probability that next year’s output will be less than 1280 kilograms. (Assume
that a year contains precisely 52 weeks.)
4.4.14 Suppose the time, in days, until a component fails has the Gamma distribution
with 5 and 1 10. When a component fails, it is immediately replaced by
a new component. Use the central limit theorem to estimate the probability that 40
components will together be sufficient to last at least 6 years. (Assume that a year
contains precisely 365.25 days.)

COMPUTER EXERCISES

4.4.15 Generate N samples X1 X2 X20 Exponential 3 for N large (N 104,
if possible). Use these samples to estimate the probability P 1 6 M20 1 2 . How
does your answer compare to what the central limit theorem gives as an approximation?

4.4.16 Generate N samples X1 X2 X30 Uniform[ 20 10] for N large (N
104, if possible). Use these samples to estimate the probability P M30 5 . How
does your answer compare to what the central limit theorem gives as an approximation?
4.4.17 Generate N samples X1 X2 X20 Geometric 1 4 for N large (N
104, if possible). Use these samples to estimate the probability P 2 5 M20 3 3 .
How does your answer compare to what the central limit theorem gives as an approxi
mation?
4.4.18 Generate N samples X1 X2 X20 from the distribution of log Z where Z
Gamma 4 1 for N large (N 104, if possible). Use these samples to construct a
density histogram of the values of M20 Comment on the shape of this graph.

4.4.19 Generate N samples X1 X2 X20 from the Binomial 10 0 01 distribution
for N large (N 104, if possible). Use these samples to construct a density histogram
of the values of M20 Comment on the shape of this graph.
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PROBLEMS

4.4.20 Let a1 a2 be any sequence of nonnegative real numbers with i ai 1.
Suppose P X i ai for every positive integer i . Construct a sequence Xn of
absolutely continuous random variables, such that Xn X in distribution.

4.4.21 Let f : [0 1] 0 be a continuous positive function such that 1
0 f x dx

1 Consider random variables X and Xn such that P a X b b
a f x dx

for a b and

P Xn
i

n

f i n
n
j 1 f j n

for i 1 2 3 n. Prove that Xn X in distribution.
4.4.22 Suppose that Yi X3

i and that X1 Xn is a sample from an N 0 1 dis
tribution. Indicate how you would approximate the probability P Mn m where
Mn Y1 Yn n

4.4.23 Suppose Yi cos 2 Ui and U1 Un is a sample from the Uniform[0 1]
distribution. Indicate how you would approximate the probability P Mn

m , where Mn Y1 Yn n

COMPUTER PROBLEMS

4.4.24 Suppose that Y X3 and X N 0 1 . By generating a large sample (n
104, if possible) from the distribution of Y approximate the probability P Y 1 and
assess the error in your approximation Compute this probability exactly and compare
it with your approximation.
4.4.25 Suppose that Y X3 and X N 0 1 . By generating a large sample (n
104, if possible) from the distribution of Y approximate the expectation E cos X3 ,
and assess the error in your approximation

CHALLENGES

4.4.26 Suppose Xn C in distribution, where C is a constant. Prove that Xn C
in probability. (This proves that if X is constant, then the converse to Theorem 4.4.1
does hold, even though it does not hold for general X .)

4.5 Monte Carlo Approximations
The laws of large numbers say that if X1 X2 is an i.i.d. sequence of random vari
ables with mean , and

Mn
X1 Xn

n
,

then for large n we will have Mn .
Suppose now that is unknown. Then, as discussed in Section 4.4.2, it is possible

to change perspective and use Mn (for large n) as an estimator or approximation of .
Any time we approximate or estimate a quantity, we must also say something about
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how much error is in the estimate. Of course, we cannot say what this error is exactly,
as that would require knowing the exact value of . In Section 4.4.2, however, we
showed how the central limit theorem leads to a very natural approach to assessing this
error, using three times the standard error of the estimate. We consider some examples.

EXAMPLE 4.5.1
Consider ipping a sequence of identical coins, each of which has probability of
coming up heads, but where is unknown. Let Mn again be the fraction of the first n
coins that are heads. Then we know that for large n, it is very likely that Mn is very
close to . Hence, we can use Mn to estimate . Furthermore, the discussion in Section
4.4.2 indicates that (4.4.3) is the relevant interval to quote when assessing the accuracy
of the estimate Mn .

EXAMPLE 4.5.2
Suppose we believe a certain medicine lowers blood pressure, but we do not know by
how much. We would like to know the mean amount , by which this medicine lowers
blood pressure.

Suppose we observe n patients (chosen at random so they are i.i.d.), where patient
i has blood pressure Bi before taking the medicine and blood pressure Ai afterwards.
Let X i Bi Ai Then

Mn
1

n

n

i 1

Bi Ai

is the average amount of blood pressure decrease. (Note that Bi Ai may be negative
for some patients, and it is important to also include those negative terms in the sum.)
Then for large n, the value of Mn is a good estimate of E Xi . Furthermore, the
discussion in Section 4.4.2 indicates that (4.4.4) is the relevant interval to quote when
assessing the accuracy of the estimate Mn.

Such estimators can also be used to estimate purely mathematical quantities that do
not involve any experimental data (such as coins or medical patients) but that are too
difficult to compute directly. In this case, such estimators are called Monte Carlo ap
proximations (named after the gambling casino in the principality of Monaco because
they introduce randomness to solve nonrandom problems).

EXAMPLE 4.5.3
Suppose we wish to evaluate

I
1

0
cos x2 sin x4 dx

This integral cannot easily be solved exactly. But it can be approximately computed
using a Monte Carlo approximation, as follows. We note that

I E cos U2 sin U4

where U Uniform[0 1]. Hence, for large n, the integral I is approximately equal
to Mn T1 Tn n, where Ti cos U2

i sin U 4
i , and where U1 U2 are

i.i.d. Uniform[0 1].
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Putting this all together, we obtain an algorithm for approximating the integral I ,
as follows.

1. Select a large positive integer n.

2. Obtain Ui Uniform[0 1], independently for i 1 2 n.

3. Set Ti cos U2
i sin U 4

i , for i 1 2 n.

4. Estimate I by Mn T1 Tn n.

For large enough n, this algorithm will provide a good estimate of the integral I .
For example, the following table records the estimates Mn and the intervals (4.4.4)

based on samples of Uniform[0,1] variables for various choices of n

n Mn Mn 3S n Mn 3S n
103 0 145294 0 130071 0 160518
104 0 138850 0 134105 0 143595
105 0 139484 0 137974 0 140993

From this we can see that the value of I is approximately 0 139484 and the true value
is almost certainly in the interval 0 137974 0 140993 . Notice how the lengths of
the intervals decrease as we increase n In fact, it can be shown that the exact value is
I 0 139567, so our approximation is excellent.

EXAMPLE 4.5.4
Suppose we want to evaluate the integral

I
0

25x2 cos x2 e 25x dx

This integral cannot easily be solved exactly, but it can also be approximately computed
using a Monte Carlo approximation, as follows.

We note first that I E X2 cos X2 where X Exponential 25 . Hence, for
large n, the integral I is approximately equal to Mn T1 Tn n, where
Ti X2

i cos X2
i , with X1 X2 i.i.d. Exponential 25 .

Now, we know from Section 2.10 that we can simulate X Exponential 25 by
setting X ln U 25 where U Uniform[0 1]. Hence, putting this all together,
we obtain an algorithm for approximating the integral I , as follows.

1. Select a large positive integer n.

2. Obtain Ui Uniform[0 1], independently for i 1 2 n.

3. Set Xi ln Ui 25, for i 1 2 n.

4. Set Ti X2
i cos X2

i , for i 1 2 n.

5. Estimate I by Mn T1 Tn n.
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For large enough n, this algorithm will provide a good estimate of the integral I .
For example, the following table records the estimates Mn and the intervals (4.4.4)

based on samples of Exponential 25 variables for various choices of n

n Mn Mn 3S n Mn 3S n
103 3 33846 10 3 2 63370 10 3 4 04321 10 3

104 3 29933 10 3 3 06646 10 3 3 53220 10 3

105 3 20629 10 3 3 13759 10 3 3 27499 10 3

From this we can see that the value of I is approximately 3 20629 10 3 and that the
true value is almost certainly in the interval 3 13759 10 3 3 27499 10 3 .

EXAMPLE 4.5.5
Suppose we want to evaluate the sum

S
j 0

j2 3 75 j

Though this is very difficult to compute directly, it can be approximately computed
using a Monte Carlo approximation.

Let us rewrite the sum as

S
5

4
j 0

j2 3 7 4

5
1

4

5

j

We then see that S 5 4 E X2 3 7 where X Geometric 4 5 .
Now, we know from Section 2.10 that we can simulate X Geometric 4 5 by

setting X ln 1 U ln 1 4 5 or, equivalently, X ln U ln 1 4 5 ,
where U Uniform[0 1] and where means to round down to the next integer
value. Hence, we obtain an algorithm for approximating the sum S, as follows.

1. Select a large positive integer n.

2. Obtain Ui Uniform[0 1], independently for i 1 2 n.

3. Set Xi ln Ui ln 1 4 5 , for i 1 2 n.

4. Set Ti X2
i 3 7, for i 1 2 n.

5. Estimate S by Mn 5 4 T1 Tn n.

For large enough n, this algorithm will provide a good estimate of the sum S.
For example, the following table records the estimates Mn and the intervals (4.4.4)

based on samples of Geometric 4 5 variables for various choices of n

n Mn Mn 3S n Mn 3S n
103 4 66773 10 4 4 47078 10 4 4 86468 10 4

104 4 73538 10 4 4 67490 10 4 4 79586 10 4

105 4 69377 10 4 4 67436 10 4 4 71318 10 4
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From this we can see that the value of S is approximately 4 69377 10 4 and that the
true value is almost certainly in the interval 4 67436 10 4 4 71318 10 4 .

Note that when using a Monte Carlo approximation, it is not necessary that the
range of an integral or sum be the entire range of the corresponding random variable,
as follows.

EXAMPLE 4.5.6
Suppose we want to evaluate the integral

J
0

sin x e x2 2 dx

Again, this is extremely difficult to evaluate exactly.
Here

J 2 E sin X I X 0

where X N 0 1 and I X 0 is the indicator function of the event X 0 . We
know from Section 2.10 that we can simulate X N 0 1 by setting

X 2 log 1 U cos 2 V

where U and V are i.i.d. Uniform[0 1]. Hence, we obtain the following algorithm for
approximating the integral J .

1. Select a large positive integer n.

2. Obtain Ui Vi Uniform[0 1], independently for i 1 2
n.

3. Set Xi 2 log 1 Ui cos 2 Vi , for i 1 2 n.

4. Set Ti sin Xi I Xi 0 , for i 1 2 n. (That is, set Ti
sin Xi if X i 0, otherwise set Ti 0.)

5. Estimate J by Mn 2 T1 Tn n.

For large enough n, this algorithm will again provide a good estimate of the integral I .
For example, the following table records the estimates Mn and the intervals (4.4.4)

based on samples of N 0 1 variables for various choices of n

n Mn Mn 3S n Mn 3S n
103 0 744037 0 657294 0 830779
104 0 733945 0 706658 0 761233
105 0 722753 0 714108 0 731398

From this we can see that the value of J is approximately 0 722753 and that the true
value is almost certainly in the interval 0 714108 0 731398 .

Now we consider an important problem for statistical applications of probability
theory.
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EXAMPLE 4.5.7 Approximating Sampling Distributions Using Monte Carlo
Suppose X1 X2 Xn is an i.i.d. sequence from the probability measure P We want
to find the distribution of a new random variable Y h X1 X2 Xn for some
function h Provided we can generate from P, then Monte Carlo methods give us a
way to approximate this distribution.

Denoting the cumulative distribution function of Y by FY we have

FY y P y EPY I y] Y E I y] h X1 X2 Xn

So FY y can be expressed as the expectation of the random variable

I y] h X1 X2 Xn

based on sampling from P
To estimate this, we generate N samples of size n

Xi1 X i2 Xin

for i 1 N from P (note N is the Monte Carlo sample size and can be varied,
whereas the sample size n is fixed here) and then calculate the proportion of values
h Xi1 Xi2 Xin y The estimate MN is then given by

FY y
1

N

N

i 1

I y] h Xi1 X i2 Xin

By the laws of large numbers, this converges to FY y as N To evaluate the
error in this approximation, we use (4.4.3), which now takes the form

FY y 3 FY y 1 FY y n FY y 3 FY y 1 FY y n

We presented an application of this in Example 4.4.7. Note that if the base of a rec
tangle in the histogram of Figure 4.4.2 is given by a b] then the height of this rectan
gle equals the proportion of values that fell in a b] times 1 b a This can be ex
pressed as FY b FY a b a which converges to FY b FY a b a
as N This proves that the areas of the rectangles in the histogram converge to
FY b FY a as N

More generally, we can approximate an expectation E g Y using the average

1

N

N

i 1

g h X i1 Xi2 X in

By the laws of large numbers, this average converges to E g Y as N

Typically, there is more than one possible Monte Carlo algorithm for estimating
a quantity of interest. For example, suppose we want to approximate the integral

b
a g x dx where we assume this integral is finite. Let f be a density on the interval
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a b , such that f x 0 for every x a b and suppose we have a convenient
algorithm for generating X1 X2 i.i.d. with distribution given by f . We have that

b

a
g x dx

b

a

g x

f x
f x dx E

g X

f X

when X is distributed with density f . So we can estimate b
a g x dx by

Mn
1

n

n

i 1

g X i

f X i

1

n

n

i 1

Ti

where Ti g X i f Xi . In effect, this is what we did in Example 4.5.3 ( f is the
Uniform[0 1] density), in Example 4.5.4 ( f is the Exponential 25 density), and in
Example 4.5.6 ( f is the N 0 1 density). But note that there are many other possible
choices. In Example 4.5.3, we could have taken f to be any beta density. In Example
4.5.4, we could have taken f to be any gamma density, and similarly in Example
4.5.6. Most statistical computer packages have commands for generating from these
distributions. In a given problem, what is the best one to use?

In such a case, we would naturally use the algorithm that was most efficient. For
the algorithms we have been discussing here, this means that if, based on a sample
of n algorithm 1 leads to an estimate with standard error 1 n, and algorithm 2
leads to an estimate with standard error 2 n, then algorithm 1 is more efficient than
algorithm 2 whenever 1 2 Naturally, we would prefer algorithm 1 because the
intervals (4.4.3) or (4.4.4) will tend to be shorter for algorithm 1 for the same sample
size. Actually, a more refined comparison of efficiency would also take into account the
total amount of computer time used by each algorithm, but we will ignore this aspect of
the problem here. See Problem 4.5.21 for more discussion of efficiency and the choice
of algorithm in the context of the integration problem.

Summary of Section 4.5

An unknown quantity can be approximately computed using a Monte Carlo ap
proximation, whereby independent replications of a random experiment (usually
on a computer) are averaged to estimate the quantity.

Monte Carlo approximations can be used to approximate complicated sums, in
tegrals, and sampling distributions, all by choosing the random experiment ap
propriately.

EXERCISES

4.5.1 Describe a Monte Carlo approximation of cos2 x e x2 2 dx

4.5.2 Describe a Monte Carlo approximation of m
j 0 j6 m

j 2 j 3 m . (Hint: Remember
the Binomial m 2 3 distribution.)

4.5.3 Describe a Monte Carlo approximation of 0 e 5x 14x2
dx (Hint: Remember

the Exponential 5 distribution.)



Chapter 4: Sampling Distributions and Limits 231

4.5.4 Suppose X1 X2 are i.i.d. with distribution Poisson , where is unknown.
Consider Mn X1 X2 Xn n as an estimate of Suppose we know that

10. How large must n be to guarantee that Mn will be within 0 1 of the true value
of with virtual certainty, i.e., when is 3 standard deviations smaller than 0 1?
4.5.5 Describe a Monte Carlo approximation of j 0 sin j2 5 j j !. Assume you
have available an algorithm for generating from the Poisson 5 distribution.

4.5.6 Describe a Monte Carlo approximation of 10
0 e x4

dx (Hint: Remember the
Uniform[0 10] distribution.)

4.5.7 Suppose we repeat a certain experiment 2000 times and obtain a sample average
of 5 and a standard error of 17. In terms of this, specify an interval that is virtually
certain to contain the experiment’s (unknown) true mean .
4.5.8 Suppose we repeat a certain experiment 400 times and get i.i.d. response values
X1 X2 X400. Suppose we compute that the sample average is M400 6 and
furthermore that 400

i 1 X i
2 15,400. In terms of this:

(a) Compute the standard error n .
(b) Specify an interval that is virtually certain to contain the (unknown) true mean of
the Xi .
4.5.9 Suppose a certain experiment has probability of success, where 0 1
but is unknown. Suppose we repeat the experiment 1000 times, of which 400 are
successes and 600 are failures. Compute an interval of values that are virtually certain
to contain .

4.5.10 Suppose a certain experiment has probability of success, where 0 1
but is unknown. Suppose we repeat the experiment n times, and let Y be the fraction
of successes.
(a) In terms of , what is Var Y ?
(b) For what value of is Var Y the largest?
(c) What is this largest possible value of Var Y ?
(d) Compute the smallest integer n such that we can be sure that Var Y 0 01,
regardless of the value of .
4.5.11 Suppose X and Y are random variables with joint density given by fX Y x y
C g x y for 0 x y 1 (with fX Y x y 0 for other x y), for appropriate con
stant C, where

g x y x2 y3 sin xy cos xy exp x2 y

(a) Explain why

E X
1

0

1

0
x fX Y x y dx dy

1
0

1
0 x g x y dx dy

1
0

1
0 g x y dx dy

(b) Describe a Monte Carlo algorithm to approximately compute E X .

4.5.12 Let g x y cos xy , and consider the integral I 5
0

4
0 g x y dy dx .

(a) Prove that I 20 E[g X Y ] where X Uniform[0 5] and Y Uniform[0 4].
(b) Use part (a) to describe a Monte Carlo algorithm to approximately compute I .
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4.5.13 Consider the integral J 1
0 0 h x y dy dx , where

h x y e y2
cos xy

(a) Prove that J E[eY h X Y ], where X Uniform[0 1] and Y Exponential 1 .
(b) Use part (a) to describe a Monte Carlo algorithm to approximately compute J .
(c) If X Uniform[0 1] and Y Exponential 5 , then prove that

J 1 5 E[e5Y h X Y ]

(d) Use part (c) to describe a Monte Carlo algorithm to approximately compute J .
(e) Explain how you might use a computer to determine which is better, the algorithm
in part (b) or the algorithm in part (d).

COMPUTER EXERCISES

4.5.14 Use a Monte Carlo algorithm to approximate 1
0 cos x3 sin x4 dx based on a

large sample (take n 105, if possible). Assess the error in the approximation.
4.5.15 Use a Monte Carlo algorithm to approximate 0 25 cos x4 e 25x dx based on
a large sample (take n 105, if possible). Assess the error in the approximation.

4.5.16 Use a Monte Carlo algorithm to approximate j 0 j2 3 55 j based on a

large sample (take n 105, if possible). Assess the error in the approximation.

4.5.17 Suppose X N 0 1 . Use a Monte Carlo algorithm to approximate P X2

3X 2 0 based on a large sample (take n 105, if possible). Assess the error in
the approximation.

PROBLEMS

4.5.18 Suppose that X1 X2 are i.i.d. Bernoulli where is unknown. Determine
a lower bound on n so that the probability that the estimate Mn will be within of
the unknown value of is about 0.9974. This allows us to run simulations with high
confidence that the error in the approximation quoted is less than some prescribed value
. (Hint: Use the fact that x 1 x 1 4 for all x [0 1] )
4.5.19 Suppose that X1 X2 are i.i.d. with unknown mean and unknown variance

2 Suppose we know, however, that 2 2
0, where 2

0 is a known value. Determine
a lower bound on n so that the probability that the estimate Mn will be within of
the unknown value of is about 0 9974. This allows us to run simulations with high
confidence that the error in the approximation quoted is less than some prescribed value
.

4.5.20 Suppose X1 X2 are i.i.d. with distribution Uniform[0 ], where is un
known, and consider Zn n 1 n 1 X n as an estimate of (see Section 2.8.4 on
order statistics).
(a) Prove that E Zn and compute Var Zn
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(b) Use Chebyshev’s inequality to show that Zn converges in probability to
(c) Show that E 2Mn and compare Mn and Zn with respect to their efficiencies
as estimators of Which would you use to estimate and why?

4.5.21 (Importance sampling) Suppose we want to approximate the integral b
a g x dx ,

where we assume this integral is finite. Let f be a density on the interval a b such
that f x 0 for every x a b and is such that we have a convenient algorithm for
generating X1 X2 i.i.d. with distribution given by f
(a) Prove that

Mn f
1

n

n

i 1

g X i

f Xi

a s
b

a
g x dx

(We refer to f as an importance sampler and note this shows that every f satisfying
the above conditions, provides a consistent estimator Mn f of b

a g x dx )

(b) Prove that

Var Mn f
1

n

b

a

g2 x

f x
dx

b

a
g x dx

2

(c) Suppose that g x h x f x , where f is as described above. Show that impor
tance sampling with respect to f leads to the estimator

Mn f
1

n

n

i 1

h X i

(d) Show that if there exists c such that g x c f x for all x a b then
Var Mn f
(e) Determine the standard error of Mn f and indicate how you would use this to
assess the error in the approximation Mn f when Var Mn f

COMPUTER PROBLEMS

4.5.22 Use a Monte Carlo algorithm to approximate P X3 Y 3 3 , where X
N 1 2 independently of Y Gamma 1 1 based on a large sample (take n 105,
if possible). Assess the error in the approximation How large does n have to be to
guarantee the estimate is within 0 01 of the true value with virtual certainty? (Hint:
Problem 4.5.18.)
4.5.23 Use a Monte Carlo algorithm to approximate E X3 Y 3 , where X N 1 2
independently of Y Gamma 1 1 based on a large sample (take n 105, if possi
ble). Assess the error in the approximation.
4.5.24 For the integral of Exercise 4.5.3, compare the efficiencies of the algorithm
based on generating from an Exponential 5 distribution with that based on generating
from an N 0 1 7 distribution.
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CHALLENGES

4.5.25 (Buffon’s needle) Suppose you drop a needle at random onto a large sheet of
lined paper. Assume the distance between the lines is exactly equal to the length of the
needle.
(a) Prove that the probability that the needle lands touching a line is equal to 2 .
(Hint: Let D be the distance from the higher end of the needle to the line just below it,
and let A be the angle the needle makes with that line. Then what are the distributions
of D and A? Under what conditions on D and A will the needle be touching a line?)
(b) Explain how this experiment could be used to obtain a Monte Carlo approximation
for the value of .
4.5.26 (Optimal importance sampling) Consider importance sampling as described in
Problem 4.5.21.
(a) Prove that Var Mn f is minimized by taking

f x g x
b

a
g x dx

Calculate the minimum variance and show that the minimum variance is 0 when g x
0 for all x a b .
(b) Why is this optimal importance sampler typically not feasible? (The optimal im
portance sampler does indicate, however, that in our search for an efficient importance
sampler, we look for an f that is large when g is large and small when g is small.)

DISCUSSION TOPICS

4.5.27 An integral like 0 x2 cos x2 e x dx can be approximately computed using a
numerical integration computer package (e.g., using Simpson’s rule). What are some
advantages and disadvantages of using a Monte Carlo approximation instead of a nu
merical integration package?

4.5.28 Carry out the Buffon’s needle Monte Carlo experiment, described in Challenge
4.5.25, by repeating the experiment at least 20 times. Present the estimate of so
obtained. How close is it to the true value of ? What could be done to make the
estimate more accurate?

4.6 Normal Distribution Theory
Because of the central limit theorem (Theorem 4.4.3), the normal distribution plays
an extremely important role in statistical theory. For this reason, we shall consider
a number of important properties and distributions related to the normal distribution.
These properties and distributions will be very important for the statistical theory in
later chapters of this book.

We already know that if X1 N 1
2
1 independent of X2 N 2

2
2 , then

cX1 d N c 1 d c2 2 (see Exercise 2.6.3) and X1 X2 N 1 2
2
1
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2
2 (see Problem 2.9.14). Combining these facts and using induction, we have the

following result.

Theorem 4.6.1 Suppose Xi N i
2
i for i 1 2 n and that they are

independent random variables. Let Y i ai Xi b for some constants ai and
b. Then

Y N
i

ai i b
i

a2
i

2
i

This immediately implies the following.

Corollary 4.6.1 Suppose Xi N 2 for i 1 2 n and that they are
independent random variables. If X X1 Xn n, then X N 2 n

A more subtle property of normal distributions is the following.

Theorem 4.6.2 Suppose Xi N i
2
i for i 1 2 n and also that the Xi

are independent. Let U n
i 1 ai Xi and V n

i 1 bi Xi for some constants ai
and bi . Then Cov U V i ai bi

2
i . Furthermore, Cov U V 0 if and only

if U and V are independent.

PROOF The formula for Cov U V follows immediately from the linearity of co
variance (Theorem 3.3.2) because we have

Cov U V Cov
n

i 1

ai Xi

n

j 1

b j X j

n

i 1

n

j 1

ai b j Cov X i X j

n

i 1

ai bi Cov X i Xi

n

i 1

ai bi Var X i

n

i 1

ai bi
2
i

(note that Cov Xi X j 0 for i j , by independence). Also, if U and V are
independent, then we must have Cov U V 0 by Corollary 3.3.2.

It remains to prove that, if Cov U V 0, then U and V are independent. This
involves a twodimensional change of variable, as discussed in the advanced Section
2.9.2, so we refer the reader to Section 4.7 for this part of the proof.

Theorem 4.6.2 says that, for the special case of linear combinations of independent
normal distributions, if Cov U V 0 then U and V are independent. However, it is
important to remember that this property is not true in general, and there are random
variables X and Y such that Cov X Y 0 even though X and Y are not independent
(see Example 3.3.10). Furthermore, this property is not even true of normal distribu
tions in general (see Problem 4.6.13).
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Note that using linear algebra, we can write the equations U n
i 1 ai X i and

V n
i 1 bi X i of Theorem 4.6.2 in matrix form as

U
V

A

X1
X2

Xn

(4.6.1)

where

A
a1 a2 an
b1 b2 bn

Furthermore, the rows of A are orthogonal if and only if i ai bi 0. Now, in the case
i 1 for all i , we have that Cov U V i ai bi . Hence, if i 1 for all i , then

Theorem 4.6.2 can be interpreted as saying that if U and V are given by (4.6.1), then
U and V are independent if and only if the rows of A are orthogonal. Linear algebra is
used extensively in more advanced treatments of these ideas.

4.6.1 The ChiSquared Distribution

We now introduce another distribution, related to the normal distribution.

Definition 4.6.1 The chisquared distribution with n degrees of freedom (or chi
squared n or 2 n ) is the distribution of the random variable

Z X2
1 X2

2 X2
n

where X1 Xn are i.i.d., each with the standard normal distribution N 0 1 .

Most statistical packages have builtin routines for the evaluation of chisquared prob
abilities (also see Table D.3 in Appendix D).

One property of the chisquared distribution is easy.

Theorem 4.6.3 If Z 2 n , then E Z n.

PROOF Write Z X2
1 X2

2 X2
n, where Xi are i.i.d. N 0 1 . Then

E Xi
2 1. It follows by linearity that E Z 1 1 n.

The density function of the chisquared distribution is a bit harder to obtain. We
begin with the case n 1.

Theorem 4.6.4 Let Z 2 1 . Then

fZ z
1

2 z
e z 2 1 2 1 2

1 2
z 1 2e z 2

for z 0, with fZ z 0 for z 0. That is, Z Gamma 1 2 1 2 (using
1 2 ).
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PROOF Because Z 2 1 , we can write Z X2 where X N 0 1 . We then
compute that, for z 0,

z

fZ s ds P Z z P X2 z P z X z

But because X N 0 1 with density function s 2 1 2 e s2 2 we can
rewrite this as

z
fZ s ds

z

z
s ds

z
s ds

z
s ds

Because this is true for all z 0, we can differentiate with respect to z (using the
fundamental theorem of calculus and the chain rule) to obtain

fZ z
1

2 z
z

1

2 z
z

1

z
z

1

2 z
e z 2

as claimed.

In Figure 4.6.1, we have plotted the 2 1 density. Note that the density becomes
infinite at 0.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

1

2

3

4

z

 f

Figure 4.6.1: Plot of the 2 1 density.

Theorem 4.6.5 Let Z 2 n . Then Z Gamma n 2 1 2 . That is,

fZ z
1

2n 2 n 2
z n 2 1e z 2

for z 0, with fZ z 0 for z 0.
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PROOF Because Z 2 n , we can write Z X2
1 X2

2 X2
n, where the Xi

are i.i.d. N 0 1 . But this means that X2
i are i.i.d. 2 1 . Hence, by Theorem 4.6.4,

we have X2
i i.i.d. Gamma 1 2 1 2 for i 1 2 n. Therefore, Z is the sum of n

independent random variables, each having distribution Gamma 1 2 1 2 .
Now by Appendix C (see Problem 3.4.20), the momentgenerating function of a

Gamma random variable is given by m s s for s Putting
1 2 and 1 2 and applying Theorem 3.4.5, the variable Y X2

1 X2
2 X2

n
has momentgenerating function given by

mY s
n

i 1

m X2
i

s
n

i 1

1

2

1 2 1

2
s

1 2 1

2

n 2 1

2
s

n 2

for s 1 2 We recognize this as the momentgenerating function of the Gamma n 2
1 2 distribution. Therefore, by Theorem 3.4.6, we have that X2

1 X2
2 X2

n
Gamma n 2 1 2 , as claimed.

This result can also be obtained using Problem 2.9.15 and induction.

Note that the 2 2 density is the same as the Exponential 2 density. In Figure
4.6.2, we have plotted several 2 densities. Observe that the 2 are asymmetric and
skewed to the right. As the degrees of freedom increase, the central mass of probability
moves to the right.
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Figure 4.6.2: Plot of the 2 3 (solid line) and the 2 7 (dashed line density functions.

One application of the chisquared distribution is the following.

Theorem 4.6.6 Let X1 Xn be i.i.d. N 2 . Put

X
1

n
X1 Xn and S2 1

n 1

n

i 1

Xi X 2

Then n 1 S2 2 2 n 1 and furthermore, S2 and X are independent.
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PROOF See Section 4.7 for the proof of this result.

Because the 2 n 1 distribution has mean n 1, we obtain the following.

Corollary 4.6.2 E S2 2.

PROOF Theorems 4.6.6 and 4.6.3 imply that E n 1 S2 2 n 1 and that
E S2 2.

Theorem 4.6.6 will find extensive use in Chapter 6. For example, this result, to
gether with Corollary 4.6.1, gives us the joint sampling distribution of the sample mean
X and the sample variance S2 when we are sampling from an N 2 distribution. If
we do not know then X is a natural estimator of this quantity and, similarly, S2 is a
natural estimator of 2 when it is unknown. Interestingly, we divide by n 1 in S2

rather than n precisely because we want E S2 2 to hold, as in Corollary 4.6.2.
Actually, this property does not depend on sampling from a normal distribution. It can
be shown that anytime X1 Xn is a sample from a distribution with variance 2

then E S2 2

4.6.2 The t Distribution

The t distribution also has many statistical applications.

Definition 4.6.2 The t distribution with n degrees of freedom (or Student n or
t n ), is the distribution of the random variable

Z
X

X2
1 X2

2 X2
n n

where X X1 Xn are i.i.d., each with the standard normal distribution N 0 1 .
(Equivalently, Z X Y n, where Y 2 n .)

Most statistical packages have builtin routines for the evaluation of t n probabilities
(also see Table D.4 in Appendix D).

The density of the t n distribution is given by the following result.

Theorem 4.6.7 Let U t n . Then

fU u

n 1
2

n
2

1
u2

n

n 1 2
1

n

for all u R1.

PROOF For the proof of this result, see Section 4.7.

The following result shows that, when n is large, the t n distribution is very similar
to the N 0 1 distribution.



240 Section 4.6: Normal Distribution Theory

Theorem 4.6.8 As n , the t n distribution converges in distribution to a
standard normal distribution.

PROOF Let Z1 Zn Z be i.i.d. N 0 1 As n , by the strong law of large
numbers, Z2

1 Z2
n n converges with probability 1 to the constant 1. Hence, the

distribution of

Z

Z2
1 Z2

n n
(4.6.2)

converges to the distribution of Z , which is the standard normal distribution. By Defi
nition 4.6.2, we have that (4.6.2) is distributed t n

In Figure 4.6.3, we have plotted several t densities. Notice that the densities of the
t distributions are symmetric about 0 and look like the standard normal density.
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Figure 4.6.3: Plot of the t 1 (solid line) and the t 30 (dashed line density functions.

The t n distribution has longer tails than the N 0 1 distribution. For example, the
t 1 distribution (also known as the Cauchy distribution) has 0.9366 of its probability
in the interval 10 10 whereas the N 0 1 distribution has all of its probability
there (at least to four decimal places). The t 30 and the N 0 1 densities are very
similar.

4.6.3 The F Distribution

Finally, we consider the F distribution.
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Definition 4.6.3 The F distribution with m and n degrees of freedom (or F m n )
is the distribution of the random variable

Z
X2

1 X2
2 X2

m m

Y 2
1 Y 2

2 Y 2
n n

where X1 Xm Y1 Yn are i.i.d., each with the standard normal distribution.
(Equivalently, Z X m Y n , where X 2 m and Y 2 n .)

Most statistical packages have builtin routines for the evaluation of F m n probabil
ities (also see Table D.5 in Appendix D).

The density of the F m n distribution is given by the following result.

Theorem 4.6.9 Let U F m n . Then

fU u
m n

2
m
2

n
2

m

n
u

m 2 1
1

m

n
u

m n 2 m

n

for u 0, with fU u 0 for u 0.

PROOF For the proof of this result, see Section 4.7.

In Figure 4.6.4, we have plotted several F m n densities. Notice that these densities
are skewed to the right.

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

u

 f

Figure 4.6.4: Plot of the F 2 1 (solid line) and the F 3 10 (dashed line) density functions.

The following results are useful when it is necessary to carry out computations with
the F m n distribution.

Theorem 4.6.10 If Z F m n then 1 Z F n m
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PROOF Using Definition 4.6.3, we have

1

Z

Y 2
1 Y 2

2 Y 2
n n

X2
1 X2

2 X2
m m

and the result is immediate from the definition.

Therefore, if Z F m n , then P Z z P 1 Z 1 z 1 P 1 Z 1 z
and P 1 Z 1 z is the cdf of the F n m distribution evaluated at 1 z.

In many statistical applications, n can be very large. The following result then gives
a useful approximation for that case.

Theorem 4.6.11 If Zn F m n then m Zn converges in distribution to a 2 m
distribution as n .

PROOF Using Definition 4.6.3, we have

m Z
X2

1 X2
2 X2

m

Y 2
1 Y 2

2 Y 2
n n

By Definition 4.6.1, X2
1 X2

m
2 m By Theorem 4.6.3, E Y 2

i 1 so the
strong law of large numbers implies that Y 2

1 Y 2
2 Y 2

n n converges almost
surely to 1. This establishes the result.

Finally, Definitions 4.6.2 and 4.6.3 immediately give the following result.

Theorem 4.6.12 If Z t n then Z2 F 1 n

Summary of Section 4.6

Linear combinations of independent normal random variables are also normal,
with appropriate mean and variance.

Two linear combinations of the same collection of independent normal random
variables are independent if and only if their covariance equals 0.

The chisquared distribution with n degrees of freedom is the distribution corre
sponding to a sum of squares of n i.i.d. standard normal random variables. It has
mean n. It is equal to the Gamma n 2 1 2 distribution.

The t distribution with n degrees of freedom is the distribution corresponding to
a standard normal random variable, divided by the squareroot of 1 n times an
independent chisquared random variable with n degrees of freedom. Its density
function was presented. As n , it converges in distribution to a standard
normal distribution.

The F distribution with m and n degrees of freedom is the distribution corre
sponding to m n times a chisquared distribution with m degrees of freedom,
divided by an independent chisquared distribution with n degrees of freedom.
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Its density function was presented. If t has a t n distribution, then t2 is distrib
uted F 1 n .

EXERCISES

4.6.1 Let X1 N 3 22 and X2 N 8 52 be independent. Let U X1 5X2
and V 6X1 C X2, where C is a constant.
(a) What are the distributions of U and V ?
(b) What value of C makes U and V be independent?
4.6.2 Let X N 3 5 and Y N 7 2 be independent.
(a) What is the distribution of Z 4X Y 3?
(b) What is the covariance of X and Z?
4.6.3 Let X N 3 5 and Y N 7 2 be independent. Find values of C1
0 C2 C3 0 C4 C5 so that C1 X C2

2 C3 Y C4
2 2 C5 .

4.6.4 Let X 2 n and Y N 0 1 be independent. Prove that X Y 2

2 n 1 .

4.6.5 Let X 2 n and Y 2 m be independent. Prove that X Y 2 n m .
4.6.6 Let X1 X2 X4n be i.i.d. with distribution N 0 1 . Find a value of C such
that

C
X2

1 X2
2 X2

n

X2
n 1 X2

n 2 X2
4n

F n 3n

4.6.7 Let X1 X2 Xn 1 be i.i.d. with distribution N 0 1 . Find a value of C such
that

C
X1

X2
2 X2

n X2
n 1

t n

4.6.8 Let X N 3 5 and Y N 7 2 be independent. Find values of C1 C2 C3
C4 C5 C6 so that

C1 X C2
C3

Y C4
2 C5

t C6

4.6.9 Let X N 3 5 and Y N 7 2 be independent. Find values of C1 C2 C3
C4 C5 C6 C7 so that

C1 X C2
C3

Y C4
C5

F C6 C7

4.6.10 Let X1 X2 X100 be independent, each with the standard normal distribu
tion.
(a) Compute the distribution of X2

1.

(b) Compute the distribution of X2
3 X2

5 .

(c) Compute the distribution of X10 [X2
20 X2

30 X2
40] 3.

(d) Compute the distribution of 3X2
10 [X2

20 X2
30 X2

40].
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(e) Compute the distribution of

30

70

X2
1 X2

2 X2
70

X2
71 X2

72 X2
100

4.6.11 Let X1 X2 X61 be independent, each distributed as N 2 . Set X
1 61 X1 X2 X61 and

S2 1

60
X1 X 2 X2 X 2 X61 X 2

as usual.
(a) For what values of K and m is it true that the quantity Y K X S2 has a t
distribution with m degrees of freedom?
(b) With K as in part (a), find y such that P Y y 0 05.
(c) For what values of a and b and c is it true that the quantity W a X 2 S2 has
an F distribution with b and c degrees of freedom?
(d) For those values of a and b and c, find a quantity so that P W 0 05.
4.6.12 Suppose the core temperature (in degrees celsius, when used intensively) of
the latest Dell desktop computer is normally distributed with mean 40 and standard
deviation 5, while for the latest Compaq it is normally distributed with mean 45 and
standard deviation 8. Suppose we measure the Dell temperature 20 times (on separate
days) and obtain measurements D1 D2 D20, and we also measure the Compaq
temperature 30 times and obtain measurements C1 C2 C30.
(a) Compute the distribution of D D1 D20 20.
(b) Compute the distribution of C C1 C30 30.
(c) Compute the distribution of Z C D.
(d) Compute P C D .

(e) Let U D1 D 2 D2 D 2 D20 D 2. What is P U 633 25 ?

PROBLEMS

4.6.13 Let X N 0 1 , and let P Y 1 P Y 1 1 2. Assume X and Y
are independent. Let Z XY .
(a) Prove that Z N 0 1 .
(b) Prove that Cov X Z 0.
(c) Prove directly that X and Z are not independent.
(d) Why does this not contradict Theorem 4.6.2?
4.6.14 Let Z t n . Prove that P Z x P Z x for x R1, namely, prove
that the t n distribution is symmetric about 0.
4.6.15 Let Xn F n 2n for n 1 2 3 . Prove that Xn 1 in probability and
with probability 1.
4.6.16 (The general chisquared distribution) Prove that for 0 the function

f z
1

2 2 2
z 2 1e z 2
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defines a probability distribution on 0 This distribution is known as the 2

distribution, i.e., it generalizes the distribution in Section 4.6.2 by allowing the degrees
of freedom to be an arbitrary positive real number. (Hint: The 2 distribution is the
same as a Gamma 2 1 2 distribution.)
4.6.17 (MV) (The general t distribution) Prove that for 0 the function

f u

1
2

2

1
u2 1 2

1

defines a probability distribution on by showing that the random variable

U
X

Y

has this density when X N 0 1 independent of Y 2 , as in Problem 4.6.16.
This distribution is known as the t distribution, i.e., it generalizes the distribution
in Section 4.6.3 by allowing the degrees of freedom to be an arbitrary positive real
number. (Hint: The proof is virtually identical to that of Theorem 4.6.7.)
4.6.18 (MV) (The general F distribution) Prove that for 0 0 the function

f u
2

2 2

u
2 1

1 u
2

defines a probability distribution on 0 by showing that the random variable

U
X

Y

has this density whenever X 2 independent of Y 2 as in Problem
4.6.16. This distribution is known as the F distribution, i.e., it generalizes the
distribution in Section 4.6.4 by allowing the numerator and denominator degrees of
freedom to be arbitrary positive real numbers. (Hint: The proof is virtually identical to
that of Theorem 4.6.9).
4.6.19 Prove that when X t as defined in Problem 4.6.17, and 1 then
E X 0 Further prove that when 2, Var X 2 . You can assume
the existence of these integrals — see Challenge 4.6.21. (Hint: To evaluate the second
moment, use Y X2 F 1 as defined in Problem 4.6.18.)

4.6.20 Prove that when X F then E X 2 when 2 and
Var X 2 2 2 2 2 4 when 4.

CHALLENGES

4.6.21 Following Problem 4.6.19, prove that the mean of X does not exist whenever
0 1. Further prove that the variance of X does not exist whenever 0 1
and is infinite when 1 2.

4.6.22 Prove the identity (4.7.1) in Section 4.7, which arises as part of the proof of
Theorem 4.6.6.
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4.7 Further Proofs (Advanced)
Proof of Theorem 4.3.1

We want to prove the following result. Let Z Z1 Z2 be random variables. Suppose
Zn Z with probability 1. Then Zn Z in probability. That is, if a sequence of
random variables converges almost surely, then it converges in probability to the same
limit.

Assume P Zn Z 1. Fix 0, and let An s : Zm Z for some
m n . Then An is a decreasing sequence of events. Furthermore, if s n 1 An,
then Zn s Z s as n . Hence,

P n 1 An P Zn Z 0

By continuity of probabilities, we have limn P An P n 1 An 0 Hence,
P Zn Z P An 0 as n . Because this is true for any 0, we
see that Zn Z in probability.

Proof of Theorem 4.4.1

We show that if Xn
P

X, then Xn
D

X.
Suppose Xn X in probability and that P X x 0. We wish to show that

limn P Xn x P X x .
Choose any 0. Now, if Xn x then we must have either X x or

X Xn . Hence, by subadditivity,

P Xn x P X x P X Xn

Replacing x by x in this equation, we see also that

P X x P Xn x P X Xn

Rearranging and combining these two inequalities, we have

P X x P X Xn P Xn x P X x P X Xn

This is the key.
We next let n . Because Xn X in probability, we know that

lim
n

P X Xn 0

This means that limn P Xn x is “sandwiched” between P X x and
P X x .

We then let 0. By continuity of probabilities,

lim
0

P X x P X x and lim
0

P X x P X x

This means that limn P Xn x is “sandwiched” between P X x and P X
x .

But because P X x 0, we must have P X x P X x . Hence,
limn P Xn x P X x , as required.
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Proof of Theorem 4.4.3 (The central limit theorem)

We must prove the following. LetX1 X2 be i.i.d. with finite mean and finite
variance 2. Let Z N 0 1 . Set Sn X1 Xn , and

Zn
Sn n

n 2

Then as n , the sequence Zn converges in distribution to the Z, i.e., Zn
D

Z.
Recall that the standard normal distribution has momentgenerating function given

by m Z s exp s2 2 .
We shall now assume that m Zn s is finite for s s0 for some s0 0. (This

assumption can be eliminated by using characteristic functions instead of moment
generating functions.) Assuming this, we will prove that for each real number s, we
have limn m Zn s m Z s , where m Zn s is the momentgenerating function of
Zn . It then follows from Theorem 4.4.2 that Zn converges to Z in distribution.

To proceed, let Yi Xi . Then E Yi 0 and E Y 2
i Var Yi 1.

Also, we have

Zn
1

n
Y1 Yn .

Let mY s E esYi be the momentgenerating function of Yi (which is the same for
all i , because they are i.i.d.). Then using independence, we compute that

lim
n

mZn s lim
n

E es Zn lim
n

E es Y1 Yn n

lim
n

E esY1 n esY2 n esYn n

lim
n

E esY1 n E esY2 n E esYn n

lim
n

mY s n mY s n mY s n

lim
n

mY s n n

Now, we know from Theorem 3.5.3 that mY 0 E e0 1. Also, mY 0
E Yi 0 and mY 0 E Y 2

i 1. But then expanding mY s in a Taylor series
around s 0, we see that

mY s 1 0s
1

2!
s2 o s2 1 s2 2 o s2

where o s2 stands for a quantity that, as s 0, goes to 0 faster than s2 does —
namely, o s2 s 0 as s 0. This means that

mY s n 1 s n 2 2 o s n 2 1 s2 2n o 1 n

where now o 1 n stands for a quantity that, as n , goes to 0 faster than 1 n
does.
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Finally, we recall from calculus that, for any real number c, limn 1 c n n

ec. It follows from this and the above that

lim
n

mY s 2 n n lim
n

1 s2 2n n es2 2

That is, limn mZn s es2 2, as claimed.

Proof of Theorem 4.6.2

We prove the following. Suppose X i N i
2
i for i 1 2 n and also that the

Xi are independent. Let U n
i 1 ai Xi and V n

i 1 bi Xi , for some constants
ai and bi . Then Cov U V i ai bi

2
i . Furthermore, Cov U V 0 if and

only if U and V are independent.
It was proved in Section 4.6 that Cov U V i ai bi

2
i and that Cov U V 0

if U and V are independent. It remains to prove that, if Cov U V 0, then U and V
are independent. For simplicity, we take n 2 and 1 2 0 and 2

1
2
2 1;

the general case is similar but messier. We therefore have

U a1 X1 a2 X2 and V b1 X1 b2 X2

The Jacobian derivative of this transformation is

J x1 x2
U

X1

V

X2

V

X1

U

X2
a1b2 b1a2

Inverting the transformation gives

X1
b2U a2V

a1b2 b1a2
and X2

a1V b1U

a1b2 b1a2

Also,

fX1 X2 x1 x2
1

2
e x2

1 x2
2 2

Hence, from the multidimensional change of variable theorem (Theorem 2.9.2), we
have

fU V u fX1 X2 x1 x2
b2u a2

a1b2 b1a2

a1 b1u

a1b2 b1a2
J x1 x2

1

1

2

exp b2u a2
2 a1 b1u 2 2 a1b2 b1a2

2

a1b2 b1a2

But

b2u a2
2 a1 b1u 2 b2

1 b2
2 u2 a2

1 a2
2

2 2 a1b1 a2b2 u

and Cov U V a1b1 a2b2. Hence, if Cov U V 0, then

b2u a2
2 a1 b1u 2 b2

1 b2
2 u2 a2

1 a2
2

2
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and

fU V u
exp b2

1 b2
2 u2 a2

1 a2
2

2 2 a1b2 b1a2
2

2 a1b2 b1a2

exp b2
1 b2

2 u2 2 a1b2 b1a2
2 exp a2

1 a2
2

2 2 a1b2 b1a2
2

2 a1b2 b1a2
.

It follows that we can factor fU V u as a function of u times a function of . But
this implies (see Problem 2.8.19) that U and V are independent.

Proof of Theorem 4.6.6

We want to prove that when X1 Xn are i.i.d. N 2 and

X
1

n
X1 Xn and S2 1

n 1

n

i 1

Xi X 2

then n 1 S2 2 2 n 1 and, furthermore, that S2 and X are independent.
We have

n 1
2 S2

n

i 1

Xi X
2

.

We rewrite this expression as (see Challenge 4.6.22)

n 1
2

S2

X1 X2

2

2 X1 X2 2X3

2 3

2 X1 X2 X3 3X4

3 4

2

X1 X2 Xn 1 n 1 Xn

n 1 n

2

. (4.7.1)

Now, by Theorem 4.6.1, each of the n 1 expressions within brackets in (4.7.1)
has the standard normal distribution. Furthermore, by Theorem 4.6.2, the expressions
within brackets in (4.7.1) are all independent of one another and are also all indepen
dent of X .

It follows that n 1 S2 2 is independent of X . It also follows, by the definition
of the chisquared distribution, that n 1 S2 2 2 n 1 .

Proof of Theorem 4.6.7

We want to show that when U t n , then

fU u

n 1
2

n
2

1
u2

n

n 1 2
1

n

for all u R1.
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Because U t n , we can write U X Y n, where X and Y are independent
with X N 0 1 and Y 2 n . It follows that X and Y have joint density given by

fX Y x y
e x2 2y n 2 1e y 2

2 2n 2 n
2

when y 0 (with fX Y x y 0 for y 0).
Let V Y We shall use the multivariate change of variables formula (Theo

rem 2.9.2) to compute the joint density fU V u of U and V . Because U X Y n
and V Y , it follows that X U V n and Y V . We compute the Jacobian term
as

J x y det

u
x x

u
y y

det

1
y n

0

x n
y3 2 1

1

y n

Hence,

fU V u fX Y u
n

J 1 u
n

e u2 2n n 2 1e 2

2 2n 2 n
2

n

1

n 2

1

2 n 1 2

1

n
n 1 2 1e 2 1 u2 n

for 0 (with fU V u 0 for 0).
Finally, we compute the marginal density of U :

fU u fU V u d

1

n 2

1

2 n 1 2

1

n 0

n 1 2 1e 2 1 u2 n d

1

n 2
1

u2

n

n 1 2
1

n 0

n 1 2 1e 2 d

n 1
2

n 2
1

u2

n

n 1 2
1

n

where we have made the substitution 1 u2 n 2 to get the third equality and
then used the definition of the gamma function to obtain the result.

Proof of Theorem 4.6.9

We want to show that when U F m n , then

fU u
m n

2
m
2

n
2

m

n
u

m 2 1
1

m

n
u

m n 2 m

n
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for u 0, with fU u 0 for u 0.
Because U F n m , we can write U X m Y n , where X and Y are

independent with X 2 m and Y 2 n . It follows that X and Y have joint
density given by

fX Y x y
x m 2 1e x 2y n 2 1e y 2

2m 2 m
2 2n 2 n

2

when x y 0 (with fX Y x y 0 for x 0 or y 0).
Let V Y and use the multivariate change of variables formula (Theorem 2.9.2)

to compute the joint density fU V u of U and V . Because U X m Y n and
V Y , it follows that X m n U V and Y V . We compute the Jacobian term as

J x y det

u
x x

u
y y

det

n
my 0

nX
mY 2 1

n

my

Hence,

fU V u fX Y m n u J 1 m n u
m
n u m 2 1 e m n u 2 n 2 1e 2

2m 2 m
2 2n 2 n

2

m

n

1
m
2

n
2

m

n
u

m 2 1 m

n

1

2 m n 2
m n 2 1e 2 1 mu n

for u 0 (with fU V u 0 for u 0 or 0).
Finally, we compute the marginal density of U as

fU u

fU V u d

1
m
2

n
2

m

n
u

m 2 1 m

n

1

2 m n 2
0

m n 2 1e 2 1 mu n d

1
m
2

n
2

m

n
u

m 2 1
1

m

n
u

n m 2 m

n 0

m n 2 1e d

m n
2

m
2

n
2

m

n
u

m 2 1
1

m

n
u

n m 2 m

n

where we have used the substitution 1 mu n 2 to get the third equality, and
the final result follows from the definition of the gamma function.





Chapter 5

Statistical Inference

CHAPTER OUTLINE

Section 1 Why Do We Need Statistics?
Section 2 Inference Using a Probability Model
Section 3 Statistical Models
Section 4 Data Collection
Section 5 Some Basic Inferences

In this chapter, we begin our discussion of statistical inference. Probability theory is
primarily concerned with calculating various quantities associated with a probability
model. This requires that we know what the correct probability model is. In applica
tions, this is often not the case, and the best we can say is that the correct probability
measure to use is in a set of possible probability measures. We refer to this collection as
the statistical model. So, in a sense, our uncertainty has increased; not only do we have
the uncertainty associated with an outcome or response as described by a probability
measure, but now we are also uncertain about what the probability measure is.

Statistical inference is concerned with making statements or inferences about char
acteristics of the true underlying probability measure. Of course, these inferences must
be based on some kind of information; the statistical model makes up part of it. Another
important part of the information will be given by an observed outcome or response,
which we refer to as the data. Inferences then take the form of various statements about
the true underlying probability measure from which the data were obtained. These take
a variety of forms, which we refer to as types of inferences.

The role of this chapter is to introduce the basic concepts and ideas of statistical
inference. The most prominent approaches to inference are discussed in Chapters 6,
7, and 8. Likelihood methods require the least structure as described in Chapter 6.
Bayesian methods, discussed in Chapter 7, require some additional ingredients. Infer
ence methods based on measures of performance and loss functions are described in
Chapter 8.

253
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5.1 Why Do We Need Statistics?
While we will spend much of our time discussing the theory of statistics, we should
always remember that statistics is an applied subject. By this we mean that ultimately
statistical theory will be applied to realworld situations to answer questions of practical
importance.

What is it that characterizes those contexts in which statistical methods are useful?
Perhaps the best way to answer this is to consider a practical example where statistical
methodology plays an important role.

EXAMPLE 5.1.1 Stanford Heart Transplant Study
In the paper by Turnbull, Brown, and Hu entitled “Survivorship of Heart Transplant
Data” (Journal of the American Statistical Association, March 1974, Volume 69, 74–
80), an analysis is conducted to determine whether or not a heart transplant program,
instituted at Stanford University, is in fact producing the intended outcome. In this case,
the intended outcome is an increased length of life, namely, a patient who receives a
new heart should live longer than if no new heart was received.

It is obviously important to ensure that a proposed medical treatment for a disease
leads to an improvement in the condition. Clearly, we would not want it to lead to a
deterioration in the condition. Also, if it only produced a small improvement, it may
not be worth carrying out if it is very expensive or causes additional suffering.

We can never know whether a particular patient who received a new heart has lived
longer because of the transplant. So our only hope in determining whether the treat
ment is working is to compare the lifelengths of patients who received new hearts with
the lifelengths of patients who did not. There are many factors that inuence a patient’s
lifelength, many of which will have nothing to do with the condition of the patient’s
heart. For example, lifestyle and the existence of other pathologies, which will vary
greatly from patient to patient, will have a great inuence. So how can we make this
comparison?

One approach to this problem is to imagine that there are probability distributions
that describe the lifelengths of the two groups. Let these be given by the densities fT
and fC , where T denotes transplant and C denotes no transplant. Here we have used
C as our label because this group is serving as a control in the study to provide some
comparison to the treatment (a heart transplant). Then we consider the lifelength of a
patient who received a transplant as a random observation from fT and the lifelength of
a patient who did not receive a transplant as a random observation from fC We want
to compare fT and fC in some fashion, to determine whether or not the transplant
treatment is working. For example, we might compute the mean lifelengths of each
distribution and compare these. If the mean lifelength of fT is greater than fC , then
we can assert that the treatment is working. Of course, we would still have to judge
whether the size of the improvement is enough to warrant the additional expense and
patients’ suffering.

If we could take an arbitrarily large number of observations from fT and fC , then
we know, from the results in previous chapters, that we could determine these distribu
tions with a great deal of accuracy. In practice, however, we are restricted to a relatively
small number of observations. For example, in the cited study there were 30 patients
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P X S P X S P X S
1 49 d 11 1400 a 21 2 d
2 5 d 12 5 d 22 148 d
3 17 d 13 34 d 23 1 d
4 2 d 14 15 d 24 68 d
5 39 d 15 11 d 25 31 d
6 84 d 16 2 d 26 1 d
7 7 d 17 1 d 27 20 d
8 0 d 18 39 d 28 118 a
9 35 d 19 8 d 29 91 a

10 36 d 20 101 d 30 427 a

Table 5.1: Survival times (X) in days and status (S) at the end of the study for each
patient (P) in the control group.

in the control group (those who did not receive a transplant) and 52 patients in the
treatment group (those who did receive a transplant).

For each control patient, the value of X — the number of days they were alive
after the date they were determined to be a candidate for a heart transplant until the
termination date of the study — was recorded. For various reasons, these patients did
not receive new hearts, e.g., they died before a new heart could be found for them.
These data, together with an indicator for the status of the patient at the termination
date of the study, are presented in Table 5.1. The indicator value S a denotes that the
patient was alive at the end of the study and S d denotes that the patient was dead.

For each treatment patient, the value of Y the number of days they waited for the
transplant after the date they were determined to be a candidate for a heart transplant,
and the value of Z the number of days they were alive after the date they received
the heart transplant until the termination date of the study, were both recorded. The
survival times for the treatment group are then given by the values of Y Z These
data, together with an indicator for the status of the patient at the termination date of
the study, are presented in Table 5.2.

We cannot compare fT and fC directly because we do not know these distributions.
But we do have some information about them because we have obtained values from
each, as presented in Tables 5.1 and 5.2. So how do we use these data to compare fT
and fC to answer the question of central importance, concerning whether or not the
treatment is effective? This is the realm of statistics and statistical theory, namely, pro
viding methods for making inferences about unknown probability distributions based
upon observations (samples) obtained from them.

We note that we have simplified this example somewhat, although our discussion
presents the essence of the problem. The added complexity comes from the fact that
typically statisticians will have available additional data on each patient, such as their
age, gender, and disease history. As a particular example of this, in Table 5.2 we have
the values of both Y and Z for each patient in the treatment group. As it turns out,
this additional information, known as covariates, can be used to make our comparisons
more accurate. This will be discussed in Chapter 10.
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P Y Z S P Y Z S P Y Z S
1 0 15 d 19 50 1140 a 37 77 442 a
2 35 3 d 20 22 1153 a 38 2 65 d
3 50 624 d 21 45 54 d 39 26 419 a
4 11 46 d 22 18 47 d 40 32 362 a
5 25 127 d 23 4 0 d 41 13 64 d
6 16 61 d 24 1 43 d 42 56 228 d
7 36 1350 d 25 40 971 a 43 2 65 d
8 27 312 d 26 57 868 a 44 9 264 a
9 19 24 d 27 0 44 d 45 4 25 d

10 17 10 d 28 1 780 a 46 30 193 a
11 7 1024 d 29 20 51 d 47 3 196 a
12 11 39 d 30 35 710 a 48 26 63 d
13 2 730 d 31 82 663 a 49 4 12 d
14 82 136 d 32 31 253 d 50 45 103 a
15 24 1379 a 33 40 147 d 51 25 60 a
16 70 1 d 34 9 51 d 52 5 43 a
17 15 836 d 35 66 479 a
18 16 60 d 36 20 322 d

Table 5.2: The number of days until transplant (Y ), survival times in days after trans
plant (Z), and status (S) at the end of the study for each patient (P) in the treatment
group.

The previous example provides some evidence that questions of great practical im
portance require the use of statistical thinking and methodology. There are many sit
uations in the physical and social sciences where statistics plays a key role, and the
reasons are just like those found in Example 5.1.1. The central ingredient in all of
these is that we are faced with uncertainty. This uncertainty is caused both by vari
ation, which can be modeled via probability, and by the fact that we cannot collect
enough observations to know the correct probability models precisely. The first four
chapters have dealt with building, and using, a mathematical model to deal with the
first source of uncertainty. In this chapter, we begin to discuss methods for dealing
with the second source of uncertainty.

Summary of Section 5.1

Statistics is applied to situations in which we have questions that cannot be an
swered definitively, typically because of variation in data.

Probability is used to model the variation observed in the data. Statistical infer
ence is concerned with using the observed data to help identify the true proba
bility distribution (or distributions) producing this variation and thus gain insight
into the answers to the questions of interest.
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EXERCISES

5.1.1 Compute the mean survival times for the control group and for the treatment
groups in Example 5.1.1. What do you conclude from these numbers? Do you think
it is valid to base your conclusions about the effectiveness of the treatment on these
numbers? Explain why or why not.
5.1.2 Are there any unusual observations in the data presented in Example 5.1.1? If so,
what effect do you think these observations have on the mean survival times computed
in Exercise 5.1.1?
5.1.3 In Example 5.1.1, we can use the status variable S as a covariate. What is the
practical significance of this variable?

5.1.4 A student is uncertain about the mark that will be received in a statistics course.
The course instructor has made available a database of marks in the course for a number
of years. Can you identify a probability distribution that may be relevant to quantifying
the student’s uncertainty? What covariates might be relevant in this situation?

5.1.5 The following data were generated from an N 1 distribution by a student.
Unfortunately, the student forgot which value of was used, so we are uncertain about
the correct probability distribution to use to describe the variation in the data.

0 2 0 7 0 0 1 9 0 7 0 3 0 3 0 4
0 3 0 8 1 5 0 1 0 3 0 7 1 8 0 2

Can you suggest a plausible value for ? Explain your reasoning.
5.1.6 Suppose you are interested in determining the average age of all male students
at a particular college. The registrar of the college allows you access to a database
that lists the age of every student at the college. Describe how you might answer your
question. Is this a statistical problem in the sense that you are uncertain about anything
and so will require the use of statistical methodology?
5.1.7 Suppose you are told that a characteristic X follows an N 1 1 distribution and
a characteristic Y follows an N 2 1 distribution where 1 and 2 are unknown. In
addition, you are given the results x1 xm of m independent measurements on X
and y1 yn of n independent measurements on Y Suggest a method for determin
ing whether or not 1 and 2 are equal. Can you think of any problems with your
approach?
5.1.8 Suppose we know that a characteristic X follows an Exponential distribution
and you are required to determine based on i.i.d. observations x1 xn from this
distribution. Suggest a method for doing this. Can you think of any problems with your
approach?

PROBLEMS

5.1.9 Can you identify any potential problems with the method we have discussed in
Example 5.1.1 for determining whether or not the heart transplant program is effective
in extending life?
5.1.10 Suppose you are able to generate samples of any size from a probability distrib
ution P for which it is very difficult to compute P C for some set C . Explain how you
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might estimate P C based on a sample. What role does the size of the sample play in
your uncertainty about how good your approximation is? Does the size of P C play a
role in this?

COMPUTER PROBLEMS

5.1.11 Suppose we want to obtain the distribution of the quantity Y X4 2X3 3
when X N 0 1 Here we are faced with a form of mathematical uncertainty because
it is very difficult to determine the distribution of Y using mathematical methods. Pro
pose a computer method for approximating the distribution function of Y and estimate
P Y 1 2 What is the relevance of statistical methodology to your approach?

DISCUSSION TOPICS

5.1.12 Sometimes it is claimed that all uncertainties can and should be modeled using
probability. Discuss this issue in the context of Example 5.1.1, namely, indicate all the
things you are uncertain about in this example and how you might propose probability
distributions to quantify these uncertainties.

5.2 Inference Using a Probability Model
In the first four chapters, we have discussed probability theory, a good part of which
has involved the mathematics of probability theory. This tells us how to carry out
various calculations associated with the application of the theory. It is important to
keep in mind, however, our reasons for introducing probability in the first place. As
we discussed in Section 1.1, probability is concerned with measuring or quantifying
uncertainty.

Of course, we are uncertain about many things, and we cannot claim that prob
ability is applicable to all these situations. Let us assume, however, that we are in
a situation in which we feel probability is applicable and that we have a probability
measure P defined on a collection of subsets of a sample space S for a response s

In an application of probability, we presume that we know P and are uncertain
about a future, or concealed, response value s S In such a context, we may be
required, or may wish, to make an inference about the unknown value of s This can
take the form of a prediction or estimate of a plausible value for s e.g., under suitable
conditions, we might take the expected value of s as our prediction In other contexts,
we may be asked to construct a subset that has a high probability of containing s and
is in some sense small, e.g., find the region that contains at least 95% of the probability
and has the smallest size amongst all such regions. Alternatively, we might be asked
to assess whether or not a stated value s0 is an implausible value from the known P,
e.g., assess whether or not s0 lies in a region assigned low probability by P and so
is implausible. These are examples of inferences that are relevant to applications of
probability theory.

EXAMPLE 5.2.1
As a specific application, consider the lifelength X in years of a machine where it is
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known that X Exponential 1 (see Figure 5.2.1).
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Figure 5.2.1: Plot of the Exponential(1) density f .

Then for a new machine, we might predict its lifelength by E X 1 year. Further
more, from the graph of the Exponential 1 density, it is clear that the smallest interval
containing 95% of the probability for X is 0 c where c satisfies

0 95
c

0
e x dx 1 e c

or c ln 0 05 2 9957 This interval gives us a reasonable range of probable
lifelengths for the new machine. Finally, if we wanted to assess whether or not x0 5
is a plausible lifelength for a newly purchased machine, we might compute the tail
probability as

P X 5
5

e x dx e 5 0 0067

which, in this case, is very small and therefore indicates that x0 5 is fairly far out in
the tail. The right tail of this density is a region of low probability for this distribution,
so x0 5 can be considered implausible. It is thus unlikely that a machine will last 5
years, so a purchaser would have to plan to replace the machine before that period is
over.

In some applications, we receive some partial information about the unknown s
taking the form s C S In such a case, we replace P by the conditional probability
measure P C when deriving our inferences. Our reasons for doing this are many,
and, in general, we can say that most statisticians agree that it is the right thing to do. It
is important to recognize, however, that this step does not proceed from a mathematical
theorem; rather it can be regarded as a basic axiom or principle of inference. We will
refer to this as the principle of conditional probability, which will play a key role in
some later developments.

EXAMPLE 5.2.2
Suppose we have a machine whose lifelength is distributed as in Example 5.2.1, and
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the machine has already been running for one year. Then inferences about the lifelength
of the machine are based on the conditional distribution, given that X 1. The density
of this conditional distribution is given by e x 1 for x 1. The predicted lifelength
is now

E X X 1
1

xe x 1 dx xe x 1

1 1
e x 1 dx 2.

The fact that the additional lifelength is the same as the predicted lifelength before the
machine starts working is a special characteristic of the Exponential distribution. This
will not be true in general (see Exercise 5.2.4).

The tail probability measuring the plausibility of the value x0 5 is given by

P X 5 X 1
5

e x 1 dx e 4 0 0183,

which indicates that x0 5 is a little more plausible in light of the fact that the machine
has already survived one year. The shortest interval containing 0 95 of the conditional
probability is now of the form 1 c , where c is the solution to

0 95
c

1
e x 1 dx e e 1 e c

which implies that c ln e 1 0 95e 1 3 9957.

Our main point in this section is simply that we are already somewhat familiar with
inferential concepts. Furthermore, via the principle of conditional probability, we have
a basic rule or axiom governing how we go about making inferences in the context
where the probability measure P is known and s is not known.

Summary of Section 5.2

Probability models are used to model uncertainty about future responses.

We can use the probability distribution to predict a future response or assess
whether or not a given value makes sense as a possible future value from the
distribution.

EXERCISES

5.2.1 Sometimes the mode of a density (the point where the density takes its maximum
value) is chosen as a predictor for a future value of a response. Determine this predictor
in Examples 5.2.1 and 5.2.2 and comment on its suitability as a predictor.
5.2.2 Suppose it has been decided to use the mean of a distribution to predict a future
response. In Example 5.2.1, compute the meansquared error (expected value of the
square of the error between a future value and its predictor) of this predictor, prior to
observing the value. To what characteristic of the distribution of the lifelength does
this correspond?
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5.2.3 Graph the density of the distribution obtained as a mixture of a normal distribu
tion with mean 4 and variance 1 and a normal distribution with mean 4 and variance
1 where the mixture probability is 0 5. Explain why neither the mean nor the mode is
a suitable predictor in this case. (Hint: Section 2.5.4.)
5.2.4 Repeat the calculations of Examples 5.2.1 and 5.2.2 when the lifelength of a
machine is known to be distributed as Y 10X where X Uniform[0 1].
5.2.5 Suppose that X N 10 2 What value would you record as a prediction of a
future value of X? How would you justify your choice?
5.2.6 Suppose that X N 10 2 Record the smallest interval containing 0.95 of the
probability for a future response. (Hint: Consider a plot of the density.)
5.2.7 Suppose that X Gamma 3 6 What value would you record as a prediction
of a future value of X? How would you justify your choice?
5.2.8 Suppose that X Poisson 5 What value would you record as a prediction of a
future value of X? How would you justify your choice?

5.2.9 Suppose that X Geometric 1 3 What value would you record as a prediction
of a future value of X?

5.2.10 Suppose that X follows the following probability distribution.

x 1 2 3 4
P X x 1 2 1 4 1 8 1 8

(a) Record a prediction of a future value of X

(b) Suppose you are then told that X 2 Record a prediction of a future value of X
that uses this information.

PROBLEMS

5.2.11 Suppose a fair coin is tossed 10 times and the response X measured is the
number of times we observe a head.

(a) If you use the expected value of the response as a predictor, then what is the predic
tion of a future response X?

(b) Using Table D.6 (or a statistical package), compute a shortest interval containing
at least 0.95 of the probability for X Note that it might help to plot the probability
function of X first.
(c) What region would you use to assess whether or not a value s0 is a possible future
value? (Hint: What are the regions of low probability for the distribution?) Assess
whether or not x 8 is plausible.

5.2.12 In Example 5.2.1, explain (intuitively) why the interval 0 2 9957 is the short
est interval containing 0.95 of the probability for the lifelength.
5.2.13 (Problem 5.2.11 continued) Suppose we are told that the number of heads ob
served is an even number. Repeat parts (a), (b), and (c).
5.2.14 Suppose that a response X is distributed Beta a b with a b 1 fixed (see
Problem 2.4.16) Determine the mean and the mode (point where density takes its
maximum) of this distribution and assess which is the most accurate predictor of a
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future X when using meansquared error, i.e., the expected squared distance between
X and the prediction.
5.2.15 Suppose that a response X is distributed N 0 1 and that we have decided to
predict a future value using the mean of the distribution.
(a) Determine the prediction for a future X
(b) Determine the prediction for a future Y X2

(c) Comment on the relationship (or lack thereof) between the answers in parts (a) and
(b).
5.2.16 Suppose that X Geometric 1 3 Determine the shortest interval containing
0.95 of the probability for a future X (Hint: Plot the probability function and record
the distribution function.)
5.2.17 Suppose that X Geometric 1 3 and we are told that X 5 What value
would you record as a prediction of a future value of X? Determine the shortest interval
containing 0.95 of the probability for a future X (Hint: Plot the probability function
and record the distribution function.)

DISCUSSION TOPICS

5.2.18 Do you think it is realistic for a practitioner to proceed as if he knows the true
probability distribution for a response in a problem?

5.3 Statistical Models
In a statistical problem, we are faced with uncertainty of a different character than
that arising in Section 5.2. In a statistical context, we observe the data s, but we are
uncertain about P . In such a situation, we want to construct inferences about P based
on s. This is the inverse of the situation discussed in Section 5.2.

How we should go about making these statistical inferences is probably not at all
obvious. In fact, there are several possible approaches that we will discuss in subse
quent chapters. In this chapter, we will develop the basic ingredients of all the ap
proaches.

Common to virtually all approaches to statistical inference is the concept of the
statistical model for the data s This takes the form of a set P : of probability
measures, one of which corresponds to the true unknown probability measure P that
produced the data s In other words, we are asserting that there is a random mechanism
generating s and we know that the corresponding probability measure P is one of the
probability measures in P :

The statistical model P : corresponds to the information a statistician
brings to the application about what the true probability measure is, or at least what
one is willing to assume about it. The variable is called the parameter of the model,
and the set is called the parameter space. Typically, we use models where
indexes the probability measures in the model, i.e., P 1 P 2 if and only if 1

2 If the probability measures P can all be presented via probability functions or
density functions f (for convenience we will not distinguish between the discrete and
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continuous case in the notation), then it is common to write the statistical model as
f : .

From the definition of a statistical model, we see that there is a unique value
such that P is the true probability measure. We refer to this value as the true

parameter value. It is obviously equivalent to talk about making inferences about the
true parameter value rather than the true probability measure, i.e., an inference about
the true value of is at once an inference about the true probability distribution. So, for
example, we may wish to estimate the true value of construct small regions in that
are likely to contain the true value, or assess whether or not the data are in agreement
with some particular value 0 suggested as being the true value. These are types of
inferences, just like those we discussed in Section 5.2, but the situation here is quite
different.

EXAMPLE 5.3.1
Suppose we have an urn containing 100 chips, each colored either black B or white W .
Suppose further that we are told there are either 50 or 60 black chips in the urn. The
chips are thoroughly mixed, and then two chips are withdrawn without replacement.
The goal is to make an inference about the true number of black chips in the urn,
having observed the data s s1 s2 where si is the color of the ith chip drawn.

In this case, we can take the statistical model to be P : where is
the number of black chips in the urn, so that 50 60 and P is the probability
measure on

S B B B W W B W W

corresponding to Therefore, P50 assigns the probability 50 49 100 99 to each
of the sequences B B and W W and the probability 50 50 100 99 to each of
the sequences B W and W B and P60 assigns the probability 60 59 100 99
to the sequence B B , the probability 40 39 100 99 to the sequence W W and
the probability 60 40 100 99 to each of the sequences B W and W B .

The choice of the parameter is somewhat arbitrary, as we could have easily la
belled the possible probability measures as P1 and P2 respectively. The parameter is
in essence only a label that allows us to distinguish amongst the possible candidates for
the true probability measure. It is typical, however, to choose this label conveniently
so that it means something in the problem under discussion.

We note some additional terminology in common usage. If a single observed value
for a response X has the statistical model f : , then a sample X1 Xn
(recall that sample here means that the Xi are independent and identically distributed
— see Definition 2.8.6) has joint density given by f x1 f x2 f xn for some

. This specifies the statistical model for the response X1 Xn We refer to
this as the statistical model for a sample. Of course, the true value of for the statistical
model for a sample is the same as that for a single observation. Sometimes, rather than
referring to the statistical model for a sample, we speak of a sample from the statistical
model f :

Note that, wherever possible, we will use uppercase letters to denote an unobserved
value of a random variable X and lowercase letters to denote the observed value. So an
observed sample X1 Xn will be denoted x1 xn
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EXAMPLE 5.3.2
Suppose there are two manufacturing plants for machines. It is known that machines
built by the first plant have lifelengths distributed Exponential 1 , while machines man
ufactured by the second plant have lifelengths distributed Exponential 2 3 . The den
sities of these distributions are depicted in Figure 5.3.1.
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Figure 5.3.1: Plot of the Exponential 1 (solid line and Exponential 1 5 (dashed line)
densities.

You have purchased five of these machines knowing that all five came from the
same plant, but you do not know which plant. Subsequently, you observe the lifelengths
of these machines, obtaining the sample x1 x5 and want to make inferences
about the true P .

In this case, the statistical model for a single observation comprises two probability
measures P1 P2 , where P1 is the Exponential 1 probability measure and P2 is the
Exponential 2 3 probability measure. Here we take the parameter to be
1 2

Clearly, longer observed lifelengths favor 2. For example, if

x1 x5 5 0 3 5 3 3 4 1 2 8

then intuitively we are more certain that 2 than if

x1 x5 2 0 2 5 3 0 3 1 1 8

The subject of statistical inference is concerned with making statements like this more
precise and quantifying our uncertainty concerning the validity of such assertions.

We note again that the quantity serves only as a label for the distributions in the
model. The value of has no interpretation other than as a label and we could just
as easily have used different values for the labels. In many applications, however, the
parameter is taken to be some characteristic of the distribution that takes a unique
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value for each distribution in the model. Here, we could have taken to be the mean
and then the parameter space would be 1 1 5 Notice that we could just as well
have used the first quartile, or for that matter any other quantile, to have labelled the
distributions, provided that each distribution in the family yields a unique value for the
characteristic chosen. Generally, any 1–1 transformation of a parameter is acceptable
as a parameterization of a statistical model. When we relabel, we refer to this as a
reparameterization of the statistical model.

We now consider two important examples of statistical models. These are important
because they commonly arise in applications.

EXAMPLE 5.3.3 Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli distribution with [0 1]
unknown. We could be observing the results of tossing a coin and recording Xi equal
to 1 whenever a head is observed on the ith toss and equal to 0 otherwise. Alternatively,
we could be observing items produced in an industrial process and recording Xi equal
to 1 whenever the ith item is defective and 0 otherwise. In a biomedical application,
the response Xi 1 might indicate that a treatment on a patient has been successful,
whereas X i 0 indicates a failure. In all these cases, we want to know the true value
of as this tells us something important about the coin we are tossing, the industrial
process, or the medical treatment, respectively.

Now suppose we have no information whatsoever about the true probability . Ac
cordingly, we take the parameter space to be [0 1], the set of all possible values
for . The probability function for the ith sample item is given by

f xi
xi 1 1 xi

and the probability function for the sample is given by

n

i 1

f xi

n

i 1

xi 1 1 xi nx 1 n 1 x .

This specifies the model for a sample.
Note that we could parameterize this model by any 1–1 function of For example,

2 would work (as it is 1–1 on ), as would ln 1 .

EXAMPLE 5.3.4 LocationScale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution with 2

R1 R unknown, where R 0 . For example, we may have observations of
heights in centimeters of individuals in a population and feel that it is reasonable to
assume that the distribution of heights in the population is normal with some unknown
mean and standard deviation.

The density for the sample is then given by

n

i 1

f 2 xi 2 2
n 2

exp
1

2 2

n

i 1

xi
2

2 2
n 2

exp
n

2 2 x 2 n 1

2 2 s2
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because (Problem 5.3.13)

n

i 1

xi
2 n x 2

n

i 1

xi x 2 (5.3.1)

where

x
1

n

n

i 1

xi

is the sample mean, and

s2 1

n 1

n

i 1

xi x 2

is the sample variance.
Alternative parameterizations for this model are commonly used. For example,

rather than using 2 , sometimes 2 or or ln is a convenient
choice. Note that ln ranges in R1 as varies in R

Actually, we might wonder how appropriate the model of Example 5.3.4 is for the
distribution of heights in a population, for in any finite population the true distribution
is discrete (there are only finitely many students). Of course, a normal distribution
may provide a good approximation to a discrete distribution, as in Example 4.4.9. So,
in Example 5.3.4, we are also assuming that a continuous probability distribution can
provide a close approximation to the true discrete distribution. As it turns out, such
approximations can lead to great simplifications in the derivation of inferences, so we
use them whenever feasible. Such an approximation is, of course, not applicable in
Example 5.3.3.

Also note that heights will always be expressed in some specific unit, e.g., centime
ters; based on this, we know that the population mean must be in a certain range of
values, e.g., 0 300 but the statistical model allows for any value for So we
often do have additional information about the true value of the parameter for a model,
but it is somewhat imprecise, e.g., we also probably have 100 300 . In Chapter
7, we will discuss ways of incorporating such information into our analysis.

Where does the model information P : come from in an application? For
example, how could we know that heights are approximately normally distributed in
Example 5.3.4? Sometimes there is such information based upon previous experience
with related applications, but often it is an assumption that requires checking before
inference procedures can be used. Procedures designed to check such assumptions are
referred to as modelchecking procedures, which will be discussed in Chapter 9. In
practice, modelchecking procedures are required, or else inferences drawn from the
data and statistical model can be erroneous if the model is wrong.

Summary of Section 5.3

In a statistical application, we do not know the distribution of a response, but we
know (or are willing to assume) that the true probability distribution is one of a
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set of possible distributions f : where f is the density or probability
function (whichever is relevant) for the response. The set of possible distribu
tions is called the statistical model.

The set is called the parameter space, and the variable is called the parame
ter of the model. Because each value of corresponds to a distinct probability
distribution in the model, we can talk about the true value of as this gives the
true distribution via f

EXERCISES

5.3.1 Suppose there are three coins — one is known to be fair, one has probability 1 3
of yielding a head on a single toss, and one has probability 2 3 for head on a single toss.
A coin is selected (not randomly) and then tossed five times. The goal is to make an
inference about which of the coins is being tossed, based on the sample. Fully describe
a statistical model for a single response and for the sample.
5.3.2 Suppose that one face of a symmetrical sixsided die is duplicated but we do not
know which one. We do know that if 1 is duplicated, then 2 does not appear; otherwise,
1 does not appear. Describe the statistical model for a single roll.
5.3.3 Suppose we have two populations (I and II) and that variable X is known to be
distributed N 10 2 on population I and distributed N 8 3 on population II. A sam
ple X1 Xn is generated from one of the populations; you are not told which
population the sample came from, but you are required to draw inferences about the
true distribution based on the sample. Describe the statistical model for this problem.
Could you parameterize this model by the population mean, by the population vari
ance? Sometimes problems like this are called classification problems because making
inferences about the true distribution is equivalent to classifying the sample as belong
ing to one of the populations.

5.3.4 Suppose the situation is as described in Exercise 5.3.3, but now the distribution
for population I is N 10 2 and the distribution for population II is N 10 3 . Could
you parameterize the model by the population mean? By the population variance?
Justify your answer.
5.3.5 Suppose that a manufacturing process produces batteries whose lifelengths are
known to be exponentially distributed but with the mean of the distribution completely
unknown. Describe the statistical model for a single observation. Is it possible to
parameterize this model by the mean? Is it possible to parameterize this model by the
variance? Is it possible to parameterize this model by the coefficient of variation (the
coefficient of variation of a distribution equals the standard deviation divided by the
mean)?
5.3.6 Suppose it is known that a response X is distributed Uniform[0 ], where
0 is unknown. Is it possible to parameterize this model by the first quartile of the
distribution? (The first quartile of the distribution of a random variable X is the point c
satisfying P X c 0 25 ) Explain why or why not.
5.3.7 Suppose it is known that a random variable X follows one of the following dis
tributions.
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P X 1 P X 2 P X 3
A 1 2 1 2 0
B 0 1 2 1 2

(a) What is the parameter space ?
(b) Suppose we observe a value X 1 What is the true value of the parameter? What
is the true distribution of X?

(c) What could you say about the true value of the parameter if you had observed
X 2?

5.3.8 Suppose we have a statistical model P1 P2 , where P1 and P2 are probability
measures on a sample space S Further suppose there is a subset C S such that
P1 C 1 while P2 Cc 1 Discuss how you would make an inference about the
true distribution of a response s after you have observed a single observation.

5.3.9 Suppose you know that the probability distribution of a variable X is either P1
or P2 If you observe X 1 and P1 X 1 0 75 while P2 X 1 0 001,
then what would you guess as the true distribution of X? Give your reasoning for this
conclusion.
5.3.10 Suppose you are told that class #1 has 35 males and 65 females while class #2
has 45 males and 55 females. You are told that a particular student from one of these
classes is female, but you are not told which class she came from.
(a) Construct a statistical model for this problem, identifying the parameter, the para
meter space, and the family of distributions. Also identify the data.
(b) Based on the data, do you think a reliable inference is feasible about the true para
meter value? Explain why or why not.
(c) If you had to make a guess about which distribution the data came from, what choice
would you make? Explain why.

PROBLEMS

5.3.11 Suppose in Example 5.3.3 we parameterize the model by ln 1 .
Record the statistical model using this parameterization, i.e., record the probability
function using as the parameter and record the relevant parameter space.
5.3.12 Suppose in Example 5.3.4 we parameterize the model by ln
Record the statistical model using this parameterization, i.e., record the density func
tion using as the parameter and record the relevant parameter space.
5.3.13 Establish the identity (5.3.1).
5.3.14 A sample X1 Xn is generated from a Bernoulli distribution with
[0 1] unknown, but only T n

i 1 Xi is observed by the statistician. Describe the
statistical model for the observed data.

5.3.15 Suppose it is known that a response X is distributed N 2 where
2 R1 R and is completely unknown. Show how to calculate the first

quartile of each distribution in this model from the values 2 Is it possible to
parameterize the model by the first quartile? Explain your answer.
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5.3.16 Suppose response X is known to be distributed N Y 2 where Y N 0 2

and 2 2 0 are completely unknown. Describe the statistical model for an obser
vation X Y If Y is not observed, describe the statistical model for X
5.3.17 Suppose we have a statistical model P1 P2 , where P1 is an N 10 1 distrib
ution while P2 is an N 0 1 distribution.

(a) Is it possible to make any kind of reliable inference about the true distribution based
on a single observation? Why or why not?
(b) Repeat part (a) but now suppose that P1 is an N 1 1 distribution.

5.3.18 Suppose we have a statistical model P1 P2 , where P1 is an N 1 1 distri
bution while P2 is an N 0 1 distribution. Further suppose that we had a sample
x1 x100 from the true distribution. Discuss how you might go about making an
inference about the true distribution based on the sample.

DISCUSSION TOPICS

5.3.19 Explain why you think it is important that statisticians state very clearly what
they are assuming any time they carry out a statistical analysis.
5.3.20 Consider the statistical model given by the collection of N 2

0 distributions
where R1 is considered completely unknown, but 2

0 is assumed known. Do you
think this is a reasonable model to use in an application? Give your reasons why or
why not.

5.4 Data Collection
The developments of Sections 5.2 and 5.3 are based on the observed response s being
a realization from a probability measure P In fact, in many applications, this is an
assumption. We are often presented with data that could have been produced in this
way, but we cannot always be sure.

When we cannot be sure that the data were produced by a random mechanism, then
the statistical analysis of the data is known as an observational study. In an observa
tional study, the statistician merely observes the data rather than intervening directly
in generating the data, to ensure that the randomness assumption holds. For example,
suppose a professor collects data from his students for a study that examines the rela
tionship between grades and parttime employment. Is it reasonable to regard the data
collected as having come from a probability distribution? If so, how would we justify
this?

It is important for a statistician to distinguish carefully between situations that are
observational studies and those that are not. As the following discussion illustrates,
there are qualifications that must be applied to the analysis of an observational study.
While statistical analyses of observational studies are valid and indeed important, we
must be aware of their limitations when interpreting their results.
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5.4.1 Finite Populations

Suppose we have a finite set of objects, called the population, and a realvalued
function X (sometimes called a measurement) defined on So for each we
have a realvalued quantity X that measures some aspect or feature of

For example, could be the set of all students currently enrolled fulltime at a
particular university, with X the height of student in centimeters. Or, for the
same we could take X to be the gender of student , where X 1 denotes
female and X 2 denotes male. Here, height is a quantitative variable, because its
values mean something on a numerical scale, and we can perform arithmetic on these
values, e.g., calculate a mean. On the other hand, gender is an example of a categorical
variable because its values serve only to classify, and any other choice of unique real
numbers would have served as well as the ones we chose. The first step in a statistical
analysis is to determine the types of variables we are working with because the relevant
statistical analysis techniques depend on this.

The population and the measurement together produce a population distribution
over the population. This is specified by the population cumulative distribution func
tion FX : R1 [0 1] where

FX x
: X x

N

with A being the number of elements in the set A and N Therefore, FX x
is the proportion of elements in with their measurement less than or equal to x

Consider the following simple example where we can calculate FX exactly.

EXAMPLE 5.4.1
Suppose that is a population of N 20 plots of land of the same size. Further
suppose that X is a measure of the fertility of plot on a 10point scale and that
the following measurements were obtained.

4 8 6 7 8 3 7 5 4 6
9 5 7 5 8 3 4 7 8 3

Then we have

FX x

0 x 3
3 20 3 x 4
6 20 4 x 5
9 20 5 x 6
11 20 6 x 7
15 20 7 x 8
19 20 8 x 9
1 9 x

because, for example, 6 out of the 20 plots have fertility measurements less than or
equal to 4.

The goal of a statistician in this context is to know the function FX as precisely
as possible. If we know FX exactly, then we have identified the distribution of X
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over One way of knowing the distribution exactly is to conduct a census, wherein,
the statistician goes out and observes X for every and then calculates FX
Sometimes this is feasible, but often it is not possible or even desirable, due to the costs
involved in the accurate accumulation of all the measurements — think of how difficult
it might be to collect the heights of all the students at your school.

While sometimes a census is necessary, even mandated by law, often a very accu
rate approximation to FX can be obtained by selecting a subset

1 n

for some n N We then approximate FX x by the empirical distribution function
defined by

FX x i : X i x i 1 n

n
1

n

n

i 1

I x] X i

We could also measure more than one aspect of to produce a multivariate mea
surement X : Rk for some k For example, if is again the population of
students, we might have X X1 X2 where X1 is the height in cen
timeters of student and X2 is the weight of student in kilograms We will dis
cuss multivariate measurements in Chapter 10, where our concern is the relationships
amongst variables, but we focus on univariate measurements here.

There are two questions we need to answer now — namely, how should we select
the subset 1 n and how large should n be?

5.4.2 Simple Random Sampling

We will first address the issue of selecting 1 n . Suppose we select this subset
according to some given rule based on the unique label that each possesses.
For example, if the label is a number, we might order the numbers and then take the n
elements with the smallest labels. Or we could order the numbers and take every other
element until we have a subset of n etc.

There are many such rules we could apply, and there is a basic problem with all
of them. If we want FX to approximate FX for the full population, then, when we
employ a rule, we run the risk of only selecting 1 n from a subpopulation.
For example, if we use student numbers to identify each element of a population of
students, and more senior students have lower student numbers, then, when n is much
smaller than N and we select the students with smallest student numbers FX is really
only approximating the distribution of X in the population of senior students at best.
This distribution could be very different from FX Similarly, for any other rule we
employ, even if we cannot imagine what the subpopulation could be, there may be
such a selection effect, or bias, induced that renders the estimate invalid.

This is the qualification we need to apply when analyzing the results of observa
tional studies. In an observational study, the data are generated by some rule, typically
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unknown to the statistician; this means that any conclusions drawn based on the data
X 1 X n may not be valid for the full population.

There seems to be only one way to guarantee that selection effects are avoided,
namely, the set 1 n must be selected using randomness. For simple random
sampling, this means that a random mechanism is used to select the i in such a way
that each subset of n has probability 1 N

n of being chosen. For example, we might
place N chips in a bowl, each with a unique label corresponding to a population ele
ment, and then randomly draw n chips from the bowl without replacement. The labels
on the drawn chips identify the individuals that have been selected from Alterna
tively, for the randomization, we might use a table of random numbers, such as Table
D.1 in Appendix D (see Table D.1 for a description of how it is used) or generate
random values using a computer algorithm (see Section 2.10).

Note that with simple random sampling X 1 X n is random. In par
ticular, when n 1 we then have

P X 1 x FX x

namely, the probability distribution of the random variable X 1 is the same as the
population distribution.

EXAMPLE 5.4.2
Consider the context of Example 5.4.1. When we randomly select the first plot from

, it is clear that each plot has probability 1 20 of being selected. Then we have

P X 1 x
: X x

20
FX x

for every x R1

Prior to observing the sample, we also have P X 2 x FX x Consider,
however, the distribution of X 2 given that X 1 x1 Because we have removed
one population member, with measurement value x1 then N FX x 1 is the number
of individuals left in with X x1 Therefore,

P X 2 x X 1 x1

N FX x 1
N 1 x x1

N FX x
N 1 x x1

Note that this is not equal to FX x
So with simple random sampling, X 1 and X 2 are not independent. Observe,

however, that when N is large, then

P X 2 x X 1 x1 FX x

so that X 1 and X 2 are approximately independent and identically distributed
(i.i.d.). Similar calculations lead to the conclusion that, when N is large and n is small
relative to N , then with simple random sampling from the population, the random
variables

X 1 X n
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are approximately i.i.d. and with distribution given by FX So we will treat the observed
values x1 xn of X 1 X n as a sample (in the sense of Definition
2.8.6) from FX In this text, unless we indicate otherwise, we will always assume that
n is small relative to N so that this approximation makes sense.

Under the i.i.d. assumption, the weak law of large numbers (Theorem 4.2.1) implies
that the empirical distribution function FX satisfies

FX x
1

n

n

i 1

I x] X i
P

FX x

as n So we see that FX can be considered as an estimate of the population
cumulative distribution function (cdf) FX .

Whenever the data have been collected using simple random sampling, we will re
fer to the statistical investigation as a sampling study. It is a basic principle of good
statistical practice that sampling studies are always preferred over observational stud
ies, whenever they are feasible. This is because we can be sure that, with a sampling
study, any conclusions we draw based on the sample 1 n will apply to the pop
ulation of interest. With observational studies, we can never be sure that the sample
data have not actually been selected from some proper subset of For example, if you
were asked to make inferences about the distribution of student heights at your school
but selected some of your friends as your sample, then it is clear that the estimated cdf
may be very unlike the true cdf (possibly more of your friends are of one gender than
the other).

Often, however, we have no choice but to use observational data for a statistical
analysis. Sampling directly from the population of interest may be extremely difficult
or even impossible. We can still treat the results of such analyses as a form of evidence,
but we must be wary about possible selection effects and acknowledge this possibility.
Sampling studies constitute a higher level of statistical evidence than observational
studies, as they avoid the possibility of selection effects.

In Chapter 10, we will discuss experiments that constitute the highest level of sta
tistical evidence. Experiments are appropriate when we are investigating the possibility
of cause–effect relationships existing amongst variables defined on populations.

The second question we need to address concerns the choice of the sample size n It
seems natural that we would like to choose as large a sample as possible. On the other
hand, there are always costs associated with sampling, and sometimes each sample
value is very expensive to obtain. Furthermore, often the more data we collect, the
more difficulty we have in making sure that the data are not corrupted by various errors
that can arise in the collection process. So our answer, concerning how large n need be,
is that we want it chosen large enough so that we obtain the accuracy necessary but no
larger. Accordingly, the statistician must specify what accuracy is required, and then n
is determined.

We will see in the subsequent chapters that there are various methods for specifying
the required accuracy in a problem and then determining an appropriate value for n
Determining n is a key component in the implementation of a sampling study and is
often referred to as a samplesize calculation.
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If we define

fX x
: X x

N

1

N
I x X

namely, fX x is the proportion of population members satisfying X x , then we
see that fX plays the role of the probability function because

FX x
z x

fX z

We refer to fX as the population relative frequency function. Now, fX x may be
estimated, based on the sample 1 n by

fX x i : X i x i 1 n

n

1

n

n

i 1

I x X i

namely, the proportion of sample members satisfying X x
With categorical variables, fX x estimates the population proportion fX x in

the category specified by x . With some quantitative variables, however, fX is not an
appropriate quantity to estimate, and an alternative function must be considered.

5.4.3 Histograms

Quantitative variables can be further classified as either discrete or continuous vari
ables. Continuous variables are those that we can measure to an arbitrary precision as
we increase the accuracy of a measuring instrument. For example, the height of an
individual could be considered a continuous variable, whereas the number of years of
education an individual possesses would be considered a discrete quantitative variable.
For discrete quantitative variables, fX is an appropriate quantity to describe a popula
tion distribution, but we proceed differently with continuous quantitative variables.

Suppose that X is a continuous quantitative variable. In this case, it makes more
sense to group values into intervals, given by

h1 h2] h2 h3] hm 1 hm]

where the hi are chosen to satisfy h1 h2 hm with h1 hm effectively
covering the range of possible values for X Then we define

hX x
: X hi hi 1]

N hi 1 hi
x hi hi 1]

0 otherwise

and refer to hX as a density histogram function. Here, hX x is the proportion of
population elements that have their measurement X in the interval hi hi 1]
containing x divided by the length of the interval.

In Figure 5.4.1, we have plotted a density histogram based on a sample of 10,000
from an N 0 1 distribution (we are treating this sample as the full population) and
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using the values h1 5 h2 4 h11 5 Note that the vertical lines are only
artifacts of the plotting software and do not represent values of hX as these are given
by the horizontal lines.
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Figure 5.4.1: Density histogram function for a sample of 10,000 from an N 0 1 distribution
using the values h1 5 h2 4 h11 5.

If x hi hi 1], then hX x hi 1 hi gives the proportion of individuals in the
population that have their measurement X in hi hi 1]. Furthermore, we have

FX h j

h j

hX x dx

for each interval endpoint and

FX h j FX hi

h j

hi

hX x dx

when hi h j If the intervals hi hi 1] are small, then we expect that

FX b FX a
b

a
hX x dx

for any choice of a b
Now suppose that the lengths hi 1 hi are small and N is very large. Then it

makes sense to imagine a smooth, continuous function fX e.g., perhaps a normal or
gamma density function, that approximates hX in the sense that

b

a
fX x dx

b

a
hX x dx

for every a b Then we will also have

b

a
fX x dx FX b FX a
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for every a b We will refer to such an fX as a density function for the population
distribution.

In essence, this is how many continuous distributions arise in practice. In Figure
5.4.2, we have plotted a density histogram for the same values used in Figure 5.4.1, but
this time we used the interval endpoints h1 5 h2 4 75 h41 5 We note
that Figure 5.4.2 looks much more like a continuous function than does Figure 5.4.1.
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Figure 5.4.2: Density histogram function for a sample of 10,000 from an N 0 1 distribution
using the values h1 5 h2 4 75 h41 5.

5.4.4 Survey Sampling

Finite population sampling provides the formulation for a very important application
of statistics, namely, survey sampling or polling. Typically, a survey consists of a set of
questions that are asked of a sample 1 n from a population Each question
corresponds to a measurement, so if there are m questions, the response from a respon
dent is the mdimensional vector X1 X2 Xm A very important
example of survey sampling is the preelection polling that is undertaken to predict the
outcome of a vote. Also, many consumer product companies engage in extensive mar
ket surveys to try to learn what consumers want and so gain information that can lead
to improved sales.

Typically, the analysis of the results will be concerned not only with the population
distributions of the individual Xi over the population but also the joint population dis
tributions. For example, the joint cumulative distribution function of X1 X2 is given
by

F X1 X2 x1 x2
: X1 x1 X2 x2

N

namely, F X1 X2 x1 x2 is the proportion of the individuals in the population whose
X1 measurement is no greater than x1 and whose X2 measurement is no greater than
x2 Of course, we can also define the joint distributions of three or more measurements.
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These joint distributions are what we use to answer questions like, is there a relationship
between X1 and X2 and if so,what form does it take? This topic will be extensively
discussed in Chapter 10. We can also define f X1 X2 for the joint distribution, and joint
density histograms are again useful when X1 and X2 are both continuous quantitative
variables.

EXAMPLE 5.4.3
Suppose there are four candidates running for mayor in a particular city. A random
sample of 1000 voters is selected; they are each asked if they will vote and, if so,
which of the four candidates they will vote for. Additionally, the respondents are asked
their age. We denote the answer to the question of whether or not they will vote by X1
with X1 1 meaning yes and X1 0 meaning no. For those voting, we denote
by X2 the response concerning which candidate they will vote for, with X2 i
indicating candidate i Finally, the age in years of the respondent is denoted by X3 In
addition to the distributions of X1 and X2 the pollster is also interested in the joint
distributions of X1 X3 and X2 X3 , as these tell us about the relationship between
voter participation and age in the first case and candidate choice and age in the second
case.

There are many interesting and important aspects to survey sampling that go well
beyond this book. For example, it is often the case with human populations that a ran
domly selected person will not respond to a survey. This is called nonresponse error,
and it is a serious selection effect. The sampler must design the study carefully to try
to mitigate the effects of nonresponse error. Furthermore, there are variants of simple
random sampling (see Challenge 5.4.20) that can be preferable in certain contexts, as
these increase the accuracy of the results. The design of the actual questionnaire used
is also very important, as we must ensure that responses address the issues intended
without biasing the results.

Summary of Section 5.4

Simple random sampling from a population means that we randomly select
a subset of size n from in such a way that each subset of n has the same
probability — namely, 1 n — of being selected.

Data that arise from a sampling study are generated from the distribution of the
measurement of interest X over the whole population rather than some sub
population. This is why sampling studies are preferred to observational studies.

When the sample size n is small relative to we can treat the observed values
of X as a sample from the distribution of X over the population.

EXERCISES

5.4.1 Suppose we have a population 1 10 and quantitative measurement
X given by:

i 1 2 3 4 5 6 7 8 9 10
X i 1 1 2 1 2 3 3 1 2 4
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Calculate FX fX X and 2
X

5.4.2 Suppose you take a sample of n 3 (without replacement) from the population
in Exercise 5.4.1.
(a) Can you consider this as an approximate i.i.d. sample from the population distribu
tion? Why or why not?
(b) Explain how you would actually physically carry out the sampling from the popu
lation in this case. (Hint: Table D.1.)
(c) Using the method you outlined in part (b), generate three samples of size n 3 and
calculate X for each sample.
5.4.3 Suppose you take a sample of n 4 (with replacement) from the population in
Exercise 5.4.1.
(a) Can you consider this as an approximate i.i.d. sample from the population distribu
tion? Why or why not?

(b) Explain how you would actually physically carry out the sampling in this case.
(c) Using the method you outlined in part (b), generate three samples of size n 3 and
calculate X for each sample.
5.4.4 Suppose we have a finite population and a measurement X : 0 1
where N and : X 0 a

(a) Determine fX 0 and fX 1 Can you identify this population distribution?
(b) For a simple random sample of size n determine the probability that n fX 0 x
(c) Under the assumption of i.i.d. sampling, determine the probability that n fX 0 x
5.4.5 Suppose the following sample of size of n 20 is obtained from an industrial
process.

3 9 7 2 6 9 4 5 5 8 3 7 4 4 4 5 5 6 2 5
4 8 8 5 4 3 1 2 2 3 3 1 3 4 4 8 1 8 3 7

(a) Construct a density histogram for this data set using the intervals 1 4 5] 4 5 5 5]
5 5 6 5] 6 5 10]

(b) Construct a density histogram for this data set using the intervals 1 3 5] 3 5 4 5]
4 5 6 5] 6 5 10]

(c) Based on the results of parts (a) and (b), what do you conclude about histograms?
5.4.6 Suppose it is known that in a population of 1000 students, 350 students will vote
for party A 550 students will vote for party B and the remaining students will vote
for party C
(a) Explain how such information can be obtained.

(b) If we let X : A B C be such that X is the party that will vote for,
then explain why we cannot represent the population distribution of X by FX

(c) Compute fX

(d) Explain how one might go about estimating fX prior to the election.
(e) What is unrealistic about the population distribution specified via fX ? (Hint: Does
it seem realistic, based on what you know about voting behavior?)
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5.4.7 Consider the population to be files stored on a computer at a particular time.
Suppose that X is the type of file as indicated by its extension, e.g., .mp3. Is X a
categorical or quantitative variable?
5.4.8 Suppose that you are asked to estimate the proportion of students in a college of
15 000 students who intend to work during the summer.

(a) Identify the population , the variable X , and fX What kind of variable is X?
(b) How could you determine fX exactly?
(c) Why might you not be able to determine fX exactly? Propose a procedure for
estimating fX in such a situation.
(d) Suppose you were also asked to estimate the proportion of students who intended
to work but could not find a job. Repeat parts (a), (b), and (c) for this situation.
5.4.9 Sometimes participants in a poll do not respond truthfully to a question. For
example, students who are asked “Have you ever illegally downloaded music?” may
not respond truthfully even if they are assured that their responses are confidential.
Suppose a simple random sample of students was chosen from a college and students
were asked this question.

(a) If students were asked this question by a person, comment on how you think the
results of the sampling study would be affected.
(b) If students were allowed to respond anonymously, perhaps by mailing in a ques
tionnaire, comment on how you think the results would be affected.
(c) One technique for dealing with the respondent bias induced by such questions is
to have students respond truthfully only when a certain random event occurs. For
example, we might ask a student to toss a fair coin three times and lie whenever they
obtain two heads. What is the probability that a student tells the truth? Once you have
completed the study and have recorded the proportion of students who said they did
cheat, what proportion would you record as your estimate of the proportion of students
who actually did cheat?
5.4.10 A market research company is asked to determine how satisfied owners are with
their purchase of a new car in the last 6 months. Satisfaction is to be measured by re
spondents choosing a point on a sevenpoint scale 1 2 3 4 5 6 7 , where 1 denotes
completely dissatisfied and 7 denotes completely satisfied (such a scale is commonly
called a Likert scale).
(a) Identify , the variable X , and fX

(b) It is common to treat a variable such as X as a quantitative variable. Do you think
this is correct? Would it be correct to treat X as a categorical variable?
(c) A common criticism of using such a scale is that the interpretation of a statement
such as 3 “I’m somewhat dissatisfied” varies from one person to another. Comment
on how this affects the validity of the study.

COMPUTER EXERCISES

5.4.11 Generate a sample of 1000 from an N 3 2 distribution.
(a) Calculate FX for this sample.
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(b) Plot a density histogram based on these data using the intervals of length 1 over the
range 5 10
(c) Plot a density histogram based on these data using the intervals of length 0 1 over
the range 5 10
(d) Comment on the difference in the look of the histograms in parts (b) and (c). To
what do you attribute this?
(e) What limits the size of the intervals we use to group observations when we are
plotting histograms?

5.4.12 Suppose we have a population of 10,000 elements, each with a unique label
from the set 1 2 3 10 000 .

(a) Generate a sample of 500 labels from this population using simple random sam
pling.
(b) Generate a sample of 500 labels from this population using i.i.d. sampling.

PROBLEMS

5.4.13 Suppose we have a finite population and a measurement X : 0 1 2 ,
where N and : X 0 a and : X 1 b This problem
generalizes Exercise 5.4.4.

(a) Determine fX 0 fX 1 and fX 2
(b) For a simple random sample of size n determine the probability that fX 0
f0 fX 1 f1 and fX 2 f2

(c) Under the assumption of i.i.d. sampling, determine the probability that fX 0
f0 fX 1 f1 and fX 2 f2

5.4.14 Suppose X is a quantitative measurement defined on a finite population.
(a) Prove that the population mean equals X x x fX x i.e., the average of X
over all population elements equals X .

(b) Prove that the population variance is given by 2
X x x X

2 fX x i.e., the
average of X X

2 over all population elements equals 2
X .

5.4.15 Suppose we have the situation described in Exercise 5.4.4, and we take a simple
random sample of size n from where N
(a) Prove that the mean of fX 0 is given by fX 0 (Hint: Note that we can write
fX 0 n 1 n

i 1 I 0 X i and I 0 X i Bernoulli fX 0 )

(b) Prove that the variance of fX 0 is given by

fX 0 1 fX 0

n

N n

N 1
(5.4.1)

(Hint: Use the hint in part (a), but note that the I 0 X i are not independent. Use
Theorem 3.3.4(b) and evaluate Cov I 0 X i I 0 X i in terms of fX 0 .)
(c) Repeat the calculations in parts (a) and (b), but this time assume that you take a
sample of n with replacement. (Hint: Use Exercise 5.4.4(c).)
(d) Explain why the factor N n N 1 in (5.4.1) is called the finite population
correction factor.
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5.4.16 Suppose we have a finite population and we do not know N In
addition, suppose we have a measurement variable X : 0 1 and we know
that N fX 0 a where a is known Based on a simple random sample of n from
determine an estimator of N (Hint: Use a function of fX 0 )
5.4.17 Suppose that X is a quantitative variable defined on a population and that we
take a simple random sample of size n from
(a) If we estimate the population mean X by the sample mean X 1

n
n
i 1 X i

prove that E X X where X is defined in Problem 5.4.14(a). (Hint: What is the
distribution of each X i ?)

(b) Under the assumption that i.i.d. sampling makes sense, show that the variance of X
equals 2

X n, where 2
X is defined in Problem 5.4.14(b).

5.4.18 Suppose we have a finite population and we do not know N In
addition, suppose we have a measurement variable X : R1 and we know T

X Based on a simple random sample of n from determine an estimator of
N (Hint: Use a function of X )

5.4.19 Under i.i.d. sampling, prove that fX x
D

fX x as n (Hint: fX x
n 1 n

i 1 I x X i )

CHALLENGES

5.4.20 (Stratified sampling) Suppose that X is a quantitative variable defined on a pop
ulation and that we can partition into two subpopulations 1 and 2, such that a
proportion p of the full population is in 1 Let fi X denote the conditional population
distribution of X on i

(a) Prove that fX x p f1X x 1 p f2X x
(b) Establish that X p 1X 1 p 2X , where i X is the mean of X on i

(c) Establish that 2
X p 2

1X 1 p 2
2X p 1 p 1X 2X

2

(d) Suppose that it makes sense to assume i.i.d. sampling whenever we take a sample
from either the full population or either of the subpopulations, i.e., whenever the sam
ple sizes we are considering are small relative to the sizes of these populations. We
implement stratified sampling by taking a simple random sample of size ni from sub
population i We then estimate X by pX1 1 p X2, where X i is the sample
mean based on the sample from i Prove that E pX1 1 p X2 X and

Var pX1 1 p X2 p2
2
1X

n1
1 p 2

2
2X

n2

(e) Under the assumptions of part (d), prove that

Var pX1 1 p X2 Var X

when X is based on a simple random sample of size n from the full population and
n1 pn n2 1 p n This is called proportional stratified sampling.
(f) Under what conditions is there no benefit to proportional stratified sampling? What
do you conclude about situations in which stratified sampling will be most beneficial?
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DISCUSSION TOPICS

5.4.21 Sometimes it is argued that it is possible for a skilled practitioner to pick a more
accurate representative sample of a population deterministically rather than by employ
ing simple random sampling. This argument is based in part on the argument that it is
always possible with simple random sampling that we could get a very unrepresenta
tive sample through pure chance and that this can be avoided by an expert. Comment
on this assertion.
5.4.22 Suppose it is claimed that a quantitative measurement X defined on a finite
population is approximately distributed according to a normal distribution with un
known mean and unknown variance. Explain fully what this claim means.

5.5 Some Basic Inferences
Now suppose we are in a situation involving a measurement X whose distribution is
unknown, and we have obtained the data x1 x2 xn i.e., observed n values of X
Hopefully, these data were the result of simple random sampling, but perhaps they were
collected as part of an observational study. Denote the associated unknown population
relative frequency function, or an approximating density, by fX and the population
distribution function by FX .

What we do now with the data depends on two things. First, we have to determine
what we want to know about the underlying population distribution. Typically, our
interest is in only a few characteristics of this distribution — the mean and variance.
Second, we have to use statistical theory to combine the data with the statistical model
to make inferences about the characteristics of interest.

We now discuss some typical characteristics of interest and present some informal
estimation methods for these characteristics, known as descriptive statistics. These
are often used as a preliminary step before more formal inferences are drawn and are
justified on simple intuitive grounds. They are called descriptive because they are
estimating quantities that describe features of the underlying distribution.

5.5.1 Descriptive Statistics

Statisticians often focus on various characteristics of distributions. We present some of
these in the following examples.

EXAMPLE 5.5.1 Estimating Proportions and Cumulative Proportions
Often we want to make inferences about the value fX x or the value FX x for a
specific x Recall that fX x is the proportion of population members whose X mea
surement equals x In general, FX x is the proportion of population members whose
X measurement is less than or equal to x

Now suppose we have a sample x1 x2 xn from fX . A natural estimate of
fX x is given by fX x , the proportion of sample values equal to x A natural estimate
of FX x is given by FX x n 1 n

i 1 I x] xi the proportion of sample values
less than or equal to x otherwise known as the empirical distribution function evaluated
at x
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Suppose we obtained the following sample of n 10 data values.

1 2 2 1 0 4 3 3 2 1 4 0 0 3 2 2 1 5 5 0

In this case, fX x 0 1 whenever x is a data value and is 0 otherwise. To compute
FX x we simply count how many sample values are less than or equal to x and
divide by n 10. For example, FX 3 0 10 0 FX 0 2 10 0 2, and
FX 4 9 10 0 9.

An important class of characteristics of the distribution of a quantitative variable X
is given by the following definition.

Definition 5.5.1 For p [0 1], the pth quantile (or 100pth percentile) xp for
the distribution with cdf FX is defined to be the smallest number xp satisfying
p FX xp

For example, if your mark on a test placed you at the 90th percentile, then your mark
equals x0 9 and 90% of your fellow test takers achieved your mark or lower. Note that
by the definition of the inverse cumulative distribution function (Definition 2.10.1), we
can write x p F 1

X p min x : p FX x
When FX is strictly increasing and continuous, then F 1

X p is the unique value xp
satisfying

FX x p p. (5.5.1)

Figure 5.5.1 illustrates the situation in which there is a unique solution to (5.5.1). When
FX is not strictly increasing or continuous (as when X is discrete), then there may be
more than one, or no, solutions to (5.5.1). Figure 5.5.2 illustrates the situation in which
there is no solution to (5.5.1).

FX

x

1

p

xp

Figure 5.5.1: The pth quantile xp when there is a unique solution to (5.5.1).
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FX

x

1

p

xp

Figure 5.5.2: The pth quantile xp determined by a cdf FX when there is no solution to
(5.5.1).

So, when X is a continuous measurement, a proportion p of the population have
their X measurement less than or equal to xp. As particular cases, x0 5 F 1

X 0 5
is the median, while x0 25 F 1

X 0 25 and x0 75 F 1
X 0 75 are the first and third

quartiles, respectively, of the distribution.

EXAMPLE 5.5.2 Estimating Quantiles
A natural estimate of a population quantile xp F 1

X p is to use x p F 1
X p . Note,

however, that FX is not continuous, so there may not be a solution to (5.5.1) using FX .
Applying Definition 5.5.1, however, leads to the following estimate. First, order the

observed sample values x1 xn to obtain the order statistics x 1 x n (see
Section 2.8.4). Then, note that x i is the i n th quantile of the empirical distribution,
because

FX x i
i

n

and FX x i n whenever x x i . In general, we have that the sample pth quantile
is x p x i whenever

i 1

n
p

i

n
. (5.5.2)

A number of modifications to this estimate are sometimes used. For example, if we
find i such that (5.5.2) is satisfied and put

xp x i 1 n x i x i 1 p
i 1

n
, (5.5.3)

then xp is the linear interpolation between x i 1 and x i . When n is even, this defin
ition gives the sample median as x0 5 x n 2 ; a similar formula holds when n is odd
(Problem 5.5.21). Also see Problem 5.5.22 for more discussion of (5.5.3).

Quite often the sample median is defined to be

x0 5

x n 1 2 n odd

1
2 x n 2 x n 2 1 n even,

(5.5.4)
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namely, the middle value when n is odd and the average of the two middle values when
n is even. For n large enough, all these definitions will yield similar answers. The use
of any of these is permissible in an application.

Consider the data in Example 5.5.1. Sorting the data from smallest to largest, the
order statistics are given by the following table.

x 1 2 1 x 2 0 3 x 3 0 4 x 4 1 2 x 5 1 5
x 6 2 1 x 7 2 2 x 8 3 3 x 9 4 0 x 10 5 0

Then, using (5.5.3), the sample median is given by x0 5 x 5 1 5, while the sample
quartiles are given by

x0 25 x 2 10 x 3 x 2 0 25 0 2

0 3 10 0 4 0 3 0 25 0 2 0 05

and

x0 75 x 7 10 x 8 x 7 0 75 0 7

2 2 10 3 3 2 2 0 75 0 7 2 75

So in this case, we estimate that 25% of the population under study has an X measure
ment less than 0.05, etc.

EXAMPLE 5.5.3 Measuring Location and Scale of a Population Distribution
Often we are asked to make inferences about the value of the population mean

X
1

X

and the population variance

2
X

1
X X

2

where is a finite population and X is a realvalued measurement defined on it. These
are measures of the location and spread of the population distribution about the mean,
respectively. Note that calculating a mean or variance makes sense only when X is a
quantitative variable.

When X is discrete, we can also write

X
x

x fX x

because fX x equals the number of elements with X x In the
continuous case, using an approximating density fX we can write

X x fX x dx

Similar formulas exist for the population variance of X (see Problem 5.4.14).
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It will probably occur to you that a natural estimate of the population mean X is
given by the sample mean

x
1

n

n

i 1

xi

Also, a natural estimate of the population variance 2
X is given by the sample variance

s2 1

n 1

n

i 1

xi x 2 (5.5.5)

Later we will explain why we divided by n 1 in (5.5.5) rather than n. Actually, it
makes little difference which we use, for even modest values of n The sample standard
deviation is given by s the positive square root of s2 For the data in Example 5.1.1,
we obtain x 1 73 and s 2 097

The population mean X and population standard deviation X serve as a pair, in
which X measures where the distribution is located on the real line and X measures
how much spread there is in the distribution about X Clearly, the greater the value of

X the more variability there is in the distribution.
Alternatively, we could use the population median x0 5 as a measure of location

of the distribution and the population interquartile range x0 75 x0 25 as a measure
of the amount of variability in the distribution around the median. The median and
interquartile range are the preferred choice to measure these aspects of the distribution
whenever the distribution is skewed, i.e., not symmetrical. This is because the median
is insensitive to very extreme values, while the mean is not. For example, house prices
in an area are well known to exhibit a rightskewed distribution. A few houses selling
for very high prices will not change the median price but could result in a big change
in the mean price.

When we have a symmetric distribution, the mean and median will agree (provided
the mean exists). The greater the skewness in a distribution, however, the greater will
be the discrepancy between its mean and median. For example, in Figure 5.5.3 we have
plotted the density of a 2 4 distribution. This distribution is skewed to the right, and
the mean is 4 while the median is 3.3567.

0 5 10 15 20
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Figure 5.5.3: The density f of a 2 4 distribution.
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We estimate the population interquartile range by the sample interquartile range
(IQR) given by I Q R x0 75 x0 25. For the data in Example 5.5.1, we obtain the
sample median to be x0 5 1 5 while I Q R 2 75 0 05 2 70.

If we change the largest value in the sample from x 10 5 0 to x 10 500 0 the
sample median remains x0 5 1 5 but note that the sample mean goes from 1.73 to
51.23!

5.5.2 Plotting Data

It is always a good idea to plot the data. For discrete quantitative variables, we can plot
fX i.e., plot the sample proportions (relative frequencies). For continuous quantitative
variables, we introduced the density histogram in section 5.4.3. These plots give us
some idea of the shape of the distribution from which we are sampling. For example,
we can see if there is any evidence that the distribution is strongly skewed.

We now consider another very useful plot for quantitative variables.

EXAMPLE 5.5.4 Boxplots and Outliers
Another useful plot for quantitative variables is known as a boxplot. For example,
Figure 5.5.4 gives a boxplot for the data in Example 5.5.1. The line in the center of the
box is the median. The line below the median is the first quartile, and the line above
the median is the third quartile.

The vertical lines from the quartiles are called whiskers, which run from the quar
tiles to the adjacent values. The adjacent values are given by the greatest value less
than or equal to the upper limit (the third quartile plus 1.5 times the I Q R) and by the
least value greater than or equal to the lower limit (the first quartile minus 1.5 times
the I Q R). Values beyond the adjacent values, when these exist, are plotted with a ;
in this case, there are none. If we changed x 10 5 0 to x 10 15 0 however, we
see this extreme value plotted as a , as shown in Figure 5.5.5.
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Figure 5.5.4: A boxplot of the data in Example 5.5.1.
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Figure 5.5.5: A boxplot of the data in Example 5.5.1, changing x 10 5 0 to
x 10 15 0.

Points outside the upper and lower limits, and thus plotted by , are commonly
referred to as outliers. An outlier is a value that is extreme with respect to the rest
of the observations. Sometimes outliers occur because a mistake has been made in
collecting or recording the data, but they also occur simply because we are sampling
from a longtailed distribution. It is often difficult to ascertain which is the case in
a particular application, but each such observation should be noted. We have seen in
Example 5.5.3 that outliers can have a big impact on statistical analyses. Their effects
should be recorded when reporting the results of a statistical analysis.

For categorical variables, it is typical to plot the data in a bar chart, as described in
the next example.

EXAMPLE 5.5.5 Bar Charts
For categorical variables, we code the values of the variable as equispaced numbers
and then plot constantwidth rectangles (the bars) over these values so that the height
of the rectangle over a value equals the proportion of times that value is assumed. Such
a plot is called a bar chart. Note that the values along the xaxis are only labels and
not to be treated as numbers that we can do arithmetic on, etc.

For example, suppose we take a simple random sample of 100 students and record
their favorite avor of ice cream (from amongst four possibilities), obtaining the results
given in the following table.

Flavor Count Proportion
Chocolate 42 0.42
Vanilla 28 0.28
Butterscotch 22 0.22
Strawberry 8 0.08

Coding Chocolate as 1, Vanilla as 2, Butterscotch as 3, and Strawberry as 4, Figure
5.5.6 presents a bar chart of these data. It is typical for the bars in these charts not to
touch.
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Figure 5.5.6: A bar chart for the data of Example 5.5.5.

5.5.3 Types of Inferences

Certainly quoting descriptive statistics and plotting the data are methods used by a sta
tistician to try to learn something about the underlying population distribution. There
are difficulties with this approach, however, as we have just chosen these methods based
on intuition. Often it is not clear which descriptive statistics we should use. Further
more, these data summaries make no use of the information we have about the true pop
ulation distribution as expressed by the statistical model, namely, fX f :
Taking account of this information leads us to develop a theory of statistical inference,
i.e., to specify how we should combine the model information together with the data to
make inferences about population quantities. We will do this in Chapters 6, 7, and 8,
but first we discuss the types of inferences that are commonly used in applications.

In Section 5.2, we discussed three types of inference in the context of a known
probability model as specified by some density or probability function f We noted
that we might want to do any of the following concerning an unobserved response
value s.

(i) Predict an unknown response value s via a prediction t .

(ii) Construct a subset C of the sample space S that has a high probability of containing
an unknown response value s.

(iii) Assess whether or not s0 S is a plausible value from the probability distribution
specified by f

We refer to (i), (ii), and (iii) as inferences about the unobserved s The examples of
Section 5.2 show that these are intuitively reasonable concepts.

In an application, we do not know f ; we know only that f f : , and we
observe the data s. We are uncertain about which candidate f is correct, or, equiva
lently, which of the possible values of is correct.

As mentioned in Section 5.5.1, our primary goal may be to determine not the true
f but some characteristic of the true distribution such as its mean, median, or the
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value of the true distribution function F at a specified value. We will denote this
characteristic of interest by . For example, when the characteristic of interest
is the mean of the true distribution of a continuous random variable, then

x f x dx

Alternatively, we might be interested in F 1 0 5 , the median of the distribu
tion of a random variable with distribution function given by F .

Different values of lead to possibly different values for the characteristic .
After observing the data s, we want to make inferences about what the correct value is.
We will consider the three types of inference for .

(i) Choose an estimate T s of referred to as the problem of estimation.

(ii) Construct a subset C s of the set of possible values for that we believe
contains the true value, referred to as the problem of credible region or confidence
region construction.

(iii) Assess whether or not 0 is a plausible value for after having observed s
referred to as the problem of hypothesis assessment.

So estimates, credible or confidence regions, and hypothesis assessment are examples
of types of inference. In particular, we want to construct estimates T s of
construct credible or confidence regions C s for and assess the plausibility of a
hypothesized value 0 for .

The problem of statistical inference entails determining how we should combine
the information in the model f : and the data s to carry out these inferences
about .

A very important statistical model for applications is the locationscale normal
model introduced in Example 5.3.4. We illustrate some of the ideas discussed in this
section via that model.

EXAMPLE 5.5.6 Application of the LocationScale Normal Model
Suppose the following simple random sample of the heights (in inches) of 30 students
has been collected.

64 9 61 4 66 3 64 3 65 1 64 4 59 8 63 6 66 5 65 0
64 9 64 3 62 5 63 1 65 0 65 8 63 4 61 9 66 6 60 9
61 6 64 0 61 5 64 2 66 8 66 4 65 8 71 4 67 8 66 3

The statistician believes that the distribution of heights in the population can be well
approximated by a normal distribution with some unknown mean and variance, and
she is unwilling to make any further assumptions about the true distribution. Accord
ingly, the statistical model is given by the family of N 2 distributions, where

2 R1 R is unknown.
Does this statistical model make sense, i.e., is the assumption of normality appro

priate for this situation? The density histogram (based on 12 equallength intervals
from 59.5 to 71.5) in Figure 5.5.7 looks very roughly normal, but the extreme observa
tion in the right tail might be some grounds for concern. In any case, we proceed as if



Chapter 5: Statistical Inference 291

this assumption is reasonable. In Chapter 9, we will discuss more refined methods for
assessing this assumption.
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Figure 5.5.7: Density histogram of heights in Example 5.5.6.

Suppose we are interested in making inferences about the population mean height,
namely, the characteristic of interest is 2 Alternatively, we might want to
make inferences about the 90th percentile of this distribution, i.e., 2 x0 90

z0 90 where z0 90 is the 90th percentile of the N 0 1 distribution (when X
N 2 then P X z0 90 P X z0 90 z0 90 0 90).
So 90% of the population under study have height less than x0 90 a value unknown
to us because we do not know the value of 2 . Obviously, there are many other
characteristics of the true distribution about which we might want to make inferences.

Just using our intuition, T x1 xn x seems like a sensible estimate of and
T x1 xn x sz0 90 seems like a sensible estimate of z0 90. To justify the
choice of these estimates, we will need the theories developed in later chapters. In this
case, we obtain x 64 517 and from (5.5.5) we compute s 2 379 From Table D.2
we obtain z0 90 1 2816, so that

x sz0 90 64 517 2 379 1 2816 67 566.

How accurate is the estimate x of ? A natural approach to answering this question
is to construct a credible interval, based on the estimate, that we believe has a high
probability of containing the true value of and is as short as possible For example,
the theory in Chapter 6 leads to using confidence intervals for of the form

[x sc x sc]

for some choice of the constant c. Notice that x is at the center of the interval. The
theory in Chapter 6 will show that, in this case, choosing c 0 3734 leads to what is
known as a 0 95confidence interval for We then take the halflength of this interval,
namely,

sc 2 379 0 373 4 0 888,
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as a measure of the accuracy of the estimate x 64 517 of In this case, we have
enough information to say that we know the true value of to within one inch, at least
with “confidence” equal to 0.95.

Finally, suppose we have a hypothesized value 0 for the population mean height.
For example, we may believe that the mean height of the population of individuals
under study is the same as the mean height of another population for which this quantity
is known to equal 0 65 Then, based on the observed sample of heights we want
to assess whether or not the value 0 65 makes sense. If the sample mean height
x is far from 0 this would seem to be evidence against the hypothesized value. In
Chapter 6, we will show that we can base our assessment on the value of

t
x 0

s n

64 517 65

2 379 30
1 112.

If the value of t is very large, then we will conclude that we have evidence against
the hypothesized value 0 65. We have to prescribe what we mean by large here,
and we will do this in Chapter 6. It turns out that t 1 112 is a plausible value for t ,
when the true value of equals 65, so we have no evidence against the hypothesis.

Summary of Section 5.5

Descriptive statistics represent informal statistical methods that are used to make
inferences about the distribution of a variable X of interest, based on an observed
sample from this distribution. These quantities summarize characteristics of the
observed sample and can be thought of as estimates of the corresponding un
known population quantities. More formal methods are required to assess the
error in these estimates or even to replace them with estimates having greater
accuracy.

It is important to plot the data using relevant plots. These give us some idea of
the shape of the population distribution from which we are sampling.

There are three main types of inference: estimates, credible or confidence inter
vals, and hypothesis assessment.

EXERCISES

5.5.1 Suppose the following data are obtained by recording X the number of cus
tomers that arrive at an automatic banking machine during 15 successive oneminute
time intervals.

2 1 3 2 0 1 4 2
0 2 3 1 0 0 4

(a) Record estimates of fX 0 fX 1 fX 2 fX 3 and fX 4
(b) Record estimates of FX 0 FX 1 FX 2 FX 3 and FX 4
(c) Plot fX .
(d) Record the mean and variance.
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(e) Record the median and IQR and provide a boxplot. Using the rule prescribed in
Example 5.5.4, decide whether there are any outliers.
5.5.2 Suppose the following sample of waiting times (in minutes) was obtained for
customers in a queue at an automatic banking machine.

15 10 2 3 1 0 4 5
5 3 3 4 2 1 4 5

(a) Record the empirical distribution function.

(b) Plot fX .
(c) Record the mean and variance.
(d) Record the median and IQR and provide a boxplot. Using the rule given in Example
5.5.4, decide whether there are any outliers.
5.5.3 Suppose an experiment was conducted to see whether mosquitoes are attracted
differentially to different colors. Three different colors of fabric were used and the
number of mosquitoes landing on each piece was recorded over a 15minute interval.
The following data were obtained.

Number of landings
Color 1 25
Color 2 35
Color 3 22

(a) Record estimates of fX 1 fX 2 and fX 3 where we use i for color i .
(b) Does it make sense to estimate FX i ? Explain why or why not.
(c) Plot a bar chart of these data.
5.5.4 A student is told that his score on a test was at the 90th percentile in the popula
tion of all students who took the test. Explain exactly what this means.
5.5.5 Determine the empirical distribution function based on the sample given below.

1 0 1 2 0 4 1 3 0 3
1 4 0 4 0 5 0 2 1 3
0 0 1 0 1 3 2 0 1 0
0 9 0 4 2 1 0 0 1 3

Plot this function. Determine the sample median, the first and third quartiles, and the
interquartile range. What is your estimate of F 1 ?
5.5.6 Consider the density histogram in Figure 5.5.8. If you were asked to record
measures of location and spread for the data corresponding to this plot, what would
you choose? Justify your answer.
5.5.7 Suppose that a statistical model is given by the family of N 2

0 distributions
where R1 is unknown, while 2

0 is known. If our interest is in making
inferences about the first quartile of the true distribution, then determine
5.5.8 Suppose that a statistical model is given by the family of N 2

0 distributions
where R1 is unknown, while 2

0 is known. If our interest is in making
inferences about the third moment of the distribution, then determine



294 Section 5.5: Some Basic Inferences

5.5.9 Suppose that a statistical model is given by the family of N 2
0 distributions

where R1 is unknown, while 2
0 is known. If our interest is in making

inferences about the distribution function evaluated at 3, then determine
5.5.10 Suppose that a statistical model is given by the family of N 2 distributions
where 2 R1 R is unknown. If our interest is in making inferences
about the first quartile of the true distribution, then determine 2

5.5.11 Suppose that a statistical model is given by the family of N 2 distributions
where 2 R1 R is unknown. If our interest is in making inferences
about the distribution function evaluated at 3, then determine 2

5.5.12 Suppose that a statistical model is given by the family of Bernoulli distribu
tions where [0 1]. If our interest is in making inferences about the probability
that two independent observations from this model are the same, then determine
5.5.13 Suppose that a statistical model is given by the family of Bernoulli distribu
tions where [0 1]. If our interest is in making inferences about the probability
that in two independent observations from this model we obtain a 0 and a 1, then de
termine
5.5.14 Suppose that a statistical model is given by the family of Uniform[0 ] dis
tributions where 0 If our interest is in making inferences about the
coefficient of variation (see Exercise 5.3.5) of the true distribution, then determine

What do you notice about this characteristic?

5.5.15 Suppose that a statistical model is given by the family of Gamma 0 distri
butions where 0 If our interest is in making inferences about the
variance of the true distribution, then determine
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Figure 5.5.8: Density histogram for Exercise 5.5.6.

COMPUTER EXERCISES

5.5.16 Do the following based on the data in Exercise 5.4.5.
(a) Compute the order statistics for these data.
(b) Calculate the empirical distribution function at the data points.



Chapter 5: Statistical Inference 295

(c) Calculate the sample mean and the sample standard deviation.

(d) Obtain the sample median and the sample interquartile range.
(e) Based on the histograms obtained in Exercise 5.4.5, which set of descriptive statis
tics do you feel are appropriate for measuring location and spread?

(f) Suppose the first data value was recorded incorrectly as 13.9 rather than as 3.9.
Repeat parts (c) and (d) using this data set and compare your answers with those previ
ously obtained. Can you draw any general conclusions about these measures? Justify
your reasoning.

5.5.17 Do the following based on the data in Example 5.5.6.
(a) Compute the order statistics for these data.
(b) Plot the empirical distribution function (only at the sample points).
(c) Calculate the sample median and the sample interquartile range and obtain a box
plot. Are there any outliers?
(d) Based on the boxplot, which set of descriptive statistics do you feel is appropriate
for measuring location and spread?
(e) Suppose the first data value was recorded incorrectly as 84.9 rather than as 64.9.
Repeat parts (c) and (d) using this data set and see whether any observations are deter
mined to be outliers.

5.5.18 Generate a sample of 30 from an N 10 2 distribution and a sample of 1 from
an N 30 2 distribution. Combine these together to make a single sample of 31
(a) Produce a boxplot of these data.

(b) What do you notice about this plot?
(c) Based on the boxplot, what characteristic do you think would be appropriate to
measure the location and spread of the distribution? Explain why.
5.5.19 Generate a sample of 50 from a 2 1 distribution.
(a) Produce a boxplot of these data.
(b) What do you notice about this plot?
(c) Based on the boxplot, what characteristic do you think would be appropriate to
measure the location and spread of the distribution? Explain why.
5.5.20 Generate a sample of 50 from an N 4 1 distribution. Suppose your interest is
in estimating the 90th percentile x0 9 of this distribution and we pretend that 4 and

1 are unknown.
(a) Compute an estimate of x0 9 based on the appropriate order statistic.
(b) Compute an estimate based on the fact that x0 9 z0 9 where z0 9 is the 90th
percentile of the N 0 1 distribution.
(c) If you knew, or at least were willing to assume, that the sample came from a normal
distribution, which of the estimates in parts (a) or (b) would you prefer? Explain why.

PROBLEMS

5.5.21 Determine a formula for the sample median, based on interpolation (i.e., using
(5.5.3)) when n is odd. (Hint: Use the least integer function or ceiling x smallest
integer greater than or equal to x )
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5.5.22 An alternative to the empirical distribution function is to define a distribution
function F by F x 0 if x x 1 F x 1 if x x n F x F x i if x x i
and

F x F x i
F x i 1 F x i

x i 1 x i
x x i

if x i x x i 1 for i 1 n

(a) Show that F x i F x i for i 1 n and is increasing from 0 to 1.

(b) Prove that F is continuous on x 1 and right continuous everywhere.
(c) Show that, for p [1 n 1 the value xp defined in (5.5.3) is the solution to
F x p p.

DISCUSSION TOPICS

5.5.23 Sometimes it is argued that statistics does not need a formal theory to prescribe
inferences. Rather, statistical practice is better left to the skilled practitioner to decide
what is a sensible approach in each problem. Comment on these statements.

5.5.24 How reasonable do you think it is for an investigator to assume that a random
variable is normally distributed? Discuss the role of assumptions in scientific mod
elling.
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Likelihood Inference

CHAPTER OUTLINE

Section 1 The Likelihood Function
Section 2 Maximum Likelihood Estimation
Section 3 Inferences Based on the MLE
Section 4 DistributionFree Methods
Section 5 Large Sample Behavior of the MLE (Advanced)

In this chapter, we discuss some of the most basic approaches to inference. In essence,
we want our inferences to depend only on the model P : and the data s.
These methods are very minimal in the sense that they require few assumptions. While
successful for certain problems, it seems that the additional structure of Chapter 7 or
Chapter 8 is necessary in more involved situations.

The likelihood function is one of the most basic concepts in statistical inference.
Entire theories of inference have been constructed based on it. We discuss likeli
hood methods in Sections 6.1, 6.2, 6.3, and 6.5. In Section 6.4, we introduce some
distributionfree methods of inference. These are not really examples of likelihood
methods, but they follow the same basic idea of having the inferences depend on as
few assumptions as possible.

6.1 The Likelihood Function
Likelihood inferences are based only on the data s and the model P : — the
set of possible probability measures for the system under investigation From these
ingredients we obtain the basic entity of likelihood inference, namely, the likelihood
function.

To motivate the definition of the likelihood function, suppose we have a statistical
model in which each P is discrete, given by probability function f Having observed
s consider the function L s defined on the parameter space and taking values in
R1, given by

L s f s

297
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We refer to L s as the likelihood function determined by the model and the data.
The value L s is called the likelihood of Note that for the likelihood function,
we are fixing the data and varying the value of the parameter.

We see that f s is just the probability of obtaining the data s when the true value
of the parameter is This imposes a belief ordering on , namely, we believe in 1 as
the true value of over 2 whenever f 1 s f 2 s This is because the inequality
says that the data are more likely under 1 than 2 We are indifferent between 1 and

2 whenever f 1 s f 2 s . Likelihood inference about is based on this ordering.
It is important to remember the correct interpretation of L s The value L s

is the probability of s given that is the true value — it is not the probability of given
that we have observed s Also, it is possible that the value of L s is very small for
every value of So it is not the actual value of the likelihood that is telling us how
much support to give to a particular , but rather its value relative to the likelihoods of
other possible parameter values.

EXAMPLE 6.1.1
Suppose S 1 2 and that the statistical model is P : 1 2 where P1 is
the uniform distribution on the integers 1 103 and P2 is the uniform distribution
on 1 106 Further suppose that we observe s 10. Then L 1 10 1 103

and L 2 10 1 106. Both values are quite small, but note that the likelihood sup
ports 1 a thousand times more than it supports 2.

Accordingly, we are only interested in likelihood ratios

L 1 s

L 2 s

for 1 2 when it comes to determining inferences for based on the likelihood
function This implies that any function that is a positive multiple of L s i.e.,
L s cL s for some fixed c 0 can serve equally well as a likelihood
function. We call two likelihoods equivalent if they are proportional in this way. In
general, we refer to any positive multiple of L s as a likelihood function.

EXAMPLE 6.1.2
Suppose that a coin is tossed n 10 times and that s 4 heads are observed. With
no knowledge whatsoever concerning the probability of getting a head on a single
toss, the appropriate statistical model for the data is the Binomial 10 model with

[0 1] The likelihood function is given by

L 4
10

4
4 1 6 (6.1.1)

which is plotted in Figure 6.1.1.
This likelihood peaks at 0 4 and takes the value 0.2508 there. We will ex

amine uses of the likelihood to estimate the unknown and assess the accuracy of the
estimate. Roughly speaking, however, this is based on where the likelihood takes its
maximum and how much spread there is in the likelihood about its peak.
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Figure 6.1.1: Likelihood function from the Binomial 10 model when s 4 is observed.

There is a range of approaches to obtaining inferences via the likelihood function.
At one extreme is the likelihood principle.

Likelihood Principle: If two model and data combinations yield equivalent
likelihood functions, then inferences about the unknown parameter must
be the same.

This principle dictates that anything we want to say about the unknown value of
must be based only on L s For many statisticians, this is viewed as a very severe
proscription. Consider the following example.

EXAMPLE 6.1.3
Suppose a coin is tossed in independent tosses until four heads are obtained and the
number of tails observed until the fourth head is s 6 Then s is distributed Negative
Binomial 4 , and the likelihood specified by the observed data is

L 6
9

6
4 1 6

Note that this likelihood function is a positive multiple of (6.1.1).
So the likelihood principle asserts that these two model and data combinations must

yield the same inferences about the unknown . In effect, the likelihood principle says
we must ignore the fact that the data were obtained in entirely different ways. If, how
ever, we take into account additional model features beyond the likelihood function,
then it turns out that we can derive different inferences for the two situations. In partic
ular, assessing a hypothesized value 0 can be carried out in different ways when
the sampling method is taken into account. Many statisticians believe this additional
information should be used when deriving inferences.



300 Section 6.1: The Likelihood Function

As an example of an inference derived from a likelihood function, consider a set of
the form

C s : L s c

for some c 0 The set C s is referred to as a likelihood region. It contains all those
values for which their likelihood is at least c A likelihood region, for some c, seems

like a sensible set to quote as possibly containing the true value of . For, if C s ,
then L s L s for every C s and so is not as wellsupported by the
observed data as any value in C s . The size of C s can then be taken as a measure of
how uncertain we are about the true value of .

We are left with the problem, however, of choosing a suitable value for c and, as
Example 6.1.1 seems to indicate, the likelihood itself does not suggest a natural way to
do this. In Section 6.3.2, we will discuss a method for choosing c that is based upon
additional model properties beyond the likelihood function.

So far in this section, we have assumed that our statistical models are comprised
of discrete distributions. The definition of the likelihood is quite natural, as L s
is simply the probability of s occurring when is the true value. This interpretation
is clearly not directly available, however, when we have a continuous model because
every data point has probability 0 of occurring. Imagine, however, that f 1 s f 2 s
and that s R1 Then, assuming the continuity of every f at s we have

P 1 V
b

a
f 1 s dx P 2 V

b

a
f 2 s dx

for every interval V a b containing s that is small enough. We interpret this to
mean that the probability of s occurring when 1 is true is greater than the probability
of s occurring when 2 is true. So the data s support 1 more than 2 A similar
interpretation applies when s Rn for n 1 and V is a region containing s

Therefore, in the continuous case, we again define the likelihood function by L s
f s and interpret the ordering this imposes on the values of exactly as we do

in the discrete case.1 Again, two likelihoods will be considered equivalent if one is a
positive multiple of the other.

Now consider a very important example.

EXAMPLE 6.1.4 Location Normal Model
Suppose that x1 xn is an observed independently and identically distributed
(i.i.d.) sample from an N 2

0 distribution where R1 is unknown and
2
0 0 is known. The likelihood function is given by

L x1 xn

n

i 1

f xi

n

i 1

2 2
0

1 2
exp

1

2 2
0

xi
2

1Note, however, that whenever we have a situation in which f 1 s f 2 s we could still have
P 1 V P 2 V for every V containing s and small enough. This implies that 1 is supported more
than 2 rather than these two values having equal support, as implied by the likelihood. This phenomenon
does not occur in the examples we discuss, so we will ignore it here.
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and clearly this simplifies to

L x1 xn 2 2
0

n 2
exp

1

2 2
0

n

i 1

xi
2

2 2
0

n 2
exp

n

2 2
0

x 2 exp
n 1

2 2
0

s2

An equivalent, simpler version of the likelihood function is then given by

L x1 xn exp
n

2 2
0

x 2

and we will use this version.
For example, suppose n 25 2

0 1 and we observe x 3 3 This function is
plotted in Figure 6.1.2.
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Figure 6.1.2: Likelihood from a location normal model based on a sample of 25 with x 3 3.

The likelihood peaks at x 3 3 and the plotted function takes the value 1
there. The likelihood interval

C x : L x1 xn 0 5 3 0645 3 53548

contains all those values whose likelihood is at least 0.5 of the value of the likelihood
at its peak.

The location normal model is impractical for many applications, as it assumes that
the variance is known, while the mean is unknown. For example, if we are interested
in the distribution of heights in a population, it seems unlikely that we will know the
population variance but not know the population mean. Still, it is an important statis
tical model, as it is a context where inference methods can be developed fairly easily.
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The methodology developed for this situation is often used as a paradigm for inference
methods in much more complicated models.

The parameter need not be onedimensional. The interpretation of the likelihood
is still the same, but it is not possible to plot it — at least not when the dimension of
is greater than 2.

EXAMPLE 6.1.5 Multinomial Models
In Example 2.8.5, we introduced multinomial distributions. These arise in applications
when we have a categorical response variable s that can take a finite number k of values,
say, 1 k and P s i i .

Suppose, then, that k 3 and we do not know the value of 1 2 3 In this
case, the parameter space is given by

1 2 3 : i 0 for i 1 2 3 and 1 2 3 1

Notice that it is really only twodimensional, because as soon as we know the value of
any two of the i ’s say, 1 and 2 we immediately know the value of the remaining
parameter, as 3 1 1 2 This fact should always be remembered when we are
dealing with multinomial models.

Now suppose we observe a sample of n from this distribution, say, s1 sn .
The likelihood function for this sample is given by

L 1 2 3 s1 sn
x1
1

x2
2

x3
3 (6.1.2)

where xi is the number of i’s in the sample.
Using the fact that we can treat positive multiples of the likelihood as being equiv

alent, we see that the likelihood based on the observed counts x1 x2 x3 (since they
arise from a Multinomial n 1 2 3 distribution) is given by

L 1 2 3 x1 x2 x3
x1
1

x2
2

x3
3 .

This is identical to the likelihood (as functions of 1 2 and 3) for the original sam
ple. It is certainly simpler to deal with the counts rather than the original sample. This
is a very important phenomenon in statistics and is characterized by the concept of
sufficiency, discussed in the next section.

6.1.1 Sufficient Statistics

The equivalence for inference of positive multiples of the likelihood function leads to
a useful equivalence amongst possible data values coming from the same model. For
example, suppose data values s1 and s2 are such that L s1 cL s2 for some
c 0 From the point of view of likelihood, we are indifferent as to whether we
obtained the data s1 or the data s2 as they lead to the same likelihood ratios.

This leads to the definition of a sufficient statistic.
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Definition 6.1.1 A function T defined on the sample space S is called a sufficient
statistic for the model if, whenever T s1 T s2 then

L s1 c s1 s2 L s2

for some constant c s1 s2 0

The terminology is motivated by the fact that we need only observe the value t for the
function T as we can pick any value

s T 1 t s : T s t

and use the likelihood based on s All of these choices give the same likelihood ratios.
Typically, T s will be of lower dimension than s so we can consider replacing s by
T s as a data reduction which simplifies the analysis somewhat.

We illustrate the computation of a sufficient statistic in a simple context.

EXAMPLE 6.1.6
Suppose that S 1 2 3 4 a b and the two probability distributions are
given by the following table.

s 1 s 2 s 3 s 4
a 1 2 1 6 1 6 1 6
b 1 4 1 4 1 4 1 4

Then L 2 L 3 L 4 (e.g., L a 2 1 6 and L b 2 1 4), so the
data values in 2 3 4 all give the same likelihood ratios. Therefore, T : S 0 1
given by T 1 0 and T 2 T 3 T 4 1 is a sufficient statistic. The model
has simplified a bit, as now the sample space for T has only two elements instead of
four for the original model.

The following result helps identify sufficient statistics.

Theorem 6.1.1 (Factorization theorem) If the density (or probability function) for
a model factors as f s h s g T s , where g and h are nonnegative, then T
is a sufficient statistic.

PROOF By hypothesis, it is clear that, when T s1 T s2 we have

L s1 h s1 g T s1
h s1 g T s1

h s2 g T s2
h s2 g T s2

h s1

h s2
h s2 g T s2 c s1 s2 L s2

because g T s1 g T s2

Note that the name of this result is motivated by the fact that we have factored f
as a product of two functions. The important point about a sufficient statistic T is that
we are indifferent, at least when considering inferences about between observing the
full data s or the value of T s . We will see in Chapter 9 that there is information in
the data, beyond the value of T s that is useful when we want to check assumptions.
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Minimal Sufficient Statistics

Given that a sufficient statistic makes a reduction in the data, without losing relevant
information in the data for inferences about we look for a sufficient statistic that
makes the greatest reduction. Such a statistic is called a minimal sufficient statistic.

Definition 6.1.2 A sufficient statistic T for a model is a minimal sufficient statistic,
whenever the value of T s can be calculated once we know the likelihood function
L s .

So a relevant likelihood function can always be obtained from the value of any suffi
cient statistic T but if T is minimal sufficient as well, then we can also obtain the value
of T from any likelihood function. It can be shown that a minimal sufficient statistic
gives the greatest reduction of the data in the sense that, if T is minimal sufficient and
U is sufficient, then there is a function h such that T h U Note that the definitions
of sufficient statistic and minimal sufficient statistic depend on the model, i.e., different
models can give rise to different sufficient and minimal sufficient statistics.

While the idea of a minimal sufficient statistic is a bit subtle, it is usually quite
simple to find one, as the following examples illustrate.

EXAMPLE 6.1.7 Location Normal Model
By the factorization theorem we see immediately, from the discussion in Example
6.1.4, that x is a sufficient statistic. Now any likelihood function for this model is a
positive multiple of

exp
n

2 2
0

x 2 .

Notice that any such function of is completely specified by the point where it takes
its maximum, namely, at x . So we have that x can be obtained from any likelihood
function for this model, and it is therefore a minimal sufficient statistic.

EXAMPLE 6.1.8 LocationScale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution in which
R1 and 0 are unknown. Recall the discussion and application of this model in
Examples 5.3.4 and 5.5.6.

The parameter in this model is twodimensional and is given by 2

R1 0 Therefore, the likelihood function is given by

L x1 xn 2 2
n 2

exp
1

2 2

n

i 1

xi
2

2 2
n 2

exp
n

2 2 x 2 exp
n 1

2 2 s2 .

We see immediately, from the factorization theorem, that x s2 is a sufficient statistic.
Now, fixing 2, any positive multiple of L x1 xn is maximized, as a func

tion of , at x . This is independent of 2. Fixing at x we have that

L x 2 x1 xn 2 2
n 2

exp
n 1

2 2
s2
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is maximized, as a function of 2 at the same point as ln L x 2 x1 xn be
cause ln is a strictly increasing function. Now

ln L x 2 x
2 2

n

2
ln 2 n 1

2 2 s2

n

2 2

n 1

2 4 s2.

Setting this equal to 0 yields the solution

2 n 1

n
s2,

which is a 1–1 function of s2 So, given any likelihood function for this model, we can
compute x s2 , which establishes that x s2 is a minimal sufficient statistic for the
model. In fact, the likelihood is maximized at x 2 (Problem 6.1.22).

EXAMPLE 6.1.9 Multinomial Models
We saw in Example 6.1.5 that the likelihood function for a sample is given by (6.1.2).
This makes clear that if two different samples have the same counts, then they have the
same likelihood, so the counts x1 x2 x3 comprise a sufficient statistic.

Now it turns out that this likelihood function is maximized by taking

1 2 3
x1

n

x2

n

x3

n

So, given the likelihood, we can compute the counts (the sample size n is assumed
known). Therefore, x1 x2 x3 is a minimal sufficient statistic.

Summary of Section 6.1

The likelihood function for a model and data shows how the data support the
various possible values of the parameter. It is not the actual value of the likeli
hood that is important but the ratios of the likelihood at different values of the
parameter.

A sufficient statistic T for a model is any function of the data s such that once we
know the value of T s then we can determine the likelihood function L s
(up to a positive constant multiple).

A minimal sufficient statistic T for a model is any sufficient statistic such that
once we know a likelihood function L s for the model and data, then we can
determine T s .

EXERCISES

6.1.1 Suppose a sample of n individuals is being tested for the presence of an antibody
in their blood and that the number with the antibody present is recorded. Record an
appropriate statistical model for this situation when we assume that the responses from
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individuals are independent. If we have a sample of 10 and record 3 positives, graph a
representative likelihood function.
6.1.2 Suppose that suicides occur in a population at a rate p per person year and that
p is assumed completely unknown. If we model the number of suicides observed in a
population with a total of N person years as Poisson N p , then record a representative
likelihood function for p when we observe 22 suicides with N 30 345
6.1.3 Suppose that the lifelengths (in thousands of hours) of light bulbs are distributed
Exponential , where 0 is unknown. If we observe x 5 2 for a sample of 20
light bulbs, record a representative likelihood function. Why is it that we only need to
observe the sample average to obtain a representative likelihood?
6.1.4 Suppose we take a sample of n 100 students from a university with over
50 000 students enrolled. We classify these students as either living on campus, living
off campus with their parents, or living off campus independently. Suppose we observe
the counts x1 x2 x3 34 44 22 . Determine the form of the likelihood function
for the unknown proportions of students in the population that are in these categories.
6.1.5 Determine the constant that makes the likelihood functions in Examples 6.1.2
and 6.1.3 equal.
6.1.6 Suppose that x1 xn is a sample from the Bernoulli distribution, where

[0 1] is unknown. Determine the likelihood function and a minimal sufficient sta
tistic for this model. (Hint: Use the factorization theorem and maximize the logarithm
of the likelihood function.)
6.1.7 Suppose x1 xn is a sample from the Poisson distribution where 0
is unknown. Determine the likelihood function and a minimal sufficient statistic for
this model. (Hint: the Factorization Theorem and maximization of the logarithm of the
likelihood function.)
6.1.8 Suppose that a statistical model is comprised of two distributions given by the
following table:

s 1 s 2 s 3
f1 s 0 3 0 1 0 6
f2 s 0 1 0 7 0 2

(a) Plot the likelihood function for each possible data value s
(b) Find a sufficient statistic that makes a reduction in the data.
6.1.9 Suppose a statistical model is given by f1 f2 , where fi is an N i 1 distribu
tion. Compute the likelihood ratio L 1 0 L 2 0 and explain how you interpret this
number.
6.1.10 Explain why a likelihood function can never take negative values. Can a likeli
hood function be equal to 0 at a parameter value?
6.1.11 Suppose we have a statistical model f : [0 1] and we observe x0 Is it
true that 1

0 L x0 d 1? Explain why or why not.

6.1.12 Suppose that x1 xn is a sample from a Geometric distribution, where
[0 1] is unknown. Determine the likelihood function and a minimal sufficient sta

tistic for this model. (Hint: Use the factorization theorem and maximize the logarithm
of the likelihood.)
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6.1.13 Suppose you are told that the likelihood of a particular parameter value is 109

Is it possible to interpret this number in any meaningful way? Explain why or why not.
6.1.14 Suppose one statistician records a likelihood function as 2 for [0 1] while
another statistician records a likelihood function as 100 2 for [0 1] Explain why
these likelihood functions are effectively the same.

PROBLEMS

6.1.15 Show that T defined in Example 6.1.6 is a minimal sufficient statistic. (Hint:
Show that once you know the likelihood function, you can determine which of the two
possible values for T has occurred.)
6.1.16 Suppose that S 1 2 3 4 a b c , where the three probability distri
butions are given by the following table.

s 1 s 2 s 3 s 4
a 1 2 1 6 1 6 1 6
b 1 4 1 4 1 4 1 4
c 1 2 1 4 1 4 0

Determine a minimal sufficient statistic for this model. Is the minimal sufficient statis
tic in Example 6.1.6 sufficient for this model?
6.1.17 Suppose that x1 xn is a sample from the N 2

0 distribution where
R1 is unknown. Determine the form of likelihood intervals for this model.

6.1.18 Suppose that x1 xn Rn is a sample from f , where is un
known. Show that the order statistics x 1 x n comprise a sufficient statistic for
the model.
6.1.19 Determine a minimal sufficient statistic for a sample of n from the rate gamma
model, i.e.,

f x
0

0
x 0 1 exp x

for x 0 0 and where 0 0 is fixed.
6.1.20 Determine the form of a minimal sufficient statistic for a sample of size n from
the Uniform[0 ] model where 0

6.1.21 Determine the form of a minimal sufficient statistic for a sample of size n from
the Uniform[ 1 2] model where 1 2

6.1.22 For the locationscale normal model, establish that the point where the likeli
hood is maximized is given by x 2 as defined in Example 6.1.8. (Hint: Show that
the second derivative of ln L x 2 x , with respect to 2, is negative at 2 and then
argue that x 2 is the maximum.)
6.1.23 Suppose we have a sample of n from a Bernoulli distribution where
[0 0 5]. Determine a minimal sufficient statistic for this model. (Hint: It is easy to
establish the sufficiency of x , but this point will not maximize the likelihood when
x 0 5, so x cannot be obtained from the likelihood by maximization, as in Exercise
6.1.6. In general, consider the second derivative of the log of the likelihood at any point
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0 0 5 and note that knowing the likelihood means that we can compute any of
its derivatives at any values where these exist.)
6.1.24 Suppose we have a sample of n from the Multinomial 1 2 1 3 distri
bution, where [0 1 3] is unknown. Determine the form of the likelihood function
and show that x1 x2 is a minimal sufficient statistic where xi is the number of sample
values corresponding to an observation in the i th category. (Hint: Problem 6.1.23.)
6.1.25 Suppose we observe s from a statistical model with two densities, f1 and f2
Show that the likelihood ratio T s f1 s f2 s is a minimal sufficient statistic.
(Hint: Use the definition of sufficiency directly.)

CHALLENGES

6.1.26 Consider the locationscale gamma model, i.e.,

f x
1

0

x 0 1

exp
x 1

for x R1 0 and where 0 0 is fixed.
(a) Determine the minimal sufficient statistic for a sample of n when 0 1. (Hint:
Determine where the likelihood is positive and calculate the partial derivative of the
log of the likelihood with respect to .)
(b) Determine the minimal sufficient statistic for a sample of n when 0 1. (Hint:
Use Problem 6.1.18, the partial derivative of the log of the likelihood with respect to

, and determine where it is infinite.)

DISCUSSION TOPICS

6.1.27 How important do you think it is for a statistician to try to quantify how much
error there is in an inference drawn? For example, if an estimate is being quoted for
some unknown quantity, is it important that the statistician give some indication about
how accurate (or inaccurate) this inference is?

6.2 Maximum Likelihood Estimation
In Section 6.1, we introduced the likelihood function L s as a basis for making
inferences about the unknown true value We now begin to consider the specific
types of inferences discussed in Section 5.5.3 and start with estimation.

When we are interested in a point estimate of then a value s that maximizes
L s is a sensible choice, as this value is the best supported by the data, i.e.,

L s s L s (6.2.1)

for every

Definition 6.2.1 We call : S satisfying (6.2.1) for every a maximum
likelihood estimator, and the value s is called a maximum likelihood estimate,
or MLE for short.
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Notice that, if we use cL s as the likelihood function, for fixed c 0, then s
is also an MLE using this version of the likelihood. So we can use any version of the
likelihood to calculate an MLE.

EXAMPLE 6.2.1
Suppose the sample space is S 1 2 3 , the parameter space is 1 2 , and the
model is given by the following table.

s 1 s 2 s 3
f1 s 0 3 0 4 0 3
f2 s 0 1 0 7 0 2

Further suppose we observe s 1 So, for example, we could be presented with one of
two bowls of chips containing these proportions of chips labeled 1, 2, and 3. We draw
a chip, observe that it is labelled 1, and now want to make inferences about which bowl
we have been presented with.

In this case, the MLE is given by 1 1 since 0 3 L 1 1 0 1 L 2 1
If we had instead observed s 2, then 2 2; if we had observed s 3 then

3 1

Note that an MLE need not be unique. For example, in Example 6.2.1, if f2 was
defined by f2 1 0 f2 2 0 7 and f2 3 0 3 then an MLE is as given there,
but putting 3 2 also gives an MLE.

The MLE has a very important invariance property. Suppose we reparameterize a
model via a 1–1 function defined on . By this we mean that, instead of labelling the
individual distributions in the model using , we use :
For example, in Example 6.2.1, we could take 1 a and 2 b so that
a b So the model is now given by g : where g f for the unique

value such that We have a new parameter and a new parameter space
. Nothing has changed about the probability distributions in the statistical model,

only the way they are labelled. We then have the following result.

Theorem 6.2.1 If s is an MLE for the original parameterization and, if is a
1–1 function defined on , then s s is an MLE in the new parameter
ization.

PROOF If we select the likelihood function for the new parameterization to be
L s g s and the likelihood for the original parameterization to be L s

f s then we have

L s s g s s f s s L s s L s L s

for every This implies that L s s L s for every and
establishes the result.

Theorem 6.2.1 shows that no matter how we parameterize the model, the MLE behaves
in a consistent way under the reparameterization. This is an important property, and
not all estimation procedures satisfy this.
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6.2.1 Computation of the MLE

An important issue is the computation of MLEs. In Example 6.2.1, we were able to
do this by simply examining the table giving the distributions. With more complicated
models, this approach is not possible. In many situations, however, we can use the
methods of calculus to compute s For this we require that f s be a continuously
differentiable function of so that we can use optimization methods from calculus

Rather than using the likelihood function, it is often convenient to use the log
likelihood function.

Definition 6.2.2 For likelihood function L s , the loglikelihood function l s
defined on , is given by l s ln L s

Note that ln x is a 1–1 increasing function of x 0 and this implies that L s s
L s for every if and only if l s s l s for every So we
can maximize l s instead when computing an MLE. The convenience of the log
likelihood arises from the fact that, for a sample s1 sn from f : the
likelihood function is given by

L s1 sn

n

i 1

f si

whereas the loglikelihood is given by

l s1 sn

n

i 1

ln f si

It is typically much easier to differentiate a sum than a product.
Because we are going to be differentiating the loglikelihood, it is convenient to

give a name to this derivative. We define the score function S s of a model to
be the derivative of its loglikelihood function whenever this exists. So when is a
onedimensional realvalued parameter, then

S s
l s

provided this partial derivative exists (see Appendix A.5 for a definition of partial deriv
ative). We restrict our attention now to the situation in which is onedimensional.

To obtain the MLE, we must then solve the score equation

S s 0 (6.2.2)

for Of course, a solution to (6.2.2) is not necessarily an MLE, because such a point
may be a local minimum or only a local maximum rather than a global maximum. To
guarantee that a solution s is at least a local maximum, we must also check that

S s

s

2l s
2

s
0 (6.2.3)
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Then we must evaluate l s at each local maximum in order to determine the global
maximum.

Let us compute some MLEs using calculus.

EXAMPLE 6.2.2 Location Normal Model
Consider the likelihood function

L x1 xn exp
n

2 2
0

x 2

obtained in Example 6.1.4 for a sample x1 xn from the N 2
0 model where

R1 is unknown and 2
0 is known. The loglikelihood function is then

l x1 xn
n

2 2
0

x 2

and the score function is

S x1 xn
n

2
0

x

The score equation is given by

n
2
0

x 0

Solving this for gives the unique solution x1 xn x To check that this is a
local maximum, we calculate

S x1 xn

x

n
2
0

which is negative, and thus indicates that x is a local maximum. Because we have only
one local maximum, it is also the global maximum and we have indeed obtained the
MLE.

EXAMPLE 6.2.3 Exponential Model
Suppose that a lifetime is known to be distributed Exponential 1 where 0 is
unknown. Then based on a sample x1 xn , the likelihood is given by

L x1 xn
1
n exp

nx

the loglikelihood is given by

l x1 xn n ln
nx

and the score function is given by

S x1 xn
n nx

2
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Solving the score equation gives x1 xn x and because x 0,

S x1 xn

x

n
2

2
nx

3
x

n

x2
0

so x is indeed the MLE.

In both examples just considered, we were able to derive simple formulas for the
MLE. This is not always possible. Consider the following example.

EXAMPLE 6.2.4
Consider a population in which individuals are classified according to one of three types
labelled 1, 2, and 3, respectively. Further suppose that the proportions of individuals
falling in these categories are known to follow the law p1 p2

2 p3 1
2 where

[0 5 1 2] [0 0 618 03]

is unknown. Here, pi denotes the proportion of individuals in the i th class Note that
the requirement that 0 2 1 imposes the upper bound on and the precise
bound is obtained by solving 2 1 0 for using the formula for the roots
of a quadratic. Relationships like this, amongst the proportions of the distribution of
a categorical variable, often arise in genetics. For example, the categorical variable
might serve to classify individuals into different genotypes.

For a sample of n (where n is small relative to the size of the population so that we
can assume observations are i.i.d.), the likelihood function is given by

L x1 xn
x1 2x2 1 2 x3

where xi denotes the sample count in the i th class. The loglikelihood function is then

l s1 sn x1 2x2 ln x3 ln 1 2 ,

and the score function is

S s1 sn
x1 2x2 x3 1 2

1 2
.

The score equation then leads to a solution being a root of the quadratic

x1 2x2 1 2 x3 2 2

x1 2x2 2x3
2 x1 2x2 x3 x1 2x2 .

Using the formula for the roots of a quadratic, we obtain

1

2 x1 2x2 2x3

x1 2x2 x3 5x2
1 20x1x2 10x1x3 20x2

2 20x2x3 x2
3

Notice that the formula for the roots does not determine the MLE in a clear way. In
fact, we cannot even tell if either of the roots lies in [0 1]! So there are four possible
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values for the MLE at this point — either of the roots or the boundary points 0 and
0 61803.

We can resolve this easily in an application by simply numerically evaluating the
likelihood at the four points. For example, if x1 70 x2 5 and x3 25 then the
roots are 1 28616 and 0 47847 so it is immediate that the MLE is x1 xn
0 47847 We can see this graphically in the plot of the loglikelihood provided in Fig
ure 6.2.1.
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 lnL

Figure 6.2.1: The loglikelihood function in Example 6.2.4 when x1 70 x2 5 and
x3 25.

In general, the score equation (6.2.2) must be solved numerically, using an iterative
routine like Newton–Raphson. Example 6.2.4 demonstrates that we must be very care
ful not to just accept a solution from such a procedure as the MLE, but to check that the
fundamental defining property (6.2.1) is satisfied. We also have to be careful that the
necessary smoothness conditions are satisfied so that calculus can be used. Consider
the following example.

EXAMPLE 6.2.5 Uniform[0 ] Model
Suppose x1 xn is a sample from the Uniform[0 ] model where 0 is un
known. Then the likelihood function is given by

L x1 xn

n xi for i 1 n
0 xi for some i
n I[x n

where x n is the largest order statistic from the sample. In Figure 6.2.2, we have
graphed this function when n 10 and x n 1 916 Notice that the maximum clearly
occurs at x n ; we cannot obtain this value via differentiation, as L x1 xn is not
differentiable there.
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Figure 6.2.2: Plot of the likelihood function in Example 6.2.5 when n 10 and
x 10 1 916.

The lesson of Examples 6.2.4 and 6.2.5 is that we have to be careful when com
puting MLEs. We now look at an example of a twodimensional problem in which the
MLE can be obtained using onedimensional methods.

EXAMPLE 6.2.6 LocationScale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown. The parameter in this model is twodimensional, given by
2 R1 0 The likelihood function is then given by

L 2 x1 xn 2 2 n 2 exp
n

2 2 x 2 exp
n 1

2 2 s2

as shown in Example 6.1.8. The loglikelihood function is given by

l 2 x1 xn
n

2
ln 2

n

2
ln 2 n

2 2
x 2 n 1

2 2
s2 (6.2.4)

As discussed in Example 6.1.8, it is clear that, for fixed 2, (6.2.4) is maximized, as a
function of by x . Note that this does not involve 2, so this must be the first
coordinate of the MLE.

Substituting x into (6.2.4), we obtain

n

2
ln 2

n

2
ln 2 n 1

2 2
s2, (6.2.5)

and the second coordinate of the MLE must be the value of 2 that maximizes (6.2.5).
Differentiating (6.2.5) with respect to 2 and setting this equal to 0 gives

n

2 2

n 1

2 2 2
s2 0 (6.2.6)
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Solving (6.2.6) for 2 leads to the solution

2 n 1

n
s2 1

n

n

i 1

xi x 2

Differentiating (6.2.6) with respect to 2 and substituting in 2 we see that the second
derivative is negative, hence 2 is a point where the maximum is attained.

Therefore, we have shown that the MLE of 2 is given by

x
1

n

n

i 1

xi x 2

In the following section we will show that this result can also be obtained using multi
dimensional calculus.

So far we have talked about estimating only the full parameter for a model. What
about estimating a general characteristic of interest for some function defined
on the parameter space ? Perhaps the obvious answer here is to use the estimate

s s where s is an MLE of This is sometimes referred to as the plug
in MLE of Notice, however, that the plugin MLE is not necessarily a true MLE, in
the sense that we have a likelihood function for a model indexed by and that takes
its maximum value at s If is a 1–1 function defined on then Theorem 6.2.1
establishes that s is a true MLE but not otherwise.

If is not 1–1, then we can often find a complementing function defined on so
that is a 1–1 function of . Then, by Theorem 6.2.1,

s s s s

is the joint MLE, but s is still not formally an MLE. Sometimes a plugin MLE can
perform badly, as it ignores the information in s about the true value of An
example illustrates this phenomenon.

EXAMPLE 6.2.7 Sum of Squared Means
Suppose that Xi N i 1 for i 1 n and that these are independent with the

i completely unknown. So here, 1 n and Rn. Suppose we want
to estimate 2

1
2
n.

The loglikelihood function is given by

l x1 xn
1

2

n

i 1

xi i
2.

Clearly this is maximized by x1 xn x1 xn . So the plugin MLE of
is given by n

i 1 x2
i .

Now observe that

E
n

i 1

X2
i

n

i 1

E X2
i

n

i 1

Var X i
2
i n ,
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where E g refers to the expectation of g s when s f So when n is large, it is
likely that is far from the true value. An immediate improvement in this estimator is
to use n

i 1 x2
i n instead.

There have been various attempts to correct problems such as the one illustrated in
Example 6.2.7. Typically, these involve modifying the likelihood in some way. We do
not pursue this issue further in this text but we do advise caution when using plugin
MLEs. Sometimes, as in Example 6.2.6, where we estimate by x and 2 by s2, they
seem appropriate; other times, as in Example 6.2.7, they do not.

6.2.2 The Multidimensional Case (Advanced)

We now consider the situation in which 1 k Rk is multidimensional,
i.e., k 1 The likelihood and loglikelihood are then defined just as before, but the
score function is now given by

S s

l s
1

l s
2

l s
k

provided all these partial derivatives exist. For the score equation, we get

l s
1

l s
2

l s
k

0
0

0

and we must solve this kdimensional equation for 1 k This is often much
more difficult than in the onedimensional case, and we typically have to resort to
numerical methods.

A necessary and sufficient condition for 1 k to be a local maximum, when
the loglikelihood has continuous second partial derivatives, is that the matrix of second
partial derivatives of the loglikelihood, evaluated at 1 k , must be negative
definite (equivalently, all of its eigenvalues must be negative). We then must evaluate
the likelihood at each of the local maxima obtained to determine the global maximum
or MLE.

We will not pursue the numerical computation of MLEs in the multidimensional
case any further here, but we restrict our attention to a situation in which we carry out
the calculations in closed form.

EXAMPLE 6.2.8 LocationScale Normal Model
We determined the loglikelihood function for this model in (6.2.4). The score function
is then
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S 2 x1 xn

S x1 xn

S x1 xn
2

n
2 x

n
2 2

n
2 4 x 2 n 1

2 4 s2 .

The score equation is

n
2 x

n
2 2

n
2 4 x 2 n 1

2 4 s2
0
0

,

and the first of these equations immediately implies that x Substituting this value
for into the second equation and solving for 2 leads to the solution

2 n 1

n
s2 1

n

n

i 1

xi x 2

From Example 6.2.6, we know that this solution does indeed give the MLE.

Summary of Section 6.2

An MLE (maximum likelihood estimator) is a value of the parameter that max
imizes the likelihood function. It is the value of that is best supported by the
model and data.

We can often compute an MLE by using the methods of calculus. When ap
plicable, this leads to solving the score equation for either explicitly or using
numerical algorithms. Always be careful to check that these methods are ap
plicable to the specific problem at hand. Furthermore, always check that any
solution to the score equation is a maximum and indeed an absolute maximum.

EXERCISES

6.2.1 Suppose that S 1 2 3 4 a b , where the two probability distribu
tions are given by the following table.

s 1 s 2 s 3 s 4
a 1 2 1 6 1 6 1 6
b 1 3 1 3 1 3 0

Determine the MLE of for each possible data value.
6.2.2 If x1 xn is a sample from a Bernoulli distribution, where [0 1] is
unknown, then determine the MLE of .
6.2.3 If x1 xn is a sample from a Bernoulli distribution, where [0 1] is
unknown, then determine the MLE of 2.
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6.2.4 If x1 xn is a sample from a Poisson distribution, where 0 is
unknown, then determine the MLE of .
6.2.5 If x1 xn is a sample from a Gamma 0 distribution, where 0 0 and

0 is unknown, then determine the MLE of .
6.2.6 Suppose that x1 xn is the result of independent tosses of a coin where we
toss until the first head occurs and where the probability of a head on a single toss is

0 1]. Determine the MLE of .
6.2.7 If x1 xn is a sample from a Beta 1 distribution (see Problem 2.4.24)
where 0 is unknown, then determine the MLE of . (Hint: Assume is a
differentiable function of )
6.2.8 If x1 xn is a sample from a Weibull distribution (see Problem 2.4.19),
where 0 is unknown, then determine the score equation for the MLE of .
6.2.9 If x1 xn is a sample from a Pareto distribution (see Problem 2.4.20),
where 0 is unknown, then determine the MLE of .

6.2.10 If x1 xn is a sample from a Lognormal distribution (see Problem
2.6.17), where 0 is unknown, then determine the MLE of .

6.2.11 Suppose you are measuring the volume of a cubic box in centimeters by taking
repeated independent measurements of one of the sides. Suppose it is reasonable to as
sume that a single measurement follows an N 2

0 distribution, where is unknown
and 2

0 is known. Based on a sample of measurements, you obtain the MLE of as 3.2
cm. What is your estimate of the volume of the box? How do you justify this in terms
of the likelihood function?
6.2.12 If x1 xn is a sample from an N 0

2 distribution, where 2 0 is
unknown and 0 is known, then determine the MLE of 2. How does this MLE differ
from the plugin MLE of 2 computed using the locationscale normal model?

6.2.13 Explain why it is not possible that the function 3 exp 5 3 2 for R1

is a likelihood function.
6.2.14 Suppose you are told that a likelihood function has local maxima at the points

2 2 4 6 and 9.2, as determined using calculus. Explain how you would determine
the MLE.
6.2.15 If two functions of are equivalent versions of the likelihood when one is a
positive multiple of the other, then when are two loglikelihood functions equivalent?
6.2.16 Suppose you are told that the likelihood of at 2 is given by 1 4 Is this
the probability that 2? Explain why or why not.

COMPUTER EXERCISES

6.2.17 A likelihood function is given by exp 1 2 2 3 exp 2 2 2
for R1 Numerically approximate the MLE by evaluating this function at 1000
equispaced points in 10 10] Also plot the likelihood function.

6.2.18 A likelihood function is given by exp 1 2 2 3 exp 5 2 2
for R1 Numerically approximate the MLE by evaluating this function at 1000
equispaced points in 10 10] Also plot the likelihood function. Comment on the
form of likelihood intervals.
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PROBLEMS

6.2.19 (Hardy–Weinberg law) The Hardy–Weinberg law in genetics says that the pro
portions of genotypes AA, Aa, and aa are 2, 2 1 , and 1 2, respectively,
where [0 1] Suppose that in a sample of n from the population (small relative
to the size of the population), we observe x1 individuals of type AA, x2 individuals of
type Aa and x3 individuals of type aa

(a) What distribution do the counts X1 X2 X3 follow?
(b) Record the likelihood function, the loglikelihood function, and the score function
for

(c) Record the form of the MLE for .
6.2.20 If x1 xn is a sample from an N 1 distribution where R1 is un
known, determine the MLE of the probability content of the interval 1 . Justify
your answer.
6.2.21 If x1 xn is a sample from an N 1 distribution where 0 is un
known, determine the MLE of .
6.2.22 Prove that, if s is the MLE for a model for response s and if T is a sufficient
statistic for the model, then s is also the MLE for the model for T s .
6.2.23 Suppose that X1 X2 X3 Multinomial n 1 2 3 (see Example 6.1.5),
where

1 2 3 : 0 i 1 1 2 3 1

and we observe X1 X2 X3 x1 x2 x3 .
(a) Determine the MLE of 1 2 3 .
(b) What is the plugin MLE of 1

2
2

2
3?

6.2.24 If x1 xn is a sample from a Uniform[ 1 2] distribution with

1 2 R2 : 1 2

determine the MLE of 1 2 . (Hint: You cannot use calculus. Instead, directly
determine the maximum over 1 when 2 is fixed, and then vary 2.)

COMPUTER PROBLEMS

6.2.25 Suppose the proportion of lefthanded individuals in a population is . Based
on a simple random sample of 20, you observe four lefthanded individuals.
(a) Assuming the sample size is small relative to the population size, plot the log
likelihood function and determine the MLE.

(b) If instead the population size is only 50, then plot the loglikelihood function and
determine the MLE. (Hint: Remember that the number of lefthanded individuals fol
lows a hypergeometric distribution. This forces to be of the form i 50 for some
integer i between 4 and 34. From a tabulation of the loglikelihood, you can obtain the
MLE.)
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CHALLENGES

6.2.26 If x1 xn is a sample from a distribution with density

f x 1 2 exp x

for x R1 and where R1 is unknown, then determine the MLE of . (Hint:
You cannot use calculus. Instead, maximize the loglikelihood in each of the intervals

x 1 , [x 1 x 2 etc.).

DISCUSSION TOPICS

6.2.27 One approach to quantifying the uncertainty in an MLE s is to report the
MLE together with a likelihood interval : L s cL s s for some constant
c 0 1 What problems do you see with this approach? In particular, how would
you choose c?

6.3 Inferences Based on the MLE
In Table 6.3.1. we have recorded n 66 measurements of the speed of light (pas
sage time recorded as deviations from 24 800 nanoseconds between two mirrors 7400
meters apart) made by A. A. Michelson and S. Newcomb in 1882.

28 26 33 24 34 44 27 16 40 2 29
22 24 21 25 30 23 29 31 19 24 20
36 32 36 28 25 21 28 29 37 25 28
26 30 32 36 26 30 22 36 23 27 27
28 27 31 27 26 33 26 32 32 24 39
28 24 25 32 25 29 27 28 29 16 23

Table 6.3.1: Speed of light measurements.

Figure 6.3.1 is a boxplot of these data with the variable labeled as x . Notice there
are two outliers at x 2 and x 44 We will presume there is something very
special about these observations and discard them for the remainder of our discussion.
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Figure 6.3.1: Boxplot of the data values in Table 6.3.1.
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Figure 6.3.2 presents a histogram of these data minus the two data values identified
as outliers. Notice that the histogram looks reasonably symmetrical, so it seems plau
sible to assume that these data are from an N 2 distribution for some values of
and 2 Accordingly, a reasonable statistical model for these data would appear to be
the locationscale normal model. In Chapter 9, we will discuss further how to assess
the validity of the normality assumption.
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Figure 6.3.2: Density histogram of the data in Table 6.3.1 with the outliers removed.

If we accept that the locationscale normal model makes sense, the question arises
concerning how to make inferences about the unknown parameters and 2. The
purpose of this section is to develop methods for handling problems like this. The
methods developed in this section depend on special features of the MLE in a given
context. In Section 6.5, we develop a more general approach based on the MLE.

6.3.1 Standard Errors, Bias, and Consistency

Based on the justification for the likelihood, the MLE s seems like a natural estimate
of the true value of Let us suppose that we will then use the plugin MLE estimate

s s for a characteristic of interest (e.g., might be the first
quartile or the variance).

In an application, we want to know how reliable the estimate s is. In other
words, can we expect s to be close to the true value of , or is there a reasonable
chance that s is far from the true value? This leads us to consider the sampling
distribution of s , as this tells us how much variability there will be in s under
repeated sampling from the true distribution f Because we do not know what the true
value of is, we have to look at the sampling distribution of s for every

To simplify this, we substitute a numerical measure of how concentrated these sam
pling distributions are about Perhaps the most commonly used measure of the
accuracy of a general estimator T s of i.e., we are not restricting ourselves to
plugin MLEs, is the meansquared error.
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Definition 6.3.1 The meansquared error (MSE) of the estimator T of R1

is given by MSE T E T 2 for each

Clearly, the smaller MSE T is, the more concentrated the sampling distribution of
T s is about the value

Looking at MSE T as a function of gives us some idea of how reliable T s
is as an estimate of the true value of Because we do not know the true value of

and thus the true value of MSE T statisticians record an estimate of the mean
squared error at the true value. Often

MSE s T

is used for this. In other words, we evaluate MSE T at s as a measure of the
accuracy of the estimate T s .

The following result gives an important identity for the MSE.

Theorem 6.3.1 If R1 and T is a realvalued function defined on S such
that E T exists, then

MSE T Var T E T 2 (6.3.1)

PROOF We have

E T 2 E T E T E T 2

E T E T 2

2E T E T E T E T 2

Var T E T 2

because

E T E T E T E T E T E T

0

The second term in (6.3.1) is the square of the bias in the estimator T

Definition 6.3.2 The bias in the estimator T of is given by E T
whenever E T exists. When the bias in an estimator T is 0 for every , we call T
an unbiased estimator of , i.e., T is unbiased whenever E T for every

Note that when the bias in an estimator is 0, then the MSE is just the variance.
Unbiasedness tells us that, in a sense, the sampling distribution of the estimator is

centered on the true value. For unbiased estimators,

MSE s T Var s T
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and
Sd s T Var s T

is an estimate of the standard deviation of T and is referred to as the standard error
of the estimate T s . As a principle of good statistical practice, whenever we quote
an estimate of a quantity, we should also provide its standard error — at least when
we have an unbiased estimator, as this tells us something about the accuracy of the
estimate.

We consider some examples.

EXAMPLE 6.3.1 Location Normal Model
Consider the likelihood function

L x1 xn exp
n

2 2
0

x 2

obtained in Example 6.1.4 for a sample x1 xn from the N 2
0 model, where

R1 is unknown and 2
0 0 is known. Suppose we want to estimate The MLE

of was computed in Example 6.2.2 to be x
In this case, we can determine the sampling distribution of the MLE exactly from

the results in Section 4.6. We have that X N 2
0 n and so X is unbiased, and

MSE X Var X
2
0

n

which is independent of So we do not need to estimate the MSE in this case The
standard error of the estimate is given by

Sd X 0

n

Note that the standard error decreases as the population variance 2
0 decreases and as

the sample size n increases

EXAMPLE 6.3.2 Bernoulli Model
Suppose x1 xn is a sample from a Bernoulli distribution where [0 1] is
unknown. Suppose we wish to estimate . The likelihood function is given by

L x1 xn
nx 1 n 1 x

and the MLE of is x (Exercise 6.2.2), the proportion of successes in the n perfor
mances. We have E X for every [0 1] so the MLE is an unbiased estimator
of

Therefore,

MSE X Var X
1

n
and the estimated MSE is

MSE X
x 1 x

n
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The standard error of the estimate x is then given by

Sd X
x 1 x

n

Note how this standard error is quite different from the standard error of x in Example
6.3.1.

EXAMPLE 6.3.3 Application of the Bernoulli Model
A polling organization is asked to estimate the proportion of households in the pop
ulation in a specific district who will participate in a proposed recycling program by
separating their garbage into various components. The pollsters decided to take a sam
ple of n 1000 from the population of approximately 1.5 million households (we will
say more on how to choose this number later).

Each respondent will indicate either yes or no to a question concerning their par
ticipation. Given that the sample size is small relative to the population size, we can
assume that we are sampling from a Bernoulli model where [0 1] is the pro
portion of individuals in the population who will respond yes.

After conducting the sample, there were 790 respondents who replied yes and 210
who responded no. Therefore, the MLE of is

x
790

1000
0 79

and the standard error of the estimate is

x 1 x

1000

0 79 1 0 79

1000
0 01288

Notice that it is not entirely clear how we should interpret the value 0 01288 Does
it mean our estimate 0 79 is highly accurate, modestly accurate, or not accurate at all?
We will discuss this further in Section 6.3.2.

EXAMPLE 6.3.4 LocationScale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution where R1

and 2 0 are unknown. The parameter in this model is given by 2

R1 0 . Suppose that we want to estimate 2 i.e., just the first
coordinate of the full model parameter.

In Example 6.1.8, we determined that the likelihood function is given by

L 2 x1 xn 2 2 n 2 exp
n

2 2
x 2 exp

n 1

2 2
s2

In Example 6.2.6 we showed that the MLE of is

x
n 1

n
s2

Furthermore, from Theorem 4.6.6, the sampling distribution of the MLE is given by
X N 2 n independent of n 1 S2 2 2 n 1 .
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The plugin MLE of is x This estimator is unbiased and has

MSE X Var X
2

n

Since 2 is unknown we estimate MSE X by

MSE X
n 1

n s2

n

n 1

n2
s2 s2

n

The value s2 n is commonly used instead of MSE X , because (Corollary 4.6.2)

E S2 2

i.e., S2 is an unbiased estimator of 2. The quantity s n is referred to as the standard
error of the estimate x

EXAMPLE 6.3.5 Application of the LocationScale Normal Model
In Example 5.5.6, we have a sample of n 30 heights (in inches) of students. We
calculated x 64 517 as our estimate of the mean population height . In addition, we
obtained the estimate s 2 379 of Therefore, the standard error of the estimate x
64 517 is s 30 2 379 30 0 43434 As in Example 6.3.3, we are faced with
interpreting exactly what this number means in terms of the accuracy of the estimate.

Consistency of Estimators

Perhaps the most important property that any estimator T of a characteristic can
have is that it be consistent. Broadly speaking, this means that as we increase the
amount of data we collect, then the sequence of estimates should converge to the true
value of . To see why this is a necessary property of any estimation procedure,
consider the finite population sampling context discussed in Section 5.4.1. When the
sample size is equal to the population size, then of course we have the full information
and can compute exactly every characteristic of the distribution of any measurement
defined on the population. So it would be an error to use an estimation procedure for a
characteristic of interest that did not converge to the true value of the characteristic as
we increase the sample size.

Fortunately, we have already developed the necessary mathematics in Chapter 4 to
define precisely what we mean by consistency.

Definition 6.3.3 A sequence of of estimates T1 T2 is said to be consistent (in

probability) for if Tn
P

as n for every A sequence of
estimates T1 T2 is said to be consistent (almost surely) for if Tn

a s

as n for every

Notice that Theorem 4.3.1 says that if the sequence is consistent almost surely, then it
is also consistent in probability.

Consider now a sample x1 xn from a model f : and let Tn
n 1 n

i 1 xi be the nth sample average as an estimator of E X which
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we presume exists. The weak and strong laws of large numbers immediately give us
the consistency of the sequence T1 T2 for We see immediately that this gives
the consistency of some of the estimators discussed in this section. In fact, Theorem
6.5.2 gives the consistency of the MLE in very general circumstances. Furthermore,
the plugin MLE will also be consistent under weak restrictions on Accordingly, we
can think of maximum likelihood estimation as doing the right thing in a problem at
least from the point of view of consistency.

More generally, we should always restrict our attention to statistical procedures
that perform correctly as the amount of data increases. Increasing the amount of data
means that we are acquiring more information and thus reducing our uncertainty so that
in the limit we know everything. A statistical procedure that was inconsistent would be
potentially misleading.

6.3.2 Confidence Intervals

While the standard error seems like a reasonable quantity for measuring the accuracy
of an estimate of , its interpretation is not entirely clear at this point. It turns out
that this is intrinsically tied up with the idea of a confidence interval.

Consider the construction of an interval

C s l s u s

based on the data s that we believe is likely to contain the true value of To do
this, we have to specify the lower endpoint l s and upper endpoint u s for each data
value s How should we do this?

One approach is to specify a probability [0 1] and then require that random
interval C have the confidence property, as specified in the following definition.

Definition 6.3.4 An interval C s l s u s is a confidence interval for
if P C s P l s u s for every

We refer to as the confidence level of the interval.

So C is a confidence interval for if, whenever we are sampling from P the
probability that is in the interval is at least equal to For a given data set, such
an interval either covers or it does not. So note that it is not correct to say that
a particular instance of a confidence region has probability of containing the true
value of .

If we choose to be a value close to 1, then we are highly confident that the
true value of is in C s Of course, we can always take C s R1 (a very big
interval!), and we are then 100% confident that the interval contains the true value. But
this tells us nothing we did not already know. So the idea is to try to make use of the
information in the data to construct an interval such that we have a high confidence,
say, 0 95 or 0 99 that it contains the true value and is not any longer than
necessary. We then interpret the length of the interval as a measure of how accurately
the data allow us to know the true value of
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zConfidence Intervals

Consider the following example, which provides one approach to the construction of
confidence intervals.

EXAMPLE 6.3.6 Location Normal Model and zConfidence Intervals
Suppose we have a sample x1 xn from the N 2

0 model, where R1 is
unknown and 2

0 0 is known. The likelihood function is as specified in Example
6.3.1. Suppose we want a confidence interval for

The reasoning that underlies the likelihood function leads naturally to the following
restriction for such a region: If 1 C x1 xn and

L 2 x1 xn L 1 x1 xn

then we should also have 2 C x1 xn . This restriction is implied by the like
lihood because the model and the data support 2 at least as well as 1 Thus, if we
conclude that 1 is a plausible value, so is 2

Therefore, C x1 xn is of the form

C x1 xn : L x1 xn k x1 xn

for some k x1 xn i.e., C x1 xn is a likelihood interval for . Then

C x1 xn : exp
n

2 2
0

x 2 k x1 xn

:
n

2 2
0

x 2 ln k x1 xn

: x 2 2 2
0

n
ln k x1 xn

x k x1 xn
0

n
x k x1 xn

0

n

where k x1 xn 2 ln k x1 xn
We are now left to choose k or equivalently k , so that the interval C is a 

confidence interval for Perhaps the simplest choice is to try to choose k so that
k x1 xn is constant and is such that the interval as short as possible. Because

Z
X

0 n
N 0 1 (6.3.2)

we have

P C x1 xn P X k 0

n
X k 0

n

P k
X

0 n
c P

X

0 n
k

1 2 1 k (6.3.3)
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for every R1 where is the N 0 1 cumulative distribution function. We have
equality in (6.3.3) whenever

k
1

2
and so k z 1 2 where z denotes the th quantile of the N 0 1 distribution.
This is the smallest constant k satisfying (6.3.3).

We have shown that the likelihood interval given by

x z 1 2
0

n
x z 1 2

0

n
(6.3.4)

is an exact confidence interval for As these intervals are based on the zstatistic,
given by (6.3.2), they are called zconfidence intervals. For example, if we take
0 95 then 1 2 0 975 and, from a statistical package (or Table D.2 in Appen
dix D), we obtain z0 975 1 96 Therefore, in repeated sampling, 95% of the intervals
of the form

x 1 96 0

n
x 1 96 0

n
will contain the true value of .

This is illustrated in Figure 6.3.3. Here we have plotted the upper and lower end
points of the 0 95confidence intervals for for each of N 25 samples of size
n 10 generated from an N 0 1 distribution. The theory says that when N is large,
approximately 95% of these intervals will contain the true value 0 In the plot,
coverage means that the lower endpoint (denoted by ) must be below the horizontal
line at 0 and that the upper endpoint (denoted by ) must be above this horizontal line.
We see that only the fourth and twentythird confidence intervals do not contain 0, so
23 25 92% of the intervals contain 0. As N , this proportion will converge to
0.95.
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Figure 6.3.3: Plot of 0.95confidence intervals for 0 (lower endpoint upper endpoint
) for N 25 samples of size n 10 from an N 0 1 distribution.

Notice that interval (6.3.4) is symmetrical about x . Accordingly, the halflength of
this interval,

z 1 2
0

n
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is a measure of the accuracy of the estimate x . The halflength is often referred to as
the margin of error.

From the margin of error, we now see how to interpret the standard error; the stan
dard error controls the lengths of the confidence intervals for the unknown For ex
ample, we know that with probability approximately equal to 1 (actually 0 9974),
the interval [x 3 0 n] contains the true value of .

Example 6.3.6 serves as a standard example for how confidence intervals are often
constructed in statistics. Basically, the idea is that we take an estimate and then look at
the intervals formed by taking symmetrical intervals around the estimate via multiples
of its standard error. We illustrate this via some further examples.

EXAMPLE 6.3.7 Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli distribution where [0 1]
is unknown and we want a confidence interval for . Following Example 6.3.2, we
have that the MLE is x (see Exercise 6.2.2) and the standard error of this estimate is

x 1 x

n
For this model, likelihood intervals take the form

C x1 xn : nx 1 n 1 x k x1 xn

for some k x1 xn Again restricting to constant k we see that to determine these
intervals, we have to find the roots of equations of the form

nx 1 n 1 x k x1 xn

While numerical rootfinding methods can handle this quite easily, this approach is not
very tractable when we want to find the appropriate value of k x1 xn to give a

confidence interval.
To avoid these computational complexities, it is common to use an approximate

likelihood and confidence interval based on the central limit theorem. The central limit
theorem (see Example 4.4.9) implies that

n X

1
D

N 0 1

as n . Furthermore, a generalization of the central limit theorem (see Section
4.4.2), shows that

Z
n X

X 1 X

D
N 0 1

Therefore, we have

lim
n

P z 1 2

n X

X 1 X
z 1 2

lim
n

P X z 1 2

X 1 X

n
X z 1 2

X 1 X

n
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and

x z 1 2

x 1 x

n
x z 1 2

x 1 x

n
(6.3.5)

is an approximate confidence interval for Notice that this takes the same form as
the interval in Example 6.3.6, except that the standard error has changed.

For example, if we want an approximate 0.95confidence interval for in Example
6.3.3, then based on the observed x 0 79 we obtain

0 79 1 96
0 79 1 0 79

1000
[0 76475 0 81525]

The margin of error in this case equals 0 025245 so we can conclude that we know
the true proportion with reasonable accuracy based on our sample. Actually, it may be
that this accuracy is not good enough or is even too good. We will discuss methods for
ensuring that we achieve appropriate accuracy in Section 6.3.5.

The confidence interval derived here for is one of many that you will see rec
ommended in the literature. Recall that (6.3.5) is only an approximate confidence
interval for and n may need to be large for the approximation to be accurate. In
other words, the true confidence level for (6.3.5) will not equal and could be far from
that value if n is too small. In particular, if the true is near 0 or 1, then n may need
to be very large. In an actual application, we usually have some idea of a small range
of possible values a population proportion can take. Accordingly, it is advisable to
carry out some simulation studies to assess whether or not (6.3.5) is going to provide
an acceptable approximation for in that range (see Computer Exercise 6.3.21).

tConfidence Intervals

Now we consider confidence intervals for in an N 2 model when we drop the
unrealistic assumption that we know the population variance.

EXAMPLE 6.3.8 LocationScale Normal Model and tConfidence Intervals
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown. The parameter in this model is given by 2

R1 0 . Suppose we want to form confidence intervals for 2 .
The likelihood function in this case is a function of two variables, and 2, and so

the reasoning we employed in Example 6.3.6 to determine the form of the confidence
interval is not directly applicable. In Example 6.3.4, we developed s n as the stan
dard error of the estimate x of . Accordingly, we restrict our attention to confidence
intervals of the form

C x1 xn x k
s

n
x k

s

n

for some constant k
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We then have

P 2 X k
S

n
X k

S

n
P 2 k

X

S n
k

P 2
X

S n
k 1 2 1 G k n 1

where G n 1 is the distribution function of

T
X

S n
(6.3.6)

Now, by Theorem 4.6.6,
X

n
N 0 1

independent of n 1 S2 2 2 n 1 . Therefore, by Definition 4.6.2,

T
X

n

n 1 S2

2

X

S n
t n 1

So if we take
k t 1 2 n 1

where t is the th quantile of the t distribution,

x t 1 2 n 1
s

n
x t 1 2 n 1

s

n

is an exact confidence interval for The quantiles of the t distributions are available
from a statistical package (or Table D.4 in Appendix D). As these intervals are based
on the tstatistic, given by (6.3.6), they are called tconfidence intervals.

These confidence intervals for tend to be longer than those obtained in Example
6.3.6, and this reects the greater uncertainty due to being unknown. When n 5,
then it can be shown that x 3s n is a 0 97confidence interval. When we replace s
by the true value of then x 3 n is a 0 9974confidence interval.

As already noted, the intervals x ks n are not likelihood intervals for So the
justification for using these must be a little different from that given in Example 6.3.6.
In fact, the likelihood is defined for the full parameter 2 , and it is not entirely
clear how to extract inferences from it when our interest is in a marginal parameter like

. There are a number of different attempts at resolving this issue. Here, however,
we rely on the intuitive reasonableness of these intervals. In Chapter 7, we will see
that these intervals also arise from another approach to inference, which reinforces our
belief that the use of these intervals is appropriate.

In Example 6.3.5, we have a sample of n 30 heights (in inches) of students. We
calculated x 64 517 as our estimate of with standard error s 30 0 43434.
Using software (or Table D.4), we obtain t0 975 29 2 0452 So a 0 95confidence
interval for is given by

[64 517 2 0452 0 43434 ] [63 629 65 405]
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The margin of error is 0 888 so we are very confident that the estimate x 64 517 is
within an inch of the true mean height.

6.3.3 Testing Hypotheses and PValues

As discussed in Section 5.5.3, another class of inference procedures is concerned with
what we call hypothesis assessment. Suppose there is a theory, conjecture, or hypoth
esis that specifies a value for a characteristic of interest say 0 Often
this hypothesis is written H0 : 0 and is referred to as the null hypothesis.

The word null is used because, as we will see in Chapter 10, the value specified
in H0 is often associated with a treatment having no effect. For example, if we want
to assess whether or not a proposed new drug does a better job of treating a particular
condition than a standard treatment does, the null hypothesis will often be equivalent
to the new drug providing no improvement. Of course, we have to show how this can
be expressed in terms of some characteristic of an unknown distribution, and we
will do so in Chapter 10.

The statistician is then charged with assessing whether or not the observed s is in ac
cord with this hypothesis. So we wish to assess the evidence in s for 0 being
true. A statistical procedure that does this can be referred to as a hypothesis assessment,
a test of significance, or a test of hypothesis. Such a procedure involves measuring how
surprising the observed s is when we assume H0 to be true. It is clear that s is surprising
whenever s lies in a region of low probability for each of the distributions specified by
the null hypothesis, i.e., for each of the distributions in the model for which 0
is true. If we decide that the data are surprising under H0, then this is evidence against
H0 This assessment is carried out by calculating a probability, called a Pvalue, so that
small values of the Pvalue indicate that s is surprising.

It is important to always remember that while a Pvalue is a probability, this prob
ability is a measure of surprise. Small values of the Pvalue indicate to us that a sur
prising event has occurred if the null hypothesis H0 was true. A large Pvalue is not
evidence that the null hypothesis is true. Moreover, a Pvalue is not the probability that
the null hypothesis is true. The power of a hypothesis assessment method (see Section
6.3.6) also has a bearing on how we interpret a Pvalue.

zTests

We now illustrate the computation and use of Pvalues via several examples.

EXAMPLE 6.3.9 Location Normal Model and the zTest
Suppose we have a sample x1 xn from the N 2

0 model, where R1 is
unknown and 2

0 0 is known, and we have a theory that specifies a value for the
unknown mean, say, H0 : 0 Note that, by Corollary 4.6.1, when H0 is true, the
sampling distribution of the MLE is given by X N 0

2
0 n .

So one method of assessing whether or not the hypothesis H0 makes sense is to
compare the observed value x with this distribution. If x is in a region of low probabil
ity for the N 0

2
0 n distribution, then this is evidence that H0 is false. Because the

density of the N 0
2
0 n distribution is unimodal, the regions of low probability for
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this distribution occur in its tails. The farther out in the tails x lies, the more surprising
this will be when H0 is true, and thus the more evidence we will have against H0.

In Figure 6.3.4, we have plotted a density of the MLE together with an observed
value x that lies far in the right tail of the distribution. This would clearly be a surprising
value from this distribution.

So we want to measure how far out in the tails of the N 0
2
0 n distribution the

value x is. We can do this by computing the probability of observing a value of x as
far, or farther, away from the center of the distribution under H0 as x . The center of
this distribution is given by 0. Because

Z
X 0

0 n
N 0 1 (6.3.7)

under H0 the Pvalue is then given by

P 0 X 0 x 0 P 0

X 0

0 n

x 0

0 n

2 1
x 0

0 n
,

where denotes the N 0 1 distribution function. If the Pvalue is small, then we
have evidence that x is a surprising value because this tells us that x is out in a tail of
the N 0

2
0 n distribution. Because this Pvalue is based on the statistic Z defined

in (6.3.7), this is referred to as the ztest procedure.

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

1.2

MLE

density

Figure 6.3.4: Plot of the density of the MLE in Example 6.3.9 when 0 3 2
0 1 and

n 10 together with the observed value x 4 2 ( )

EXAMPLE 6.3.10 Application of the zTest
We generated the following sample of n 10 from an N 26 4 distribution.

29 0651 27 3980 23 4346 26 3665 23 4994
28 6592 25 5546 29 4477 28 0979 25 2850
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Even though we know the true value of , let us suppose we do not and test the hypoth
esis H0 : 25 To assess this, we compute (using a statistical package to evaluate

) the Pvalue

2 1
x 0

0 n
2 1

26 6808 25

2 10

2 1 2 6576 0 0078

which is quite small. For example, if the hypothesis H0 is correct, then, in repeated
sampling, we would see data giving a value of x at least as surprising as what we have
observed only 0 78% of the time. So we conclude that we have evidence against H0
being true, which, of course, is appropriate in this case.

If you do not use a statistical package for the evaluation of 2 6576 then you
will have to use Table D.2 of Appendix D to get an approximation. For example,
rounding 2 6576 to 2 66, Table D.2 gives 2 66 0 9961 and the approximate
Pvalue is 2 1 0 9961 0 0078 In this case, the approximation is exact to four
decimal places.

EXAMPLE 6.3.11 Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli distribution, where
[0 1] is unknown, and we want to test H0 : 0 As in Example 6.3.7, when H0 is
true, we have

Z
n X 0

0 1 0

D
N 0 1

as n So we can test this hypothesis by computing the approximate Pvalue

P Z
n x 0

0 1 0
2 1

n x 0

0 1 0

when n is large.
As a specific example, suppose that a psychic claims the ability to predict the value

of a randomly tossed fair coin. To test this, a coin was tossed 100 times and the psy
chic’s guesses were recorded as successes or failures. A total of 54 successes were
observed.

If the psychic has no predictive ability, then we would expect the successes to occur
randomly, just as heads occur when we toss the coin. Therefore, we want to test the
null hypothesis that the probability of a success occurring is equal to 0 1 2. This
is equivalent to saying that the psychic has no predictive ability. The MLE is 0.54 and
the approximate Pvalue is given by

2 1
100 0 54 0 5

0 5 1 0 5
2 1 0 8 2 1 0 7881 0 4238

and we would appear to have no evidence that H0 is false, i.e., no reason to doubt that
the psychic has no predictive ability.

Often cutoff values like 0.05 or 0.01 are used to determine whether the results
of a test are significant or not. For example, if the Pvalue is less than 0.05, then
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the results are said to be statistically significant at the 5% level. There is nothing
sacrosanct about the 0.05 level, however, and different values can be used depending on
the application. For example, if the result of concluding that we have evidence against
H0 is that something very expensive or important will take place, then naturally we
might demand that the cutoff value be much smaller than 0.05.

When Is Statistical Significance Practically Significant?

It is also important to point out here the difference between statistical significance
and practical significance. Consider the situation in Example 6.3.9, when the true
value of is 1 0 but 1 is so close to 0 that, practically speaking, they are

indistinguishable. By the strong law of large numbers, we have that X
a s

1 as
n and therefore

X 0

0 n
a s

This implies that

2 1
X 0

0 n
a s

0

We conclude that, if we take a large enough sample size n we will inevitably conclude
that 0 because the Pvalue of the ztest goes to 0. Of course, this is correct
because the hypothesis is false.

In spite of this, we do not want to conclude that just because we have statistical sig
nificance, the difference between the true value and 0 is of any practical importance.
If we examine the observed absolute difference x 0 as an estimate of 0 ,
however, we will not make this mistake. If this absolute difference is smaller than some
threshold that we consider represents a practically significant difference, then even
if the Pvalue leads us to conclude that difference exists, we might conclude that no
difference of any importance exists. Of course, the value of is application dependent.
For example, in coin tossing, where we are testing 1 2 we might not care if the
coin is slightly unfair, say, 0 0 01 In testing the abilities of a psychic, as in Ex
ample 6.3.11, however, we might take much lower, as any evidence of psychic powers
would be an astounding finding. The issue of practical significance is something we
should always be aware of when conducting a test of significance.

Hypothesis Assessment via Confidence Intervals

Another approach to testing hypotheses is via confidence intervals. For example, if we
have a confidence interval C s for and 0 C s then this seems like clear
evidence against H0 : 0 at least when is close to 1. It turns out that in
many problems, the approach to testing via confidence intervals is equivalent to using
Pvalues with a specific cutoff for the Pvalue to determine statistical significance. We
illustrate this equivalence using the ztest and zconfidence intervals.
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EXAMPLE 6.3.12 An Equivalence Between zTests and zConfidence Intervals
We develop this equivalence by showing that obtaining a Pvalue less than 1 for
H0 : 0 is equivalent to 0 not being in a confidence interval for Observe
that

1 2 1
x 0

0 n

if and only if
x 0

0 n

1

2

This is true if and only if
x 0

0 n
z 1 2

which holds if and only if

0 x z 1 2
0

n
x z 1 2

0

n

This implies that the confidence interval for comprises those values 0 for which
the Pvalue for the hypothesis H0 : 0 is greater than 1 .

Therefore, the Pvalue, based on the zstatistic, for the null hypothesis H0 :

0, will be smaller than 1 if and only if 0 is not in the confidence interval
for derived in Example 6.3.6. For example, if we decide that for any Pvalues less
than 1 0 05 we will declare the results statistically significant, then we know
the results will be significant whenever the 0.95confidence interval for does not
contain 0 For the data of Example 6.3.10, a 0.95confidence interval is given by
[25 441 27 920]. As this interval does not contain 0 25 we have evidence against
the null hypothesis at the 0.05 level.

We can apply the same reasoning for tests about when we are sampling from a
Bernoulli model. For the data in Example 6.3.11, we obtain the 0.95confidence
interval

x z0 975
x 1 x

n
0 54 1 96

0 54 1 0 54

100
[0 44231 0 63769]

which includes the value 0 0 5. So we have no evidence against the null hypothesis
of no predictive ability for the psychic at the 0.05 level.

tTests

We now consider an example pertaining to the important locationscale normal model.

EXAMPLE 6.3.13 LocationScale Normal Model and tTests
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown, and suppose we want to test the null hypothesis H0 : 0
In Example 6.3.8, we obtained a confidence interval for This was based on the
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tstatistic given by (6.3.6). So we base our test on this statistic also. In fact, it can
be shown that the test we derive here is equivalent to using the confidence intervals to
assess the hypothesis as described in Example 6.3.12.

As in Example 6.3.8, we can prove that when the null hypothesis is true, then

T
X 0

S n
(6.3.8)

is distributed t n 1 . The t distributions are unimodal, with the mode at 0, and the
regions of low probability are given by the tails. So we test, or assess, this hypothesis
by computing the probability of observing a value as far or farther away from 0 as
(6.3.8). Therefore, the Pvalue is given by

P
0

2 T
x 0

s n
2 1 G

x 0

s n
n 1

where G n 1 is the distribution function of the t n 1 distribution. We then
have evidence against H0 whenever this probability is small. This procedure is called
the t test. Again, it is a good idea to look at the difference x 0 , when we conclude
that H0 is false, to determine whether or not the detected difference is of practical
importance.

Consider now the data in Example 6.3.10 and let us pretend that we do not know
or 2. Then we have x 26 6808 and s 4 8620 2 2050 so to test H0 : 25
the value of the tstatistic is

t
x 0

s n

26 6808 25

2 2050 10
2 4105

From a statistics package (or Table D.4) we obtain t0 975 9 2 2622 so we have
a statistically significant result at the 5% level and conclude that we have evidence
against H0 : 25 Using a statistical package, we can determine the precise value
of the Pvalue to be 0.039 in this case.

OneSided Tests

All the tests we have discussed so far in this section for a characteristic of interest
have been twosided tests. This means that the null hypothesis specified the value of

to be a single value 0 Sometimes, however, we want to test a null hypothesis
of the form H0 : 0 or H0 : 0 To carry out such tests, we use
the same test statistics as we have developed in the various examples here but compute
the Pvalue in a way that reects the onesided nature of the null. These are known as
onesided tests. We illustrate a onesided test using the location normal model.

EXAMPLE 6.3.14 OneSided Tests
Suppose we have a sample x1 xn from the N 2

0 model, where R1 is
unknown and 2

0 0 is known. Suppose further that it is hypothesized that H0 :

0 is true, and we wish to assess this after observing the data.
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We will base our test on the zstatistic

Z
X 0

0 n

X 0

0 n

X

0 n
0

0 n

So Z is the sum of a random variable having an N 0 1 distribution and the constant
n 0 0 which implies that

Z N 0

0 n
1 .

Note that
0

0 n
0

if and only if H0 is true.
This implies that, when the null hypothesis is false, we will tend to see values of

Z in the right tail of the N 0 1 distribution; when the null hypothesis is true, we will
tend to see values of Z that are reasonable for the N 0 1 distribution, or in the left tail
of this distribution. Accordingly, to test H0 we compute the Pvalue

P Z
x 0

0 n
1

x 0

0 n

with Z N 0 1 and conclude that we have evidence against H0 when this is small.
Using the same reasoning, the Pvalue for the null hypothesis H0 : 0 equals

P Z
x 0

0 n

x 0

0 n
.

For more discussion of onesided tests and confidence intervals, see Problems 6.3.25
through 6.3.32.

6.3.4 Inferences for the Variance

In Sections 6.3.1, 6.3.2, and 6.3.3, we focused on inferences for the unknown mean of a
distribution, e.g., when we are sampling from an N 2 distribution or a Bernoulli
distribution and our interest is in or respectively. In general, location parameters
tend to play a much more important role in a statistical analysis than other characteris
tics of a distribution. There are logical reasons for this, discussed in Chapter 10, when
we consider regression models. Sometimes we refer to a parameter such as 2 as a nui
sance parameter because our interest is in Note that the variance of a Bernoulli
distribution is 1 so that inferences about are logically inferences about the
variance too, i.e., there are no nuisance parameters.

But sometimes we are primarily interested in making inferences about 2 in the
N 2 distribution when it is unknown. For example, suppose that previous expe
rience with a system under study indicates that the true value of the variance is well
approximated by 2

0 i.e., the true value does not differ from 2
0 by an amount having
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any practical significance. Now based on the new sample, we may want to assess the
hypothesis H0 : 2 2

0 i.e., we wonder whether or not the basic variability in the
process has changed.

The discussion in Section 6.3.1 led to consideration of the standard error s n as
an estimate of the standard deviation n of x In many ways s2 seems like a very
natural estimator of 2 even when we aren’t sampling from a normal distribution.

The following example develops confidence intervals and Pvalues for 2

EXAMPLE 6.3.15 LocationScale Normal Model and Inferences for the Variance
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown, and we want to make inferences about the population variance
2 The plugin MLE is given by n 1 s2 n which is the average of the squared

deviations of the data values from x Often s2 is recommended as the estimate because
it has the unbiasedness property, and we will use this here. An expression can be
determined for the standard error of this estimate, but, as it is somewhat complicated,
we will not pursue this further here.

We can form a confidence interval for 2 using n 1 S2 2 2 n 1
(Theorem 4.6.6). There are a number of possibilities for this interval, but one is to note
that, letting 2 denote the th quantile for the 2 distribution, then

P 2
2
1 2 n 1

n 1 S2

2
2
1 2

n 1

P 2
n 1 S2

2
1 2

n 1
2 n 1 S2

2
1 2 n 1

for every 2 R1 0 So

n 1 s2

2
1 2

n 1

n 1 s2

2
1 2 n 1

is an exact confidence interval for 2 To test a hypothesis such as H0 : 0 at
the 1 level, we need only see whether or not 2

0 is in the interval. The smallest
value of such that 2

0 is in the interval is the Pvalue for this hypothesis assessment
procedure.

For the data in Example 6.3.10, let us pretend that we do not know that 2 4.
Here, n 10 and s2 4 8620 From a statistics package (or Table D.3 in Appendix
D) we obtain 2

0 025 9 2 700 2
0 975 9 19 023 So a 0.95confidence interval

for 2 is given by

n 1 s2

2
1 2

n 1

n 1 s2

2
1 2 n 1

9 4 8620

19 023

9 4 8620

2 700

[2 300 3 16 207]

The length of the interval indicates that there is a reasonable degree of uncertainty
concerning the true value of 2. We see, however, that a test of H0 : 2 4 would
not reject this hypothesis at the 5% level because the value 4 is in the 0.95confidence
interval.
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6.3.5 SampleSize Calculations: Confidence Intervals

Quite often a statistician is asked to determine the sample size n to ensure that with
a very high probability the results of a statistical analysis will yield definitive results.
For example, suppose we are going to take a sample of size n from a population and
want to estimate the population mean so that the estimate is within 0.5 of the true
mean with probability at least 0.95. This means that we want the halflength, or margin
of error, of the 0.95confidence interval for the mean to be guaranteed to be less than
0.5.

We consider such problems in the following examples. Note that in general, sample
size calculations are the domain of experimental design, which we will discuss more
extensively in Chapter 10.

First, we consider the problem of selecting the sample size to ensure that a confi
dence interval is shorter than some prescribed value.

EXAMPLE 6.3.16 The Length of a Confidence Interval for a Mean
Suppose we are in the situation described in Example 6.3.6, in which we have a sample
x1 xn from the N 2

0 model, with R1 unknown and 2
0 0 known.

Further suppose that the statistician is asked to determine n so that the margin of error
for a confidence interval for the population mean is no greater than a prescribed
value 0 This entails that n be chosen so that

z 1 2
0

n

or, equivalently, so that

n 2
0

z 1 2
2

For example, if 2
0 10 0 95 and 0 5 then the smallest possible value for

n is 154.
Now consider the situation described in Example 6.3.8, in which we have a sample

x1 xn from the N 2 model with R1 and 2 0 both unknown. In this
case, we want n so that

t 1 2 n 1
s

n

which entails

n s2 t 1 2 n 1 2

But note this also depends on the unobserved value of s so we cannot determine an
appropriate value of n.

Often, however, we can determine an upper bound on the population standard de
viation, say, b For example, suppose we are measuring human heights in cen
timeters. Then we have a pretty good idea of upper and lower bounds on the possible
heights we will actually obtain. Therefore, with the normality assumption, the interval
given by the population mean, plus or minus three standard deviations, must be con
tained within the interval given by the upper and lower bounds. So dividing the length
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of this interval by 6 gives a plausible upper bound b for the value of In any case,
when we have such an upper bound, we can expect that s b at least if we choose b
conservatively Therefore, we take n to satisfy

n b2 t 1 2 n 1 2

.

Note that we need to evaluate t 1 2 n 1 for each n as well. It is wise to be fairly
conservative in our choice of n in this case, i.e., do not choose the smallest possible
value.

EXAMPLE 6.3.17 The Length of a Confidence Interval for a Proportion
Suppose we are in the situation described in Example 6.3.2, in which we have a sample
x1 xn from the Bernoulli model and [0 1] is unknown. The statistician

is required to specify the sample size n so that the margin of error of a confidence
interval for is no greater than a prescribed value So, from Example 6.3.7, we want
n to satisfy

z 1 2
x 1 x

n
(6.3.9)

and this entails

n x 1 x
z 1 2 2

.

Because this also depends on the unobserved x , we cannot determine n. Note, however,
that 0 x 1 x 1 4 for every x (plot this function) and that this upper bound is
achieved when x 1 2. Therefore, if we determine n so that

n
1

4

z 1 2 2
,

then we know that (6.3.9) is satisfied. For example, if 0 95 0 1 the smallest
possible value of n is 97; if 0 95 0 01, the smallest possible value of n is
9604.

6.3.6 SampleSize Calculations: Power

Suppose the purpose of a study is to assess a specific hypothesis H0 : 0 and
it is has been decided that the results will be declared statistically significant whenever
the Pvalue is less than Suppose that the statistician is asked to choose n so that
the Pvalue obtained is smaller than with probability at least 0 at some specific

1 such that 1 0 The probability that the Pvalue is less than for a specific
value of is called the power of the test at We will denote this by and call
the power function of the test. The notation is not really complete, as it suppresses
the dependence of on 0 n and the test procedure, but we will assume that
these are clear in a particular context. The problem the statistician is presented with
can then be stated as: Find n so that 1 0

The power function of a test is a measure of the sensitivity of the test to detect
departures from the null hypothesis. We choose small ( 0 05 0 01 etc.) so that
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we do not erroneously declare that we have evidence against the null hypothesis when
the null hypothesis is in fact true. When 0 then is the probability that
the test does the right thing and detects that H0 is false.

For any test procedure, it is a good idea to examine its power function, perhaps
for several choices of , to see how good the test is at detecting departures. For it
can happen that we do not find any evidence against a null hypothesis when it is false
because the sample size is too small. In such a case, the power will be small at values
that represent practically significant departures from H0 To avoid this problem, we
should always choose a value 1 that represents a practically significant departure from

0 and then determine n so that we reject H0 with high probability when 1
We consider the computation and use of the power function in several examples.

EXAMPLE 6.3.18 The Power Function in the Location Normal Model
For the twosided ztest in Example 6.3.9, we have

P 2 1
X 0

0 n

P
X 0

0 n
1

2
P

X 0

0 n
z 1 2

P
X 0

0 n
z 1 2 P

X 0

0 n
z 1 2

P
X

0 n
0

0 n
z 1 2 P

X

0 n
0

0 n
z 1 2

1 0

0 n
z 1 2

0

0 n
z 1 2 . (6.3.10)

Notice that

0 0 0 0

so is symmetric about 0 (put 0 and 0 in the expression for
and we get the same value)

Differentiating (6.3.10) with respect to n we obtain

0

0 n
z 1 2

0

0 n
z 1 2

0

0
(6.3.11)

where is the density of the N 0 1 distribution. We can establish that (6.3.11) is
always nonnegative (see Challenge 6.3.34). This implies that is increasing in
n so we need only solve 1 0 for n (the solution may not be an integer) to
determine a suitable sample size (all larger values of n will give a larger power).

For example, when 0 1 0 05 0 0 99 and 1 0 0 1 we must
find n satisfying

1 n 0 1 1 96 n 0 1 1 96 0 99 (6.3.12)

(Note that the symmetry of about 0 means we will get the same answer if we use

0 0 1 here instead of 0 0 1 ) Tabulating (6.3.12) as a function of n using a
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statistical package determines that n 785 is the smallest value achieving the required
bound.

Also observe that the derivative of (6.3.10) with respect to is given by

0

0 n
z 1 2

0

0 n
z 1 2

n

0
(6.3.13)

This is positive when 0, negative when 0 and takes the value 0 when

0 (see Challenge 6.3.35) From (6.3.10) we have that 1 as
These facts establish that takes its minimum value at 0 and that it is increasing as
we move away from 0 Therefore, once we have determined n so that the power is at
least 0 at some 1 we know that the power is at least 0 for all values of satisfying

0 0 1
As an example of this, consider Figure 6.3.5, where we have plotted the power

function when n 10 0 0 0 1 and 0 05 so that

1 10 1 96 10 1 96

Notice the symmetry about 0 0 and the fact that increases as moves away
from 0. We obtain 1 2 0 967 so that when 1 2 the probability that the
Pvalue for testing H0 : 0 will be less than 0 05 is 0 967. Of course, as we increase
n this graph will rise even more steeply to 1 as we move away from 0.
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Figure 6.3.5: Plot of the power function for Example 6.3.18 when 0 05 0 0
and 0 1 is assumed known.

Many statistical packages contain the power function as a builtin function for var
ious tests. This is very convenient for examining the sensitivity of the test and deter
mining sample sizes.

EXAMPLE 6.3.19 The Power Function for in the Bernoulli Model
For the twosided test in Example 6.3.11, we have that the power function is given by

P 2 1
n X 0

0 1 0
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Under the assumption that we choose n large enough so that X is approximately dis
tributed N 1 n the approximate calculation of this power function can be
approached as in Example 6.3.18, when we put 0 1 . We do not pursue
this calculation further here but note that many statistical packages will evaluate as a
builtin function.

EXAMPLE 6.3.20 The Power Function in the LocationScale Normal Model
For the twosided ttest in Example 6.3.13, we have

n
2 P 2 2 1 G

X 0

S n
n 1

P 2
X 0

S n
t 1 2 n 1

where G n 1 is the cumulative distribution function of the t n 1 distribution.
Notice that it is a function of both and 2. In particular, we have to specify both

and 2 and then determine n so that n
2

0 Many statistical packages
will have the calculation of this power function builtin so that an appropriate n can be
determined using this. Alternatively, we can use Monte Carlo methods to approximate
the distribution function of

X 0

S n

when sampling from the N 2 for a variety of values of n to determine an appro
priate value.

Summary of Section 6.3

The MLE is the bestsupported value of the parameter by the model and
data. As such, it makes sense to base the derivation of inferences about some
characteristic on the MLE. These inferences include estimates and their
standard errors, confidence intervals, and the assessment of hypotheses via P
values.

An important aspect of the design of a sampling study is to decide on the size n
of the sample to ensure that the results of the study produce sufficiently accurate
results. Prescribing the halflengths of confidence intervals (margins of error) or
the power of a test are two techniques for doing this.

EXERCISES

6.3.1 Suppose measurements (in centimeters) are taken using an instrument. There
is error in the measuring process and a measurement is assumed to be distributed
N 2

0 , where is the exact measurement and 2
0 0 5 If the (n 10) measure

ments 4.7, 5.5, 4.4, 3.3, 4.6, 5.3, 5.2, 4.8, 5.7, 5.3 were obtained, assess the hypothesis
H0 : 5 by computing the relevant Pvalue. Also compute a 0.95confidence
interval for the unknown
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6.3.2 Suppose in Exercise 6.3.1, we drop the assumption that 2
0 0 5 Then assess

the hypothesis H0 : 5 and compute a 0.95confidence interval for
6.3.3 Marks on an exam in a statistics course are assumed to be normally distributed
with unknown mean but with variance equal to 5. A sample of four students is selected,
and their marks are 52, 63, 64, 84. Assess the hypothesis H0 : 60 by computing
the relevant Pvalue and compute a 0.95confidence interval for the unknown
6.3.4 Suppose in Exercise 6.3.3 that we drop the assumption that the population vari
ance is 5. Assess the hypothesis H0 : 60 by computing the relevant Pvalue and
compute a 0.95confidence interval for the unknown
6.3.5 Suppose that in Exercise 6.3.3 we had observed only one mark and that it was
52. Assess the hypothesis H0 : 60 by computing the relevant Pvalue and compute
a 0.95confidence interval for the unknown Is it possible to compute a Pvalue and
construct a 0.95confidence interval for without the assumption that we know the
population variance? Explain your answer and, if your answer is no, determine the
minimum sample size n for which inference is possible without the assumption that
the population variance is known.
6.3.6 Assume that the speed of light data in Table 6.3.1 is a sample from an N 2

distribution for some unknown values of and 2 Determine a 0.99confidence inter
val for Assess the null hypothesis H0 : 24
6.3.7 A manufacturer wants to assess whether or not rods are being constructed appro
priately, where the diameter of the rods is supposed to be 1 0 cm and the variation in the
diameters is known to be distributed N 0 1 . The manufacturer is willing to tolerate
a deviation of the population mean from this value of no more than 0 1 cm, i.e., if the
population mean is within the interval 1 0 0 1 cm, then the manufacturing process is
performing correctly. A sample of n 500 rods is taken, and the average diameter
of these rods is found to be x 1 05 cm, with s2 0 083 cm2. Are these results
statistically significant? Are the results practically significant? Justify your answers.
6.3.8 A polling firm conducts a poll to determine what proportion of voters in a given
population will vote in an upcoming election. A random sample of n 250 was taken
from the population, and the proportion answering yes was 0.62. Assess the hypothesis
H0 : 0 65 and construct an approximate 0.90confidence interval for
6.3.9 A coin was tossed n 1000 times, and the proportion of heads observed was
0.51. Do we have evidence to conclude that the coin is unfair?
6.3.10 How many times must we toss a coin to ensure that a 0.95confidence interval
for the probability of heads on a single toss has length less than 0.1, 0.05, and 0 .01,
respectively?
6.3.11 Suppose a possibly biased die is rolled 30 times and that the face containing
two pips comes up 10 times. Do we have evidence to conclude that the die is biased?
6.3.12 Suppose a measurement on a population is assumed to be distributed N 2
where R1 is unknown and that the size of the population is very large. A researcher
wants to determine a 0.95confidence interval for that is no longer than 1. What is
the minimum sample size that will guarantee this?
6.3.13 Suppose x1 xn is a sample from a Bernoulli with [0 1] unknown.
(a) Show that n

i 1 xi x 2 nx 1 x (Hint: x2
i xi )
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(b) If X Bernoulli then 2 Var X 1 Record the relationship
between the plugin estimate of 2 and that given by s2 in (5.5.5).
(c) Since s2 is an unbiased estimator of 2 (see Problem 6.3.23), use the results in part
(b) to determine the bias in the plugin estimate. What happens to this bias as n ?
6.3.14 Suppose you are told that, based on some data, a 0 95confidence interval for
a characteristic is given by 1 23 2 45 You are then asked if there is any evi
dence against the hypothesis H0 : 2 State your conclusion and justify your
reasoning.
6.3.15 Suppose that x1 is a value from a Bernoulli with [0 1] unknown.
(a) Is x1 an unbiased estimator of ?

(b) Is x2
1 an unbiased estimator of 2?

6.3.16 Suppose a plugin MLE of a characteristic is given by 5.3. Also a Pvalue
was computed to assess the hypothesis H0 : 5 and the value was 0 000132 If
you are told that differences among values of less than 0 5 are of no importance
as far as the application is concerned, then what do you conclude from these results?
Suppose instead you were told that differences among values of less than 0 25
are of no importance as far as the application is concerned, then what do you conclude
from these results?
6.3.17 A Pvalue was computed to assess the hypothesis H0 : 0 and the value
0 22 was obtained. The investigator says this is strong evidence that the hypothesis is
correct. How do you respond?
6.3.18 A Pvalue was computed to assess the hypothesis H0 : 1 and the value
0 55 was obtained. You are told that differences in greater than 0 5 are considered
to be practically significant but not otherwise. The investigator wants to know if enough
data were collected to reliably detect a difference of this size or greater. How would
you respond?

COMPUTER EXERCISES

6.3.19 Suppose a measurement on a population can be assumed to follow the N 2

distribution, where 2 R1 0 is unknown and the size of the population is
very large. A very conservative upper bound on is given by 5. A researcher wants to
determine a 0.95confidence interval for that is no longer than 1. Determine a sample
size that will guarantee this. (Hint: Start with a large sample approximation.)
6.3.20 Suppose a measurement on a population is assumed to be distributed N 2 ,
where R1 is unknown and the size of the population is very large. A researcher
wants to assess a null hypothesis H0 : 0 and ensure that the probability is at
least 0.80 that the Pvalue is less than 0.05 when 0 0 5 What is the minimum
sample size that will guarantee this? (Hint: Tabulate the power as a function of the
sample size n )

6.3.21 Generate 103 samples of size n 5 from the Bernoulli 0 5 distribution. For
each of these samples, calculate (6.3.5) with 0 95 and record the proportion of
intervals that contain the true value. What do you notice? Repeat this simulation with
n 20 What do you notice?



Chapter 6: Likelihood Inference 347

6.3.22 Generate 104 samples of size n 5 from the N 0 1 distribution. For each of
these samples, calculate the interval x s 5 x s 5 where s is the sample stan
dard deviation, and compute the proportion of times this interval contains . Repeat
this simulation with n 10 and 100 and compare your results.

PROBLEMS

6.3.23 Suppose that x1 xn is a sample from a distribution with mean and
variance 2

(a) Prove that s2 given by (5.5.5) is an unbiased estimator of 2

(b) If instead we estimate 2 by n 1 s2 n, then determine the bias in this estimate
and what happens to it as n
6.3.24 Suppose we have two unbiased estimators T1 and T2 of R1.

(a) Show that T1 1 T2 is also an unbiased estimator of whenever
[0 1]
(b) If T1 and T2 are also independent, e.g., determined from independent samples, then
calculate Var T1 1 T2 in terms of Var T1 and Var T2

(c) For the situation in part (b), determine the best choice of in the sense that for this
choice Var T1 1 T2 is smallest. What is the effect on this combined estimator
of T1 having a very large variance relative to T2?
(d) Repeat parts (b) and (c), but now do not assume that T1 and T2 are independent, so
Var T1 1 T2 will also involve Cov T1 T2

6.3.25 (Onesided confidence intervals for means) Suppose that x1 xn is a sam
ple from an N 2

0 distribution, where R1 is unknown and 2
0 is known. Sup

pose we want to make inferences about the interval . Consider the
problem of finding an interval C x1 xn u x1 xn that covers the
interval with probability at least So we want u such that for every ,

P u X1 Xn

Note that u x1 xn if and only if u x1 xn , so
C x1 xn is called a leftsided confidence interval for Obtain an exact left
sided confidence interval for using u x1 xn x k 0 n , i.e., find the
k that gives this property
6.3.26 (Onesided hypotheses for means ) Suppose that x1 xn is a sample from
a N 2

0 distribution, where is unknown and 2
0 is known. Suppose we want

to assess the hypothesis H0 : 0. Under these circumstances, we say that the
observed value x is surprising if x occurs in a region of low probability for every
distribution in H0. Therefore, a sensible Pvalue for this problem is max H0 P X
x . Show that this leads to the Pvalue 1 x 0 0 n
6.3.27 Determine the form of the power function associated with the hypothesis assess
ment procedure of Problem 6.3.26, when we declare a test result as being statistically
significant whenever the Pvalue is less than
6.3.28 Repeat Problems 6.3.25 and 6.3.26, but this time obtain a rightsided confidence
interval for and assess the hypothesis H0 : 0.
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6.3.29 Repeat Problems 6.3.25 and 6.3.26, but this time do not assume the population
variance is known. In particular, determine k so that u x1 xn x k s n
gives an exact leftsided confidence interval for and show that the Pvalue for
testing H0 : 0 is given by

1 G
x 0

0 n
n 1

6.3.30 (Onesided confidence intervals for variances) Suppose that x1 xn is a
sample from the N 2 distribution, where 2 R1 0 is unknown, and
we want a confidence interval of the form

C x1 xn 0 u x1 xn

for 2 If u x1 xn ks2 then determine k so that this interval is an exact 
confidence interval.
6.3.31 (Onesided hypotheses for variances) Suppose that x1 xn is a sample
from the N 2 distribution, where 2 R1 0 is unknown, and we
want to assess the hypothesis H0 : 2 2

0 Argue that the sample variance s2 is
surprising if s2 is large and that, therefore, a sensible Pvalue for this problem is to
compute max 2 H0

P S2 s2 Show that this leads to the Pvalue

1 H
n 1 s2

2
0

n 1

where H n 1 is the distribution function of the 2 n 1 distribution.

6.3.32 Determine the form of the power function associated with the hypothesis as
sessment procedure of Problem 6.3.31, for computing the probability that the Pvalue
is less than
6.3.33 Repeat Exercise 6.3.7, but this time do not assume that the population variance
is known. In this case, the manufacturer deems the process to be under control if the
population standard deviation is less than or equal to 0.1 and the population mean is in
the interval 1 0 0 1 cm. Use Problem 6.3.31 for the test concerning the population
variance.

CHALLENGES

6.3.34 Prove that (6.3.11) is always nonnegative. (Hint: Use the facts that is sym
metric about 0, increases to the left of 0, and decreases to the right of 0.)
6.3.35 Establish that (6.3.13) is positive when 0, negative when 0 and
takes the value 0 when 0

DISCUSSION TOPICS

6.3.36 Discuss the following statement: The accuracy of the results of a statistical
analysis is so important that we should always take the largest possible sample size.
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6.3.37 Suppose we have a sequence of estimators T1 T2 for and Tn
P

as n for each Discuss under what circumstances you
might consider Tn a useful estimator of

6.4 DistributionFree Methods
The likelihood methods we have been discussing all depend on the assumption that the
true distribution lies in P : . There is typically nothing that guarantees that
the assumption P : is correct. If the distribution we are sampling from is far
different from any of the distributions in P : , then methods of inference that
depend on this assumption, such as likelihood methods, can be very misleading. So
it is important in any application to check that our assumptions make sense. We will
discuss the topic of model checking in Chapter 9.

Another approach to this problem is to take the model P : as large as
possible, reecting the fact that we may have very little information about what the
true distribution is like. For example, inferences based on the Bernoulli model with

[0 1] really specify no information about the true distribution because this
model includes all the possible distributions on the sample space S 0 1 . Infer
ence methods that are suitable when P : is very large are sometimes called
distributionfree, to reect the fact that very little information is specified in the model
about the true distribution.

For finite sample spaces, it is straightforward to adopt the distributionfree ap
proach, as with the just cited Bernoulli model, but when the sample space is infinite,
things are more complicated. In fact, sometimes it is very difficult to determine infer
ences about characteristics of interest when the model is very big. Furthermore, if we
have

P : 1 P :

then, when the smaller model contains the true distribution, methods based on the
smaller model will make better use of the information in the data about the true value
in 1 than will methods using the bigger model P : . So there is a tradeoff
between taking too big a model and taking too precise a model. This is an issue that a
statistician must always address.

We now consider some examples of distributionfree inferences. In some cases, the
inferences have approximate sampling properties, while in other cases the inferences
have exact sampling properties for very large models.

6.4.1 Method of Moments

Suppose we take P : to be the set of all distributions on R1 that have their
first l moments, and we want to make inferences about the moments

i E X i
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for i 1 l based on a sample x1 xn . The natural sample analog of the
population moment i is the i th sample moment

mi
1

n

n

j 1

x i
j

which would seem to be a sensible estimator.
In particular, we have that E Mi i for every so mi is unbiased,

and the weak and strong laws of large numbers establish that mi converges to i as n
increases Furthermore, the central limit theorem establishes that

Mi i

Var Mi

D
N 0 1

as n provided that Var Mi Now, because X1 Xn are i.i.d., we
have that

Var Mi
1

n2

n

j 1

Var X i
j

1

n
Var X i

1
1

n
E X i

1 i
2

1

n
E X2i

1 2 i X i
1

2
i

1

n 2i
2
i

so we have that Var Mi provided that i l 2 In this case, we can estimate

2i
2
i by

s2
i

1

n 1

n

j 1

x i
j mi

2

as we can simply treat x i
1 x i

n as a sample from a distribution with mean i

and variance 2i
2
i Problem 6.3.23 establishes that s2

i is an unbiased estimate of
Var Mi . So, as with inferences for the population mean based on the zstatistic, we
have that

mi z 1 2
si

n

is an approximate confidence interval for i whenever i l 2 and n is large. Also,
we can test hypothesis H0 : i i0 in exactly the same fashion, as we did this for
the population mean using the zstatistic.

Notice that the model P : is very large (all distributions on R1 having their
first l 2 moments finite), and these approximate inferences are appropriate for every
distribution in the model. A cautionary note is that estimation of moments becomes
more difficult as the order of the moments rises. Very large sample sizes are required
for the accurate estimation of highorder moments.

The general method of moments principle allows us to make inference about char
acteristics that are functions of moments. This takes the following form:

Method of moments principle: A function 1 k of the first k l
moments is estimated by m1 mk
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When is continuously differentiable and nonzero at 1 k and k l 2, then
it can be proved that M1 Mk converges in distribution to a normal with mean
given by 1 k and variance given by an expression involving the variances
and covariances of M1 Mk and the partial derivatives of We do not pursue this
topic further here but note that, in the case k 1 and l 2 these conditions lead to
the socalled delta theorem, which says that

n X 1

X s

D
N 0 1 (6.4.1)

as n provided that is continuously differentiable at 1 and 1 0 see
Approximation Theorems of Mathematical Statistics, by R. J. Sering (John Wiley &
Sons, New York, 1980), for a proof of this result. This result provides approximate
confidence intervals and tests for 1 .

EXAMPLE 6.4.1 Inference about a Characteristic Using the Method of Moments
Suppose x1 xn is a sample from a distribution with unknown mean and vari
ance 2 and we want to construct a confidence interval for 1 2 Then

2 3 so the delta theorem says that

n 1 X2 1 2

2s X3

D
N 0 1

as n Therefore,
1

x

2

2
s

nx3
z 1 2

is an approximate confidence interval for 1 2

Notice that if 0 then this confidence interval is not valid because is not
continuously differentiable at 0. So if you think the population mean could be 0, or
even close to 0, this would not be an appropriate choice of confidence interval for .

6.4.2 Bootstrapping

Suppose that P : is the set of all distributions on R1 and that x1 xn is
a sample from some unknown distribution with cdf F . Then the empirical distribution
function

F x
1

n

n

i 1

I x] xi ,

introduced in Section 5.4.1, is a natural estimator of the cdf F x .
We have

E F x
1

n

n

i 1

E I x] Xi
1

n

n

i 1

F x F x

for every so that F is unbiased for F The weak and strong laws of large
numbers then establish the consistency of F x for F x as n Observing that
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the I x] xi constitute a sample from the Bernoulli F x distribution, we have
that the standard error of F x is given by

F x 1 F x

n
.

These facts can be used to form approximate confidence intervals and test hypotheses
for F x , just as in Examples 6.3.7 and 6.3.11.

Observe that F x prescribes a distribution on the set x1 xn , e.g., if the sam
ple values are distinct, this probability distribution puts mass 1 n on each xi . Note that
it is easy to sample a value from F , as we just select a value from x1 xn where
each point has probability 1 n of occurring. When the xi are not distinct, then this is
changed in an obvious way, namely, xi has probability fi n, where fi is the number of
times xi occurs in x1 xn .

Suppose we are interested in estimating T F , where T is a function
of the distribution F We use this notation to emphasize that corresponds to
some characteristic of the distribution rather than just being an arbitrary mathematical
function of For example, T F could be a moment of F a quantile of F etc.

Now suppose we have an estimator x1 xn that is being proposed for in
ferences about . Naturally, we are interested in the accuracy of , and we could
choose to measure this by

MSE E
2

Var . (6.4.2)

Then, to assess the accuracy of our estimate x1 xn , we need to estimate (6.4.2).
When n is large, we expect F to be close to F , so a natural estimate of is

T F i.e., simply compute the same characteristic of the empirical distribution. This
is the approach adopted in Chapter 5 when we discussed descriptive statistics. Then
we estimate the square of the bias in by

T F 2. (6.4.3)

To estimate the variance of , we use

VarF EF
2

E2
F

1

nn

n

i1 1

n

in 1

2
xi1 xin

1

nn

n

i1 1

n

in 1

xi1 xin

2

, (6.4.4)

i.e., we treat x1 xn as i.i.d. random values with cdf given by F So to calculate
an estimate of (6.4.2), we simply have to calculate VarF . This is rarely feasible,
however, because the sums in (6.4.4) involve nn terms. For even very modest sample
sizes, like n 10 this cannot be carried out, even on a computer.

The solution to this problem is to approximate (6.4.4) by drawing m indepen
dent samples of size n from F evaluating for each of these samples to obtain
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1 m and then using the sample variance

VarF

1

m 1

m

i 1

2
i

1

m

m

i 1
i

2

(6.4.5)

as the estimate. The m samples from F are referred to as bootstrap samples or re
samples, and this technique is referred to as bootstrapping or resampling. Combining
(6.4.3) and (6.4.5) gives an estimate of MSE Furthermore, m 1 m

i 1 i is called
the bootstrap mean, and

VarF

is the bootstrap standard error. Note that the bootstrap standard error is a valid estimate
of the error in whenever has little or no bias.

Consider the following example.

EXAMPLE 6.4.2 The Sample Median as an Estimator of the Population Mean
Suppose we want to estimate the location of a unimodal, symmetric distribution. While
the sample mean might seem like the obvious choice for this, it turns out that for some
distributions there are better estimators. This is because the distribution we are sam
pling may have long tails, i.e., may produce extreme values that are far from the center
of the distribution. This implies that the sample average itself could be highly inu
enced by a few extreme observations and would thus be a poor estimate of the true
mean.

Not all estimators suffer from this defect. For example, if we are sampling from a
symmetric distribution, then either the sample mean or the sample median could serve
as an estimator of the population mean. But, as we have previously discussed, the
sample median is not inuenced by extreme values, i.e., it does not change as we move
the smallest (or largest) values away from the rest of the data, and this is not the case
for the sample mean.

A problem with working with the sample median x0 5 rather than the sample mean
x is that the sampling distribution for x0 5 is typically more difficult to study than
that of x . In this situation, bootstrapping becomes useful. If we are estimating the
population mean T F by using the sample median (which is appropriate when we
know the distribution we were sampling from is symmetric), then the estimate of the
squared bias in the sample median is given by

T F 2 x0 5 x 2

because x0 5 and T F x (the mean of the empirical distribution is x). This
should be close to 0, or else our assumption of a symmetric distribution would seem
to be incorrect. To calculate (6.4.5), we have to generate m samples of size n from
x1 xn (with replacement) and calculate x0 5 for each sample.

To illustrate, suppose we have a sample of size n 15 given by the following
table.

2 0 0 2 5 2 3 5 3 9
0 6 4 3 1 7 9 5 1 6
2 9 0 9 1 0 2 0 3 0
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Then, using the definition of x0 5 given by (5.5.4) (denoted x0 5 there), 2 000
and x 2 087 The estimate of the squared bias (6.4.3) equals 2 000 2 087 2

7 569 10 3, which is appropriately small. Using a statistical package, we generated
m 103 samples of size n 15 from the distribution that has probability 1 15 at each
of the sample points and obtained

VarF 0 770866

Based on m 104 samples, we obtained

VarF 0 718612

and based on m 105 samples we obtained

VarF 0 704928

Because these estimates appear to be stabilizing, we take this as our estimate. So in
this case, the bootstrap estimate of the MSE of the sample median at the true value of

is given by

MSE 0 007569 0 704928 0 71250

Note that the estimated MSE of the sample average is given by s2 0 62410 so
the sample mean and sample median appear to be providing similar accuracy in this
problem. In Figure 6.4.1, we have plotted a density histogram of the sample medians
obtained from the m 105 bootstrap samples. Note that the histogram is very skewed.
See Appendix B for more details on how these computations were carried out.
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Figure 6.4.1: A density histogram of m 105 sample medians, each obtained from a bootstrap
sample of size n 15 from the data in Example 6.4.2.

Even with the very small sample size here, it was necessary to use the computer to
carry out our calculations. To evaluate (6.4.4) exactly would have required computing
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the median of 1515 (roughly 4 4 1017) samples, which is clearly impossible even
using a computer. So the bootstrap is a very useful device.

The validity of the bootstrapping technique depends on having its first two mo
ments. So the family P : must be appropriately restricted, but we can see that
the technique is very general.

Broadly speaking, it is not clear how to choose m Perhaps the most direct method
is to implement bootstrapping for successively higher values of m and stop when we
see that the results stabilize for several values. This is what we did in Example 6.4.2,
but it must be acknowledged that this approach is not foolproof, as we could have a
sample x1 xn such that the estimate (6.4.5) is very slowly convergent.

Bootstrap Confidence Intervals

Bootstrap methods have also been devised to obtain approximate confidence inter
vals for characteristics such as T F One very simple method is to simply
form the bootstrap t confidence interval

t 1 2 n 1 VarF ,

where t 1 2 n 1 is the 1 2th quantile of the t n 1 distribution. Another
possibility is to compute a bootstrap percentile confidence interval given by

1 2 1 2 ,

where p denotes the pth empirical quantile of in the bootstrap sample of m
It should be noted that to be applicable, these intervals require some conditions to

hold. In particular, should be at least approximately unbiased for and the boot
strap distribution should be approximately normal. Looking at the plot of the bootstrap
distribution in Figure 6.4.1 we can see that the median does not have an approximately
normal bootstrap distribution, so these intervals are not applicable with the median.

Consider the following example.

EXAMPLE 6.4.3 The 0.25Trimmed Mean as an Estimator of the Population Mean
One of the virtues of the sample median as an estimator of the population mean is
that it is not affected by extreme values in the sample. On the other hand, the sample
median discards all but one or two of the data values and so seems to be discarding
a lot of information. Estimators known as trimmed means can be seen as an attempt
at retaining the virtues of the median while at the same time not discarding too much
information. Let x denote the greatest integer less than or equal to x R1

Definition 6.4.1 For [0 1] a sample trimmed mean is given by

x
1

n 2 n

n n

i n 1

x i

where x i is the i thorder statistic.
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Thus for a sample trimmed mean, we toss out (approximately) n of the smallest
data values and n of the largest data values and calculate the average of the n 2 n
of the data values remaining. We need the greatest integer function because in general,

n will not be an integer. Note that the sample mean arises with 0 and the sample
median arises with 0 5

For the data in Example 6.4.1 and 0 25, we have 0 25 15 3 75, so we
discard the three smallest and three largest observations leaving the nine data val
ues 3 9 3 5 2 9 2 0 2 0 1 7 1 0 0 6 0 2 The average of these nine
values gives x0 25 1 97778, which we note is close to both the sample median
and the sample mean.

Now suppose we use a 0.25trimmed mean as an estimator of a population mean
where we believe the population distribution is symmetric. Consider the data in Ex
ample 6.4.1 and suppose we generated m 104 bootstrap samples. We have plotted a
histogram of the 104 values of in Figure 6.4.2. Notice that it is very normal looking,
so we feel justified in using the confidence intervals associated with the bootstrap. In
this case, we obtained

VarF 0 7380

so the bootstrap t 0 95confidence interval for the mean is given by 1 97778
2 14479 0 7380 3 6 0 4 Sorting the bootstrap sample gives a bootstrap

percentile 0 95confidence interval as 3 36667 0 488889 3 4 0 5 which
shows that the two intervals are very similar.
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ty

Figure 6.4.2: A density histogram of m 104 sample 0.25trimmed means, each obtained
from a bootstrap sample of size n 15 from the data in Example 6.4.3

More details about the bootstrap can be found in An Introduction to the Bootstrap,
by B. Efron and R. J. Tibshirani (Chapman and Hall, New York, 1993).
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6.4.3 The Sign Statistic and Inferences about Quantiles

Suppose that P : is the set of all distributions on R1 such that the associated
distribution functions are continuous. Suppose we want to make inferences about a pth
quantile of P We denote this quantile by xp so that, when the distribution function
associated with P is denoted by F , we have p F x p Note that continuity
implies there is always a solution in x to p F x and that x p is the smallest
solution.

Recall the definitions and discussion of estimation of these quantities in Example
5.5.2 based on a sample x1 xn . For simplicity, let us restrict attention to the
cases where p i n for some i 1 n . In this case, we have that x p x i is
the natural estimate of xp.

Now consider assessing the evidence in the data concerning the hypothesis H0 :
xp x0. For testing this hypothesis, we can use the sign test statistic, given by
S n

i 1 I x0] xi . So S is the number of sample values less than or equal to x0
Notice that when H0 is true, I x0] x1 I x0] xn is a sample from the

Bernoulli p distribution. This implies that, when H0 is true, S Binomial n p
Therefore, we can test H0 by computing the observed value of S denoted So and

seeing whether this value lies in a region of low probability for the Binomial n p dis
tribution. Because the binomial distribution is unimodal, the regions of low probability
correspond to the left and right tails of this distribution. See, for example, Figure 6.4.3,
where we have plotted the probability function of a Binomial 20 0 7 distribution.

The Pvalue is therefore obtained by computing the probability of the set

i :
n

i
pi 1 p n i n

So
pSo 1 p n So (6.4.6)

using the Binomial n p probability distribution. This is a measure of how far out in
the tails the observed value So is (see Figure 6.4.3). Notice that this Pvalue is com
pletely independent of and is thus valid for the entire model. Tables of binomial
probabilities (Table D.6 in Appendix D), or builtin functions available in most statis
tical packages, can be used to calculate this Pvalue.

20100

0.2

0.1

0.0

x

Figure 6.4.3: Plot of the Binomial 20 0 7 probability function.

When n is large, we have that, under H0

Z
S np

np 1 p
D

N 0 1
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as n Therefore, an approximate Pvalue is given by

2 1
So 0 5 np

np 1 p

(as in Example 6.3.11), where we have replaced So by So 0 5 as a correction for
continuity (see Example 4.4.9 for discussion of the correction for continuity).

A special case arises when p 1 2 i.e., when we are making inferences about
an unknown population median x0 5 . In this case, the distribution of S under H0 is
Binomial n 1 2 . Because the Binomial n 1 2 is unimodal and symmetrical about
n 2 (6.4.6) becomes

i : So n 2 i n 2

If we want a confidence interval for x0 5 , then we can use the equivalence
between tests, which we always reject when the Pvalue is less than or equal to 1 ,
and confidence intervals (see Example 6.3.12). For this, let j be the smallest integer
greater than n 2 satisfying

P i : i n 2 j n 2 1 (6.4.7)

where P is the Binomial n 1 2 distribution. If S i : i n 2 j n 2 , we
will reject H0 : x0 5 x0 at the 1 level and will not otherwise. This leads
to the confidence interval, namely, the set of all those values x0 5 such that the null
hypothesis H0 : x0 5 x0 5 is not rejected at the 1 level, equaling

C x1 xn x0 :
n

i 1

I x0] xi n 2 j n 2

x0 : n j
n

i 1

I x0] xi j [x n j 1 x j (6.4.8)

because, for example, n j n
i 1 I x0] xi if and only if x0 x n j 1

EXAMPLE 6.4.4 Application of the Sign Test
Suppose we have the following sample of size n 10 from a continuous random
variable X and we wish to test the hypothesis H0 : x0 5 0

0 44 0 06 0 43 0 16 2 13
1 15 1 08 5 67 4 97 0 11

The boxplot in Figure 6.4.4 indicates that it is very unlikely that this sample came from
a normal distribution, as there are two extreme observations. So it is appropriate to
measure the location of the distribution of X by the median.
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5

0

5

x

Figure 6.4.4: Boxplot of the data in Example 6.4.4.

In this case, the sample median (using (5.5.4)) is given by 0 11 0 43 2 0 27.
The sign statistic for the null is given by

S
10

i 1

I 0] xi 4

The Pvalue is given by

P i : 4 5 i 5 P i : i 5 1 1 P i : i 5 1

1 P 5 1
10

5

1

2

10

1 0 24609 0 75391,

and we have no reason to reject the null hypothesis.
Now suppose that we want a 0 95confidence interval for the median. Using soft

ware (or Table D.6), we calculate

10
5

1
2

10
0 24609 10

4
1
2

10
0 20508

10
3

1
2

10
0 11719 10

2
1
2

10
4 3945 10 2

10
1

1
2

10
9 7656 10 3 10

0
1
2

10
9 7656 10 4

We will use these values to compute the value of j in (6.4.7).
We can use the symmetry of the Binomial 10 1 2 distribution about n 2 to com

pute the values of P i : i n 2 j n 2 as follows. For j 10 we have that
(6.4.7) equals

P i : i 5 5 P 0 10 2
10

0

1

2

10

1 9531 10 3

and note that 1 9531 10 3 1 0 95 0 05 For j 9 we have that (6.4.7) equals

P i : i 5 4 P 0 1 9 10 2
10

0

1

2

10

2
10

1

1

2

10

2 148 4 10 2
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which is also less than 0.05. For j 8 we have that (6.4.7) equals

P i : i 5 3 P 0 1 2 8 9 10

2
10

0

1

2

10

2
10

1

1

2

10

2
10

2

1

2

10

0 10938

and this is greater than 0.05. Therefore, the appropriate value is j 9 and a 0.95
confidence interval for the median is given by [x 2 x 9 [ 0 16 1 15 .

There are many other distributionfree methods for a variety of statistical situations.
While some of these are discussed in the problems, we leave a thorough study of such
methods to further courses in statistics.

Summary of Section 6.4

Distributionfree methods of statistical inference are appropriate methods when
we feel we can make only very minimal assumptions about the distribution from
which we are sampling.

The method of moments, bootstrapping, and methods of inference based on the
sign statistic are three distributionfree methods that are applicable in different
circumstances.

EXERCISES

6.4.1 Suppose we obtained the following sample from a distribution that we know has
its first six moments. Determine an approximate 0 95confidence interval for 3.

3 27 1 24 3 97 2 25 3 47 0 09 7 45 6 20 3 74 4 12
1 42 2 75 1 48 4 97 8 00 3 26 0 15 3 64 4 88 4 55

6.4.2 Determine the method of moments estimator of the population variance. Is this
estimator unbiased for the population variance? Justify your answer.
6.4.3 (Coefficient of variation) The coefficient of variation for a population measure
ment with nonzero mean is given by where is the population mean and is the
population standard deviation. What is the method of moments estimate of the coeffi
cient of variation? Prove that the coefficient of variation is invariant under rescalings of
the distribution, i.e., under transformations of the form T x cx for constant c 0.
It is this invariance that leads to the coefficient of variation being an appropriate mea
sure of sampling variability in certain problems, as it is independent of the units we use
for the measurement.
6.4.4 For the context described in Exercise 6.4.1, determine an approximate 0.95
confidence interval for exp 1

6.4.5 Verify that the third moment of an N 2 distribution is given by 3
3 3 2 Because the normal distribution is specified by its first two moments,

any characteristic of the normal distribution can be estimated by simply plugging in
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the MLE estimates of and 2. Compare the method of moments estimator of 3
with this plugin MLE estimator, i.e., determine whether they are the same or not.
6.4.6 Suppose we have the sample data 1.48, 4.10, 2.02, 56.59, 2.98, 1.51, 76.49,
50.25, 43.52, 2.96. Consider this as a sample from a normal distribution with unknown
mean and variance, and assess the hypothesis that the population median (which is
the same as the mean in this case) is 3. Also carry out a sign test that the population
median is 3 and compare the results. Plot a boxplot for these data. Does this support
the assumption that we are sampling from a normal distribution? Which test do you
think is more appropriate? Justify your answer.
6.4.7 Determine the empirical distribution function based on the sample given below.

1 06 1 28 0 40 1 36 0 35
1 42 0 44 0 58 0 24 1 34
0 00 1 02 1 35 2 05 1 06
0 98 0 38 2 13 0 03 1 29

Using the empirical cdf, determine the sample median, the first and third quartiles, and
the interquartile range. What is your estimate of F 2 ?
6.4.8 Suppose you obtain the sample of n 3 distinct values given by 1, 2, and 3.
(a) Write down all possible bootstrap samples.

(b) If you are bootstrapping the sample median, what are the possible values for the
sample median for a bootstrap sample?
(c) If you are bootstrapping the sample mean, what are the possible values for the
sample mean for a bootstrap sample?
(d) What do you conclude about the bootstrap distribution of the sample median com
pared to the bootstrap distribution of the sample mean?
6.4.9 Explain why the central limit theorem justifies saying that the bootstrap distri
bution of the sample mean is approximately normal when n and m are large. What
result justifies the approximate normality of the bootstrap distribution of a function of
the sample mean under certain conditions?
6.4.10 For the data in Exercise 6.4.1, determine an approximate 0.95confidence inter
val for the population median when we assume the distribution we are sampling from
is symmetric with finite first and second moments. (Hint: Use large sample results.)

6.4.11 Suppose you have a sample of n distinct values and are interested in the boot
strap distribution of the sample range given by x n x 1 What is the maximum
number of values that this statistic can take over all bootstrap samples? What are the
largest and smallest values that the sample range can take in a bootstrap sample? Do
you think the bootstrap distribution of the sample range will be approximately normal?
Justify your answer.
6.4.12 Suppose you obtain the data 1 1 1 0 1 1 3 1 2 2, and 3 1. How many dis
tinct bootstrap samples are there?
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COMPUTER EXERCISES

6.4.13 For the data of Exercise 6.4.7, assess the hypothesis that the population median
is 0. State a 0.95confidence interval for the population median. What is the exact
coverage probability of this interval?
6.4.14 For the data of Exercise 6.4.7, assess the hypothesis that the first quartile of the
distribution we are sampling from is 1 0.
6.4.15 With a bootstrap sample size of m 1000, use bootstrapping to estimate the
MSE of the plugin MLE estimator of 3 for the normal distribution, using the sample
data in Exercise 6.4.1. Determine whether m 1000 is a large enough sample for
accurate results.
6.4.16 For the data of Exercise 6.4.1, use the plugin MLE to estimate the first quartile
of an N 2 distribution. Use bootstrapping to estimate the MSE of this estimate
for m 103 and m 104 (use (5.5.3) to compute the first quartile of the empirical
distribution).

6.4.17 For the data of Exercise 6.4.1, use the plugin MLE to estimate F 3 for an
N 2 distribution. Use bootstrapping to estimate the MSE of this estimate for
m 103 and m 104.
6.4.18 For the data of Exercise 6.4.1, form a 0.95confidence interval for assuming
that this is a sample from an N 2 distribution. Also compute a 0.95confidence
interval for based on the sign statistic, a bootstrap t 0.95confidence interval, and
a bootstrap percentile 0.95confidence interval using m 103 for the bootstrapping.
Compare the four intervals.
6.4.19 For the data of Exercise 6.4.1, use the plugin MLE to estimate the first quintile,
i.e., x0 2 of an N 2 distribution. Plot a density histogram estimate of the bootstrap
distribution of this estimator for m 103 and compute a bootstrap t 0.95confidence
interval for x0 2, if you think it is appropriate.
6.4.20 For the data of Exercise 6.4.1, use the plugin MLE to estimate 3 of an
N 2 distribution. Plot a density histogram estimate of the bootstrap distribu
tion of this estimator for m 103 and compute a bootstrap percentile 0.95confidence
interval for 3 if you think it is appropriate.

PROBLEMS

6.4.21 Prove that when x1 xn is a sample of distinct values from a distribution
on R1 then the i th moment of the empirical distribution on R1 (i.e., the distribution
with cdf given by F is mi

6.4.22 Suppose that x1 xn is a sample from a distribution on R1. Determine the
general form of the i th moment of F i.e., in contrast to Problem 6.4.21, we are now
allowing for several of the data values to be equal
6.4.23 (Variance stabilizing transformations) From the delta theorem, we have that

M1 is asymptotically normal with mean 1 and variance 1
2 2 n when

is continuously differentiable, 1 0 and M1 is asymptotically normal with
mean 1 and variance 2 n In some applications, it is important to choose the trans
formation so that the asymptotic variance does not depend on the mean 1 i.e.,
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1
2 2 is constant as 1 varies (note that 2 may change as 1 changes). Such

transformations are known as variance stabilizing transformations.
(a) If we are sampling from a Poisson distribution, then show that x x is
variance stabilizing.
(b) If we are sampling from a Bernoulli distribution, show that x arcsin x
is variance stabilizing.
(c) If we are sampling from a distribution on 0 whose variance is proportional
to the square of its mean (like the Gamma distribution), then show that x
ln x is variance stabilizing.

CHALLENGES

6.4.24 Suppose that X has an absolutely continuous distribution on R1 with density f
that is symmetrical about its median. Assuming that the median is 0, prove that X
and

sgn X
1 x 0
0 x 0
1 x 0

are independent, with X having density 2 f and sgn X uniformly distributed on
1 1

6.4.25 (Fisher signed deviation statistic) Suppose that x1 xn is a sample from
an absolutely continuous distribution on R1 with density that is symmetrical about its
median. Suppose we want to assess the hypothesis H0 : x0 5 x0

One possibility for this is to use the Fisher signed deviation test based on the sta
tistic S . The observed value of S is given by So

n
i 1 xi x0 sgn xi x0

We then assess H0 by comparing So with the conditional distribution of S given the
absolute deviations x1 x0 xn x0 . If a value So occurs near the smallest or
largest possible value for S under this conditional distribution, then we assert that
we have evidence against H0 We measure this by computing the Pvalue given by the
conditional probability of obtaining a value as far, or farther, from the center of the
conditional distribution of S using the conditional mean as the center. This is an ex
ample of a randomization test, as the distribution for the test statistic is determined by
randomly modifying the observed data (in this case, by randomly changing the signs
of the deviations of the xi from x0).
(a) Prove that So n x x0 .
(b) Prove that the Pvalue described above does not depend on which distribution we
are sampling from in the model. Prove that the conditional mean of S is 0 and the
conditional distribution of S is symmetric about this value.
(c) Use the Fisher signed deviation test statistic to assess the hypothesis H0 : x0 5
2 when the data are 2.2, 1.5, 3.4, 0.4, 5.3, 4.3, 2.1, with the results declared to be
statistically significant if the Pvalue is less than or equal to 0.05. (Hint: Based on the
results obtained in part (b), you need only compute probabilities for the extreme values
of S .)
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(d) Show that using the Fisher signed deviation test statistic to assess the hypothesis
H0 : x0 5 x0 is equivalent to the following randomized ttest statistic hypothesis
assessment procedure. For this, we compute the conditional distribution of

T
X x0

S n

when the X i x0 xi x0 are fixed and the sgn Xi x0 are i.i.d. uniform on
1 1 . Compare the observed value of the tstatistic with this distribution, as we

did for the Fisher signed deviation test statistic. (Hint: Show that n
i 1 xi x 2

n
i 1 xi x0

2 n x x0
2 and that large absolute values of T correspond to large

absolute values of S )

6.5 Asymptotics for the MLE (Advanced)
As we saw in Examples 6.3.7 and 6.3.11, implementing exact sampling procedures
based on the MLE can be difficult. In those examples, because the MLE was the sample
average and we could use the central limit theorem, large sample theory allowed us to
work out approximate procedures. In fact, there is some general large sample theory
available for the MLE that allows us to obtain approximate sampling inferences. This
is the content of this section. The results we develop are all for the case when is one
dimensional. Similar results exist for the higherdimensional problems, but we leave
those to a later course.

In Section 6.3, the basic issue was the need to measure the accuracy of the MLE.
One approach is to plot the likelihood and examine how concentrated it is about its
peak, with a more highly concentrated likelihood implying greater accuracy for the
MLE. There are several problems with this. In particular, the appearance of the likeli
hood will depend greatly on how we choose the scales for the axes. With appropriate
choices, we can make a likelihood look as concentrated or as diffuse as we want. Also,
when is more than twodimensional, we cannot even plot the likelihood. One solu
tion, when the likelihood is a smooth function of is to compute a numerical measure
of how concentrated the loglikelihood is at its peak. The quantity typically used for
this is called the observed Fisher information.

Definition 6.5.1 The observed Fisher information is given by

I s
2l s

2
s

(6.5.1)

where s is the MLE.

The larger the observed Fisher information is, the more peaked the likelihood func
tion is at its maximum value. We will show that the observed Fisher information is
estimating a quantity of considerable importance in statistical inference.
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Suppose that response X is realvalued, is realvalued, and the model f :
satisfies the following regularity conditions:

2 ln f x
2 exists for each x (6.5.2)

E S X
ln f x

f x dx 0 (6.5.3)

ln f x
f x dx 0 (6.5.4)

and
2 ln f x

2 f x dx (6.5.5)

Note that we have
f x ln f x

f x

so we can write (6.5.3) equivalently as

f x
dx 0

Also note that (6.5.4) can be written as

0
l x

f x dx

2l x
2

l x 2

f x dx

2l x
2

S2 x f x dx E
2l x

2
S2 X

This together with (6.5.3) and (6.5.5), implies that we can write (6.5.4) equivalently as

Var S X E S2 X E
2

2 l X .

We give a name to the quantity on the left.

Definition 6.5.2 The function I Var S X is called the Fisher informa
tion of the model.

Our developments above have proven the following result.

Theorem 6.5.1 If (6.5.2) and (6.5.3) are satisfied, then E S X 0 If, in
addition, (6.5.4) and (6.5.5) are satisfied, then

I Var S X E
2l X

2
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Now we see why I is called the observed Fisher information, as it is a natural estimate
of the Fisher information at the true value We note that there is another natural
estimate of the Fisher information at the true value, given by I We call this the
plugin Fisher information.

When we have a sample x1 xn from f then

S x1 xn ln
n

i 1

f xi

n

i 1

ln f xi
n

i 1

S xi .

So, if (6.5.3) holds for the basic model, then E S X1 Xn 0 and (6.5.3)
also holds for the sampling model. Furthermore, if (6.5.4) holds for the basic model,
then

0
n

i 1

E
2

2 ln f X i

n

i 1

E S2 X i

E
2

2 l X1 Xn Var S X1 Xn

which implies

Var S X1 Xn E
2

2 l X1 Xn nI

because l x1 xn
n
i 1 ln f xi . Therefore, (6.5.4) holds for the sampling

model as well, and the Fisher information for the sampling model is given by the sam
ple size times the Fisher information for the basic model. We have established the
following result.

Corollary 6.5.1 Under i.i.d. sampling from a model with Fisher information I .
the Fisher information for a sample of size n is given by nI

The conditions necessary for Theorem 6.5.1 to apply do not hold in general and
have to be checked in each example. There are, however, many models where these
conditions do hold.

EXAMPLE 6.5.1 Nonexistence of the Fisher Information
If X U [0 ] then f x 1 I[0 ] x which is not differentiable at x for
any x Indeed, if we ignored the lack of differentiability at x and wrote

f x 1
2

I[0 ] x

then
f x

dx
1
2 I[0 ] x dx

1
0

So we cannot define the Fisher information for this model.
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EXAMPLE 6.5.2 Location Normal
Suppose we have a sample x1 xn from an N 2

0 distribution where R1

is unknown and 2
0 is known. We saw in Example 6.2.2 that

S x1 xn
n

2
0

x

and therefore
2

2 l x1 xn
n

2
0

nI E
2

2 l X1 Xn
n

2
0

We also determined in Example 6.2.2 that the MLE is given by x1 xn x
Then the plugin Fisher information is

nI x
n

2
0

while the observed Fisher information is

I x1 xn

2l x1 xn
2

x

n
2
0

In this case, there is no need to estimate the Fisher information, but it is comforting
that both of our estimates give the exact value.

We now state, without proof, some theorems about the large sample behavior of the
MLE under repeated sampling from the model. First, we have a result concerning the
consistency of the MLE as an estimator of the true value of

Theorem 6.5.2 Under regularity conditions (like those specified above) for the
model f : , the MLE exists a.s. and

a s
as n

PROOF See Approximation Theorems of Mathematical Statistics, by R. J. Sering
(John Wiley & Sons, New York, 1980), for the proof of this result.

We see that Theorem 6.5.2 serves as a kind of strong law for the MLE. It also turns
out that when the sample size is large, the sampling distribution of the MLE is approx
imately normal.

Theorem 6.5.3 Under regularity conditions (like those specified above) for the

model f : then nI 1 2 D
N 0 1 as n

PROOF See Approximation Theorems of Mathematical Statistics, by R. J. Sering
(John Wiley & Sons, New York, 1980), for the proof of this result.
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We see that Theorem 6.5.3 serves as a kind of central limit theorem for the MLE. To
make this result fully useful to us for inference, we need the following corollary to this
theorem.

Corollary 6.5.2 When I is a continuous function of then

nI 1 2 D
N 0 1

In Corollary 6.5.2, we have estimated the Fisher information I by the plugin
Fisher estimation I . Often it is very difficult to evaluate the function I In such a
case, we instead estimate nI by the observed Fisher information I x1 xn A
result such as Corollary 6.5.2 again holds in this case.

From Corollary 6.5.2, we can devise large sample approximate inference methods
based on the MLE. For example, the approximate standard error of the MLE is

nI 1 2.

An approximate confidence interval is given by

nI 1 2z 1 2.

Finally, if we want to assess the hypothesis H0 : 0 we can do this by computing
the approximate Pvalue

2 1 nI 0
1 2

0

Notice that we are using Theorem 6.5.3 for the Pvalue, rather than Corollary 6.5.2, as,
when H0 is true, we know the asymptotic variance of the MLE is nI 0

1. So we
do not have to estimate this quantity.

When evaluating I is difficult, we can replace nI by I x1 xn in the above
expressions for the confidence interval and Pvalue. We now see very clearly the sig
nificance of the observed information. Of course, as we move from using nI to
nI to I x1 xn we expect that larger sample sizes n are needed to make the
normality approximation accurate.

We consider some examples.

EXAMPLE 6.5.3 Location Normal Model
Using the Fisher information derived in Example 6.5.2, the approximate confidence
interval based on the MLE is

nI 1 2z 1 2 x 0 n z 1 2

This is just the zconfidence interval derived in Example 6.3.6. Rather than being an
approximate confidence interval, the coverage is exact in this case. Similarly, the
approximate Pvalue corresponds to the ztest and the Pvalue is exact.
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EXAMPLE 6.5.4 Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli distribution, where
[0 1] is unknown. The likelihood function is given by

L x1 xn
nx 1 n 1 x ,

and the MLE of is x . The loglikelihood is

l x1 xn nx ln n 1 x ln 1 ,

the score function is given by

S x1 xn
nx n 1 x

1
,

and

S x1 xn
nx

2

n 1 x

1 2 .

Therefore, the Fisher information for the sample is

nI E S X1 Xn E
nX

2

n 1 X

1 2

n

1
,

and the plugin Fisher information is

nI x
n

x 1 x

Note that the plugin Fisher information is the same as the observed Fisher information
in this case.

So an approximate confidence interval is given by

nI 1 2z 1 2 x z 1 2 x 1 x n,

which is precisely the interval obtained in Example 6.3.7 using large sample consider
ations based on the central limit theorem. Similarly, we obtain the same Pvalue as in
Example 6.3.11 when testing H0 : 0

EXAMPLE 6.5.5 Poisson Model
Suppose that x1 xn is a sample from a Poisson distribution, where 0 is
unknown. The likelihood function is given by

L x1 xn
nx e n

The loglikelihood is
l x1 xn nx ln n

the score function is given by

S x1 xn
nx

n
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and

S x1 xn
nx

2

From this we deduce that the MLE of is x .
Therefore, the Fisher information for the sample is

nI E S X1 Xn E
nX

2

n

and the plugin Fisher information is

nI x
n

x

Note that the plugin Fisher information is the same as the observed Fisher information
in this case.

So an approximate confidence interval is given by

nI 1 2z 1 2 x z 1 2 x n

Similarly, the approximate Pvalue for testing H0 : 0 is given by

2 1 nI 0
1 2

0 2 1 n 0
1 2 x 0 .

Note that we have used the Fisher information evaluated at 0 for this test.

Summary of Section 6.5

Under regularity conditions on the statistical model with parameter we can
define the Fisher information I for the model.

Under regularity conditions on the statistical model, it can be proved that, when
is the true value of the parameter, the MLE is consistent for and the MLE

is approximately normally distributed with mean given by and with variance
given by nI 1.

The Fisher information I can be estimated by plugging in the MLE or by
using the observed Fisher information. These estimates lead to practically useful
inferences for in many problems.

EXERCISES

6.5.1 If x1 xn is a sample from an N 0
2 distribution, where 0 is known

and 2 0 is unknown, determine the Fisher information
6.5.2 If x1 xn is a sample from a Gamma 0 distribution, where 0 is known
and 0 is unknown, determine the Fisher information
6.5.3 If x1 xn is a sample from a Pareto distribution (see Exercise 6.2.9),
where 0 is unknown, determine the Fisher information.
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6.5.4 Suppose the number of calls arriving at an answering service during a given
hour of the day is Poisson , where 0 is unknown. The number of calls
actually received during this hour was recorded for 20 days and the following data
were obtained.

9 10 8 12 11 12 5 13 9 9
7 5 16 13 9 5 13 8 9 10

Construct an approximate 0.95confidence interval for Assess the hypothesis that
this is a sample from a Poisson 11 distribution. If you are going to decide that the
hypothesis is false when the Pvalue is less than 0.05, then compute an approximate
power for this procedure when 10
6.5.5 Suppose the lifelengths in hours of lightbulbs from a manufacturing process are
known to be distributed Gamma 2 , where 0 is unknown. A random
sample of 27 bulbs was taken and their lifelengths measured with the following data
obtained.

336 87 2750 71 2199 44 292 99 1835 55 1385 36 2690 52
710 64 2162 01 1856 47 2225 68 3524 23 2618 51 361 68
979 54 2159 18 1908 94 1397 96 914 41 1548 48 1801 84

1016 16 1666 71 1196 42 1225 68 2422 53 753 24

Determine an approximate 0.90confidence interval for

6.5.6 Repeat the analysis of Exercise 6.5.5, but this time assume that the lifelengths
are distributed Gamma 1 . Comment on the differences in the two analyses.

6.5.7 Suppose that incomes (measured in thousands of dollars) above $20K can be
assumed to be Pareto , where 0 is unknown, for a particular population. A
sample of 20 is taken from the population and the following data obtained.

21 265 20 857 21 090 20 047 20 019 32 509 21 622 20 693
20 109 23 182 21 199 20 035 20 084 20 038 22 054 20 190
20 488 20 456 20 066 20 302

Construct an approximate 0.95confidence interval for Assess the hypothesis that
the mean income in this population is $25K.
6.5.8 Suppose that x1 xn is a sample from an Exponential distribution. Con
struct an approximate leftsided confidence interval for (See Problem 6.3.25.)
6.5.9 Suppose that x1 xn is a sample from a Geometric distribution. Con
struct an approximate leftsided confidence interval for (See Problem 6.3.25.)
6.5.10 Suppose that x1 xn is a sample from a NegativeBinomial r distrib
ution. Construct an approximate leftsided confidence interval for (See Problem
6.3.25.)

PROBLEMS

6.5.11 In Exercise 6.5.1, verify that (6.5.2), (6.5.3), (6.5.4), and (6.5.5) are satisfied.
6.5.12 In Exercise 6.5.2, verify that (6.5.2), (6.5.3), (6.5.4), and (6.5.5) are satisfied.
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6.5.13 In Exercise 6.5.3, verify that (6.5.2), (6.5.3), (6.5.4), and (6.5.5) are satisfied.

6.5.14 Suppose that sampling from the model f : satisfies (6.5.2), (6.5.3),
(6.5.4), and (6.5.5). Prove that n 1 I

a s
I as n

6.5.15 (MV) When 1 2 then, under appropriate regularity conditions for the
model f : the Fisher information matrix is defined by

I

E
2

2
1
l X E

2

1 2
l X

E
2

1 2
l X E

2

2
2
l X

If X1 X2 X3 Multinomial 1 1 2 3 (Example 6.1.5), then determine the
Fisher information for this model. Recall that 3 1 1 2 and so is determined
from 1 2 .

6.5.16 (MV) Generalize Problem 6.5.15 to the case where

X1 Xk Multinomial 1 1 k

6.5.17 (MV) Using the definition of the Fisher information matrix in Exercise 6.5.15,
determine the Fisher information for the Bivariate Normal 1 2 1 1 0 model, where

1 2 R1 are unknown.
6.5.18 (MV) Extending the definition in Exercise 6.5.15 to the threedimensional case,
determine the Fisher information for the Bivariate Normal 1 2

2 2 0 model
where 1 2 R1 and 2 0 are unknown.

CHALLENGES

6.5.19 Suppose that model f : satisfies (6.5.2), (6.5.3), (6.5.4), (6.5.5), and
has Fisher information I If : R1 is 1–1, and and 1 are continuously
differentiable, then, putting : , prove that the model given by g :

satisfies the regularity conditions and that its Fisher information at is given
by I 1 1 2.

DISCUSSION TOPICS

6.5.20 The method of moments inference methods discussed in Section 6.4.1 are es
sentially large sample methods based on the central limit theorem. The large sample
methods in Section 6.5 are based on the form of the likelihood function. Which meth
ods do you think are more likely to be correct when we know very little about the form
of the distribution from which we are sampling? In what sense will your choice be
“more correct”?
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Bayesian Inference

CHAPTER OUTLINE

Section 1 The Prior and Posterior Distributions
Section 2 Inferences Based on the Posterior
Section 3 Bayesian Computations
Section 4 Choosing Priors
Section 5 Further Proofs (Advanced)

In Chapter 5, we introduced the basic concepts of inference. At the heart of the the
ory of inference is the concept of the statistical model f : that describes the
statistician’s uncertainty about how the observed data were produced. Chapter 6 dealt
with the analysis of this uncertainty based on the model and the data alone. In some
cases, this seemed quite successful, but we note that we only dealt with some of the
simpler contexts there

If we accept the principle that, to be amenable to analysis, all uncertainties need to
be described by probabilities, then the prescription of a model alone is incomplete, as
this does not tell us how to make probability statements about the unknown true value
of In this chapter, we complete the description so that all uncertainties are described
by probabilities. This leads to a probability distribution for and, in essence, we are in
the situation of Section 5.2, with the parameter now playing the role of the unobserved
response. This is the Bayesian approach to inference.

Many statisticians prefer to develop statistical theory without the additional ingre
dients necessary for a full probability description of the unknowns. In part, this is
motivated by the desire to avoid the prescription of the additional model ingredients
necessary for the Bayesian formulation. Of course, we would prefer to have our sta
tistical analysis proceed based on the fewest and weakest model assumptions possible.
For example, in Section 6.4, we introduced distributionfree methods. A price is paid
for this weakening, however, and this typically manifests itself in ambiguities about
how inference should proceed. The Bayesian formulation in essence removes the am
biguity, but at the price of a more involved model.

The Bayesian approach to inference is sometimes presented as antagonistic to meth
ods that are based on repeated sampling properties (often referred to as frequentist

373
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methods), as discussed, for example, in Chapter 6. The approach taken in this text,
however, is that the Bayesian model arises naturally from the statistician assuming
more ingredients for the model. It is up to the statistician to decide what ingredients
can be justified and then use appropriate methods. We must be wary of all model
assumptions, because using inappropriate ones may invalidate our inferences. Model
checking will be taken up in Chapter 9.

7.1 The Prior and Posterior Distributions
The Bayesian model for inference contains the statistical model f : for the
data s S and adds to this the prior probability measure for The prior describes
the statistician’s beliefs about the true value of the parameter a priori, i.e., before
observing the data. For example, if [0 1] and equals the probability of getting
a head on the toss of a coin, then the prior density plotted in Figure 7.1.1 indicates
that the statistician has some belief that the true value of is around 0.5. But this in
formation is not very precise.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.5

1.0

1.5

theta

prior

Figure 7.1.1: A fairly diffuse prior on [0,1].

On the other hand, the prior density plotted in Figure 7.1.2indicates that the statis
tician has very precise information about the true value of In fact, if the statistician
knows nothing about the true value of , then using the uniform distribution on [0 1]
might be appropriate.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

2

4

6

8

10

 theta

prior

Figure 7.1.2: A fairly precise prior on [0,1].

It is important to remember that the probabilities prescribed by the prior repre
sent beliefs. They do not in general correspond to longrun frequencies, although they
could in certain circumstances. A natural question to ask is: Where do these beliefs
come from in an application? An easy answer is to say that they come from previous
experience with the random system under investigation or perhaps with related sys
tems. To be honest, however, this is rarely the case, and one has to admit that the
prior, as well as the statistical model, is often a somewhat arbitrary construction used
to drive the statistician’s investigations. This raises the issue as to whether or not the
inferences derived have any relevance to the practical context, if the model ingredients
suffer from this arbitrariness. This is where the concept of model checking comes into
play, a topic we will discuss in Chapter 9. At this point, we will assume that all the
ingredients make sense, but remember that in an application, these must be checked if
the inferences taken are to be practically meaningful.

We note that the ingredients of the Bayesian formulation for inference prescribe a
marginal distribution for namely, the prior and a set of conditional distributions
for the data s given namely, f : . By the law of total probability (Theorems
2.3.1 and 2.8.1), these ingredients specify a joint distribution for s namely,

f s ,

where denotes the probability or density function associated with . When the prior
distribution is absolutely continuous, the marginal distribution for s is given by

m s f s d

and is referred to as the prior predictive distribution of the data. When the prior distri
bution of is discrete, we replace (as usual) the integral by a sum.
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If we did not observe any data, then the prior predictive distribution is the relevant
distribution for making probability statements about the unknown value of s Similarly,
the prior is the relevant distribution to use in making probability statements about
before we observe s Inference about these unobserved quantities then proceeds as
described in Section 5.2.

Recall now the principle of conditional probability; namely, P A is replaced by
P A C after we are told that C is true. Therefore, after observing the data, the rel
evant distribution to use in making probability statements about is the conditional
distribution of given s We denote this conditional probability measure by s
and refer to it as the posterior distribution of Note that the density (or probability
function) of the posterior is obtained immediately by taking the joint density f s
of s and dividing it by the marginal m s of s

Definition 7.1.1 The posterior distribution of is the conditional distribution of
, given s. The posterior density, or posterior probability function (whichever is

relevant), is given by

s
f s

m s
(7.1.1)

Sometimes this use of conditional probability is referred to as an application of
Bayes’ theorem (Theorem 1.5.2). This is because we can think of a value of being
selected first according to , and then s is generated from f We then want to make
probability statements about the first stage, having observed the outcome of the sec
ond stage. It is important to remember, however, that choosing to use the posterior
distribution for probability statements about is an axiom, or principle, not a theorem.

We note that in (7.1.1) the prior predictive of the data s plays the role of the inverse
normalizing constant for the posterior density. By this we mean that the posterior
density of is proportional to f s , as a function of ; to convert this into a
proper density function, we need only divide by m s In many examples, we do not
need to compute the inverse normalizing constant. This is because we recognize the
functional form, as a function of of the posterior from the expression f s
and so immediately deduce the posterior probability distribution of Also, there are
Monte Carlo methods, such as those discussed in Chapter 4, that allow us to sample
from s without knowing m s (also see Section 7.3).

We consider some applications of Bayesian inference.

EXAMPLE 7.1.1 Bernoulli Model
Suppose that we observe a sample x1 xn from the Bernoulli distribution with

[0 1] unknown. For the prior, we take to be equal to a Beta density (see
Problem 2.4.16). Then the posterior of is proportional to the likelihood

n

i 1

xi 1 1 xi nx 1 n 1 x

times the prior

B 1 1 1 1 .
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This product is proportional to

nx 1 1 n 1 x 1 .

We recognize this as the unnormalized density of a Beta nx n 1 x dis
tribution. So in this example, we did not need to compute m x1 xn to obtain the
posterior.

As a specific case, suppose that we observe nx 10 in a sample of n 40 and
1 i.e., we have a uniform prior on Then the posterior of is given by the

Beta 11 31 distribution. We plot the posterior density in Figure 7.1.3 as well as the
prior.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

1

2

3

4

5

6

theta

Figure 7.1.3: Prior (dashed line) and posterior densities (solid line) in Example 7.1.1.

The spread of the posterior distribution gives us some idea of the precision of any
probability statements we make about . Note how much information the data have
added, as reected in the graphs of the prior and posterior densities.

EXAMPLE 7.1.2 Location Normal Model
Suppose that x1 xn is a sample from an N 2

0 distribution, where R1 is
unknown and 2

0 is known. The likelihood function is then given by

L x1 xn exp
n

2 2
0

x 2

Suppose we take the prior distribution of to be an N 0
2
0 for some specified

choice of 0 and 2
0 The posterior density of is then proportional to
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exp
1

2 2
0

0
2 exp

n

2 2
0

x 2

exp
1

2 2
0

2 2 0
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0
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exp
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1
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0

n
2
0

2 2
1
2
0

n
2
0

1
0
2
0

n
2
0

x

exp
2
0
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2
0
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nx2
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. (7.1.2)

We immediately recognize this, as a function of as being proportional to the density
of an

N
1
2
0

n
2
0

1
0
2
0

n
2
0

x
1
2
0

n
2
0

1

distribution.
Notice that the posterior mean is a weighted average of the prior mean 0 and the

sample mean x , with weights

1
2
0

n
2
0

1
1
2
0

and
1
2
0

n
2
0

1
n

2
0

respectively. This implies that the posterior mean lies between the prior mean and the
sample mean.

Furthermore, the posterior variance is smaller than the variance of the sample mean.
So if the information expressed by the prior is accurate, inferences about based on
the posterior will be more accurate than those based on the sample mean alone. Note
that the more diffuse the prior is — namely, the larger 2

0 is — the less inuence the
prior has. For example, when n 20 and 2

0 1 2
0 1 then the ratio of the

posterior variance to the sample mean variance is 20 21 0 95 So there has been a
5% improvement due to the use of prior information.



Chapter 7: Bayesian Inference 379

For example, suppose that 2
0 1 0 0 2

0 2 and that for n 10 we
observe x 1 2 Then the prior is an N 0 2 distribution, while the posterior is an

N
1

2

10

1

1 0

2

10

1
1 2

1

2

10

1

1

N 1 1429 9 523 8 10 2

distribution. These densities are plotted in Figure 7.1.4. Notice that the posterior is
quite concentrated compared to the prior, so we have learned a lot from the data.

5 4 3 2 1 0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

x

Figure 7.1.4: Plot of the N 0 2 prior (dashed line) and the N 1 1429 9 523 8 10 2

posterior (solid line) in Example 7.1.2.

EXAMPLE 7.1.3 Multinomial Model
Suppose we have a categorical response s that takes k possible values, say, s S
1 k . For example, suppose we have a bowl containing chips labelled one of

1 k. A proportion i of the chips are labelled i , and we randomly draw a chip,
observing its label.

When the i are unknown, the statistical model is given by

p 1 k : 1 k ,

where p 1 k i P s i i and

1 k : 0 i 1 i 1 k and 1 k 1

Note that the parameter space is really only k 1 dimensional because, for example,
k 1 1 k 1 namely, once we have determined k 1 of the i the

remaining value is specified.
Now suppose we observe a sample s1 sn from this model. Let the frequency

(count) of the i th category in the sample be denoted by xi Then, from Example 2.8.5,
we see that the likelihood is given by

L 1 k s1 sn
x1
1

x2
2

xk
k
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For the prior we assume that 1 k 1 Dirichlet 1 2 k with den
sity (see Problem 2.7.13) given by

1 k

1 k

1 1
1

2 1
2

k 1
k (7.1.3)

for 1 k (recall that k 1 1 k 1). The i are nonnega
tive constants chosen by the statistician to reect her beliefs about the unknown value
of 1 k . The choice 1 2 k 1 corresponds to a uniform
distribution, as then (7.1.3) is constant on .

The posterior density of 1 k 1 is then proportional to

x1 1 1
1

x2 2 1
2

xk k 1
k

for 1 k . From (7.1.3), we immediately deduce that the posterior distrib
ution of 1 k 1 is Dirichlet x1 1 x2 2 xk k .

EXAMPLE 7.1.4 LocationScale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown. The likelihood function is then given by

L 2 x1 xn 2 2
n 2

exp
n

2 2
x 2 exp

n 1

2 2
s2

Suppose we put the following prior on 2 . First, we specify that

2 N 0
2
0

2

i.e., the conditional prior distribution of given 2 is normal with mean 0 and vari
ance 2

0
2. Then we specify the marginal prior distribution of 2 as

1
2

Gamma 0 0 . (7.1.4)

Sometimes (7.1.4) is referred to by saying that 2 is distributed inverse Gamma. The
values 0

2
0 0 and 0 are selected by the statistician to reect his prior beliefs.

From this, we can deduce (see Section 7.5 for the full derivation) that the posterior
distribution of 2 is given by

2 x1 xn N x n
1
2
0

1
2 (7.1.5)

and
1
2 x1 xn Gamma 0 n 2 x (7.1.6)

where

x n
1
2
0

1
0
2
0

nx (7.1.7)
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and

x 0
n 1

2
s2 1

2

n x 0
2

1 n 2
0

(7.1.8)

To generate a value 2 from the posterior, we can make use of the method of
composition (see Problem 2.10.13) by first generating 2 using (7.1.6) and then using
(7.1.5) to generate We will discuss this further in Section 7.3.

Notice that as 0 i.e., as the prior on becomes increasingly diffuse,
the conditional posterior distribution of given 2 converges in distribution to an
N x 2 n distribution because

x x (7.1.9)

and

n
1
2
0

1
1

n
(7.1.10)

Furthermore, as 0 and 0 0 the marginal posterior of 1 2 converges in
distribution to a Gamma 0 n 2 n 1 s2 2 distribution because

x n 1 s2 2 (7.1.11)

Actually, it does not really seem to make sense to let 0 and 0 0 in
the prior distribution of 2 as the prior does not converge to a proper probability
distribution. The idea here, however, is that we think of taking 0 large and 0 small,
so that the posterior inferences are approximately those obtained from the limiting
posterior. There is still a need to choose 0 however, even in the diffuse case, as the
limiting inferences are dependent on this quantity.

Summary of Section 7.1

Bayesian inference adds the prior probability distribution to the sampling model
for the data as an additional ingredient to be used in determining inferences about
the unknown value of the parameter.

Having observed the data, the principle of conditional probability leads to the
posterior distribution of the parameter as the basis for inference.

Inference about marginal parameters is handled by marginalizing the full poste
rior.

EXERCISES

7.1.1 Suppose that S 1 2 1 2 3 and the class of probability distributions
for the response s is given by the following table.

s 1 s 2
f1 s 1/2 1/2
f2 s 1/3 2/3
f3 s 3/4 1/4
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If we use the prior given by the table

1 2 3
1/5 2/5 2/5

then determine the posterior distribution of for each possible sample of size 2.
7.1.2 In Example 7.1.1, determine the posterior mean and variance of .

7.1.3 In Example 7.1.2, what is the posterior probability that is positive, given that
n 10 x 1 when 2

0 1 0 0 and 2
0 10? Compare this with the prior

probability of this event.
7.1.4 Suppose that x1 xn is a sample from a Poisson distribution with 0
unknown. If we use the prior distribution for given by the Gamma distribution,
then determine the posterior distribution of .
7.1.5 Suppose that x1 xn is a sample from a Uniform[0 ] distribution with

0 unknown. If the prior distribution of is Gamma then obtain the form of
the posterior density of .
7.1.6 Find the posterior mean and variance of i in Example 7.1.3 when k 3. (Hint:
See Problems 3.2.16 and 3.3.20.)
7.1.7 Suppose we have a sample

6 56 6 39 3 30 3 03 5 31 5 62 5 10 2 45 8 24 3 71
4 14 2 80 7 43 6 82 4 75 4 09 7 95 5 84 8 44 9 36

from an N 2 distribution and we determine that a prior specified by 2

N 3 4 2 2 Gamma 1 1 is appropriate. Determine the posterior distribution
of 1 2 .
7.1.8 Suppose that the prior probability of being in a set A is 0 25 and the
posterior probability of being in A is 0 80
(a) Explain what effect the data have had on your beliefs concerning the true value of

being in A
(b) Explain why a posterior probability is more relevant to report than is a prior proba
bility.
7.1.9 Suppose you toss a coin and put a Uniform[0 4 0 6] prior on , the probability
of getting a head on a single toss.
(a) If you toss the coin n times and obtain n heads, then determine the posterior density
of

(b) Suppose the true value of is, in fact, 0 99. Will the posterior distribution of ever
put any probability mass around 0 99 for any sample of n?

(c) What do you conclude from part (b) about how you should choose a prior ?
7.1.10 Suppose that for statistical model f : R1 , we assign the prior density

Now suppose that we reparameterize the model via the function , where
: R1 R1 is differentiable and strictly increasing.

(a) Determine the prior density of
(b) Show that m x is the same whether we parameterize the model by or by
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7.1.11 Suppose that for statistical model f : , where 2 1 0 1 2 3 ,
we assign the prior probability function , which is uniform on Now suppose we
are interested primarily in making inferences about
(a) Determine the prior probability distribution of Is this distribution uniform?
(b) A uniform prior distribution is sometimes used to express complete ignorance about
the value of a parameter. Does complete ignorance about the value of a parameter imply
complete ignorance about a function of a parameter? Explain.
7.1.12 Suppose that for statistical model f : [0 1] , we assign the prior density

, which is uniform on [0 1] Now suppose we are interested primarily in making
inferences about 2

(a) Determine the prior density of 2 Is this distribution uniform?
(b) A uniform prior distribution is sometimes used to express complete ignorance about
the value of a parameter. Does complete ignorance about the value of a parameter imply
complete ignorance about a function of a parameter? Explain.

COMPUTER EXERCISES

7.1.13 In Example 7.1.2, when 0 2 2
0 1 2

0 1 n 20 and x 8 2
generate a sample of 104 (or as large as possible) from the posterior distribution of
and estimate the posterior probability that the coefficient of variation is greater than
0.125, i.e., the posterior probability that 0 0 125 Estimate the error in your
approximation.
7.1.14 In Example 7.1.2, when 0 2 2

0 1 2
0 1 n 20 and x 8 2

generate a sample of 104 (or as large as possible) from the posterior distribution of
and estimate the posterior expectation of the coefficient of variation 0 Estimate
the error in your approximation.

7.1.15 In Example 7.1.1, plot the prior and posterior densities on the same graph and
compare them when n 30 x 0 73 3 and 3. (Hint: Calculate the
logarithm of the posterior density and then exponentiate this. You will need the log
gamma function defined by ln for 0 )

PROBLEMS

7.1.16 Suppose the prior of a realvalued parameter is given by the N 0
2 dis

tribution. Show that this distribution does not converge to a probability distribution as
(Hint: Consider the limits of the distribution functions.)

7.1.17 Suppose that x1 xn is a sample from f : and that we have a
prior . Show that if we observe a further sample xn 1 xn m , then the posterior
you obtain from using the posterior x1 xn as a prior, and then condition
ing on xn 1 xn m , is the same as the posterior obtained using the prior and
conditioning on x1 xn xn 1 xn m This is the Bayesian updating property.
7.1.18 In Example 7.1.1, determine m x . If you were asked to generate a value from
this distribution, how would you do it? (Hint: For the generation part, use the theorem
of total probability.)
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7.1.19 Prove that the posterior distribution depends on the data only through the value
of a sufficient statistic.

COMPUTER PROBLEMS

7.1.20 For the data of Exercise 7.1.7, plot the prior and posterior densities of 2 over
0 10 on the same graph and compare them. (Hint: Evaluate the logarithms of the

densities first and then plot the exponential of these values.)

7.1.21 In Example 7.1.4, when 0 0 2
0 1 0 2 0 1 n 20 x 8 2

and s2 2 1 generate a sample of 104 (or as large as is feasible) from the posterior
distribution of 2 and estimate the posterior probability that 2. Estimate the error
in your approximation.

7.1.22 In Example 7.1.4, when 0 0 2
0 1 0 2 0 1 n 20 x 8 2

and s2 2 1 generate a sample of 104 (or as large as is feasible) from the posterior
distribution of 2 and estimate the posterior expectation of . Estimate the error
in your approximation.

DISCUSSION TOPICS

7.1.23 One of the objections raised concerning Bayesian inference methodology is
that it is subjective in nature. Comment on this and the role of subjectivity in scientific
investigations.
7.1.24 Two statisticians are asked to analyze a data set x produced by a system under
study. Statistician I chooses to use a sampling model f : and prior I , while
statistician II chooses to use a sampling model g : and prior I I Comment
on the fact that these ingredients can be completely different and so the subsequent
analyses completely different. What is the relevance of this for the role of subjectivity
in scientific analyses of data?

7.2 Inferences Based on the Posterior
In Section 7.1, we determined the posterior distribution of as a fundamental object
of Bayesian inference. In essence, the principle of conditional probability asserts that
the posterior distribution s contains all the relevant information in the sampling
model f : the prior and the data s about the unknown true value of
While this is a major step forward, it does not completely tell us how to make the types
of inferences we discussed in Section 5.5.3.

In particular, we must specify how to compute estimates, credible regions, and carry
out hypothesis assessment — which is what we will do in this section. It turns out that
there are often several plausible ways of proceeding, but they all have the common
characteristic that they are based on the posterior.

In general, we are interested in specifying inferences about a realvalued charac
teristic of interest . One of the great advantages of the Bayesian approach is that
inferences about are determined in the same way as inferences about the full para
meter , but with the marginal posterior distribution for replacing the full posterior.
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This situation can be compared with the likelihood methods of Chapter 6, where it
is not always entirely clear how we should proceed to determine inferences about
based upon the likelihood. Still, we have paid a price for this in requiring the addition
of another model ingredient, namely, the prior.

So we need to determine the posterior distribution of This can be a difficult task
in general, even if we have a closedform expression for s . When the posterior
distribution of is discrete, the posterior probability function of is given by

0 s
: 0

s .

When the posterior distribution of is absolutely continuous, we can often find a
complementing function so that h is 1–1, and such that the
methods of Section 2.9.2 can be applied. Then, denoting the inverse of this transforma
tion by h 1 the methods of Section 2.9.2 show that the marginal posterior
distribution of has density given by

0 s h 1
0 s J h 1

0
1 d , (7.2.1)

where J denotes the Jacobian derivative of this transformation (see Problem 7.2.35).
Evaluating (7.2.1) can be difficult, and we will generally avoid doing so here. An
example illustrates how we can sometimes avoid directly implementing (7.2.1) and
still obtain the marginal posterior distribution of .

EXAMPLE 7.2.1 LocationScale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown, and we use the prior given in Example 7.1.4. The posterior
distribution for 2 is then given by (7.1.5) and (7.1.6).

Suppose we are primarily interested in 2 2 We see immediately that
the marginal posterior of 2 is prescribed by (7.1.6) and thus have no further work to
do, unless we want a form for the marginal posterior density of 2. We can use the
methods of Section 2.6 for this (see Exercise 7.2.4).

If we want the marginal posterior distribution of 2 , then things are not
quite so simple because (7.1.5) only prescribes the conditional posterior distribution
of given 2 We can, however, avoid the necessity to implement (7.2.1). Note that
(7.1.5) implies that

Z x

n 1 2
0

1 2
2 x1 xn N 0 1

where x is given in (7.1.7). Because this distribution does not involve 2 the pos
terior distribution of Z is independent of the posterior distribution of Now if X
Gamma , then Y 2 X Gamma 1 2 2 2 (see Problem 4.6.16 for
the definition of the general chisquared distribution) and so, from (7.1.6),

2 x
2 x1 xn

2 2 0 n



386 Section 7.2: Inferences Based on the Posterior

where x is given in (7.1.8). Therefore (using Problem 4.6.14), as we are dividing an
N 0 1 variable by the square root of an independent 2 2 0 n random variable
divided by its degrees of freedom, we conclude that the posterior distribution of

T
Z

2 x
2 2 0 n

x

2 x

2 0 n n 1 2
0

is t 2 0 n . Equivalently, we can say the posterior distribution of is the same as

x
1

2 0 n

2 x

n 1 2
0

T ,

where T t 2 0 n . By (7.1.9), (7.1.10), and (7.1.11), we have that the posterior
distribution of converges to the distribution of

x
n 1

2 0 n

s

n
T

as 0 and 0 0.
In other cases, we cannot avoid the use of (7.2.1) if we want the marginal posterior

density of For example, suppose we are interested in the posterior distribution of the
coefficient of variation (we exclude the line given by 0 from the parameter space)

2 1 1
2

1 2

Then a complementing function to is given by

2 1
2

and it can be shown (see Section 7.5) that

J 2 1 2

If we let 1 x1 xn and x1 xn denote the posterior densities of
given , and the posterior density of , respectively, then, from (7.2.1), the marginal

density of is given by

2

0

1 1 2 1 x1 xn x1 xn
1 2 d (7.2.2)

Without writing this out (see Problem 7.2.22), we note that we are left with a rather
messy integral to evaluate.

In some cases, integrals such as (7.2.2) can be evaluated in closed form; in other
cases, they cannot. While it is convenient to have a closed form for a density, often
this is not necessary, as we can use Monte Carlo methods to approximate posterior
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probabilities and expectations of interest. We will return to this in Section 7.3. We
should always remember that our goal, in implementing Bayesian inference methods,
is not to find the marginal posterior densities of quantities of interest, but rather to have
a computational algorithm that allows us to implement our inferences.

Under fairly weak conditions, it can be shown that the posterior distribution of
converges, as the sample size increases, to a distribution degenerate at the true value.
This is very satisfying, as it indicates that Bayesian inference methods are consistent.

7.2.1 Estimation

Suppose now that we want to calculate an estimate of a characteristic of interest .
We base this on the posterior distribution of this quantity. There are several different
approaches to this problem.

Perhaps the most natural estimate is to obtain the posterior density (or probability
function when relevant) of and use the posterior mode i.e., the point where the
posterior probability or density function of takes its maximum. In the discrete case,
this is the value of with the greatest posterior probability; in the continuous case,
it is the value that has the greatest amount of posterior probability in short intervals
containing it.

To calculate the posterior mode, we need to maximize s as a function of
Note that it is equivalent to maximize m s s so that we do not need to compute
the inverse normalizing constant to implement this. In fact, we can conveniently choose
to maximize any function that is a 1–1 increasing function of s and get the same
answer. In general, s may not have a unique mode, but typically there is only
one.

An alternative estimate is commonly used and has a natural interpretation. This is
given by the posterior mean

E s ,

whenever this exists. When the posterior distribution of is symmetrical about its
mode, and the expectation exists, then the posterior expectation is the same as the
posterior mode; otherwise, these estimates will be different. If we want the estimate to
reect where the central mass of probability lies, then in cases where s is highly
skewed, perhaps the mode is a better choice than the mean. We will see in Chapter 8,
however, that there are other ways of justifying the posterior mean as an estimate.

We now consider some examples.

EXAMPLE 7.2.2 Bernoulli Model
Suppose we observe a sample x1 xn from the Bernoulli distribution with
[0 1] unknown and we place a Beta prior on . In Example 7.1.1, we determined
the posterior distribution of to be Beta nx n 1 x . Let us suppose that
the characteristic of interest is

The posterior expectation of is given by
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E x1 xn

1

0

n

nx n 1 x
nx 1 1 n 1 x 1 d

n

nx n 1 x

1

0

nx 1 n 1 x 1 d

n

nx n 1 x

nx 1 n 1 x

n 1
nx

n

When we have a uniform prior, i.e., 1 , the posterior expectation is given by

E x
nx 1

n 2

To determine the posterior mode, we need to maximize

ln nx 1 1 n 1 x 1 nx 1 ln n 1 x 1 ln 1

This function has first derivative

nx 1 n 1 x 1

1

and second derivative

nx 1
2

n 1 x 1

1 2

Setting the first derivative equal to 0 and solving gives the solution

nx 1

n 2

Now, if 1 1 we see that the second derivative is always negative, and so
is the unique posterior mode. The restriction on the choice of 1 1 implies
that the prior has a mode in 0 1 rather than at 0 or 1 Note that when 1 1
namely, when we put a uniform prior on the posterior mode is x . This is the
same as the maximum likelihood estimate (MLE).

The posterior is highly skewed whenever nx and n 1 x are far apart
(plot Beta densities to see this). Thus, in such a case, we might consider the posterior
mode as a more sensible estimate of . Note that when n is large, the mode and the
mean will be very close together and in fact very close to the MLE x

EXAMPLE 7.2.3 Location Normal Model
Suppose that x1 xn is a sample from an N 2

0 distribution, where R1 is
unknown and 2

0 is known, and we take the prior distribution on to be N 2
0 . Let

us suppose, that the characteristic of interest is
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In Example 7.1.2 we showed that the posterior distribution of is given by the

N
1
2
0

n
2
0

1
0
2
0

n
2
0

x
1
2
0

n
2
0

1

distribution. Because this distribution is symmetric about its mode, and the mean exists,
the posterior mode and mean agree and equal

1
2
0

n
2
0

1
0
2
0

n
2
0

x

This is a weighted average of the prior mean and the sample mean and lies between
these two values.

When n is large, we see that this estimator is approximately equal to the sample
mean x which we also know to be the MLE for this situation Furthermore, when we
take the prior to be very diffuse, namely, when 2

0 is very large, then again this estimator
is close to the sample mean.

Also observe that the ratio of the sampling variance of x to the posterior variance
of is

2
0

n

1
2
0

n
2
0

1
2
0

n 2
0

is always greater than 1. The closer 2
0 is to 0, the larger this ratio is. Furthermore, as

2
0 0 the Bayesian estimate converges to 0

If we are pretty confident that the population mean is close to the prior mean 0
we will take 2

0 small so that the bias in the Bayesian estimate will be small and its
variance will be much smaller than the sampling variance of x In such a situation, the
Bayesian estimator improves on accuracy over the sample mean. Of course, if we are
not very confident that is close to the prior mean 0 then we choose a large value
for 2

0 and the Bayesian estimator is basically the MLE.

EXAMPLE 7.2.4 Multinomial Model
Suppose we have a sample s1 sn from the model discussed in Example 7.1.3
and we place a Dirichlet 1 2 k distribution on 1 k 1 . The posterior
distribution of 1 k 1 is then

Dirichlet x1 1 x2 2 xk k ,

where xi is the number of responses in the i th category.
Now suppose we are interested in estimating 1 the probability that

a response is in the first category. It can be shown (see Problem 7.2.25) that, if
1 k 1 is distributed Dirichlet 1 2 k then i is distributed

Dirichlet i i Beta i i

where i 1 2 k i This result implies that the marginal posterior
distribution of 1 is

Beta x1 1 x2 xk 2 k .
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Then, assuming that each i 1 and using the argument in Example 7.2.2 and
x1 xk n, the marginal posterior mode of 1 is

1
x1 1 1

n 2 1 k

When the prior is the uniform, namely, 1 k 1 then

1
x1

n k 2

As in Example 7.2.2, we compute the posterior expectation to be

E 1 x
x1 1

n 1 k

The posterior distribution is highly skewed whenever x1 1 and x2 xk 2

k are far apart.
From Problem 7.2.26, we have that the plugin MLE of 1 is x1 n When n is

large, the Bayesian estimates are close to this value, so there is no conict between the
estimates. Notice, however, that when the prior is uniform, then 1 k k,
hence the plugin MLE and the Bayesian estimates will be quite different when k is
large relative to n. In fact, the posterior mode will always be smaller than the plugin
MLE when k 2 and x1 0 This is a situation in which the Bayesian and frequentist
approaches to inference differ.

At this point, the decision about which estimate to use is left with the practitioner,
as theory does not seem to provide a clear answer. We can be comforted by the fact
that the estimates will not differ by much in many contexts of practical importance.

EXAMPLE 7.2.5 LocationScale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown, and we use the prior given in Example 7.1.4. Let us suppose
that the characteristic of interest is 2 .

In Example 7.2.1, we derived the marginal posterior distribution of to be the
same as the distribution of

x
1

2 0 n

2 x

n 1 2
0

T ,

where T t n 2 0 . This is a t n 2 0 distribution relocated to have its mode at

x and rescaled by the factor

1

2 0 n

2 x

n 1 2
0

So the marginal posterior mode of is

x n
1
2
0

1
0
2
0

nx
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Because a t distribution is symmetric about its mode, this is also the posterior mean of
, provided that n 2 0 1 as a t distribution has a mean only when 1 (see

Problem 4.6.16) This will always be the case as the sample size n 1 Again, x is a
weighted average of the prior mean 0 and the sample average x

The marginal posterior mode and expectation can also be obtained for 2

2 These computations are left to the reader (see Exercise 7.2.4).

One issue that we have not yet addressed is how we will assess the accuracy of
Bayesian estimates. Naturally, this is based on the posterior distribution and how con
centrated it is about the estimate being used. In the case of the posterior mean, this
means that we compute the posterior variance as a measure of spread for the posterior
distribution of about its mean. For the posterior mode, we will discuss this issue
further in Section 7.2.3.

EXAMPLE 7.2.6 Posterior Variances
In Example 7.2.2, the posterior variance of is given by (see Exercise 7.2.6)

nx n 1 x

n 2 n 1

Notice that the posterior variance converges to 0 as n
In Example 7.2.3, the posterior variance is given by 1 2

0 n 2
0

1. Notice that
the posterior variance converges to 0 as 2

0 0 and converges to 2
0 n the sampling

variance of x , as 2
0

In Example 7.2.4, the posterior variance of 1 is given by (see Exercise 7.2.7)

x1 1 x2 xk 2 k

n 1 k
2 n 1 k 1

Notice that the posterior variance converges to 0 as n
In Example 7.2.5, the posterior variance of is given by (see Problem 7.2.28)

1

n 2 0

2 x

n 1 2
0

n 2 0

n 2 0 2

2 x

n 1 2
0

1

n 2 0 2

provided n 2 0 2 because the variance of a t distribution is 2 when
2 (see Problem 4.6.16). Notice that the posterior variance goes to 0 as n

7.2.2 Credible Intervals

A credible interval, for a realvalued parameter is an interval C s [l s u s ]
that we believe will contain the true value of As with the sampling theory approach,
we specify a probability and then find an interval C s satisfying

C s s : l s u s s (7.2.3)

We then refer to C s as a credible interval for
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Naturally, we try to find a credible interval C s so that C s s is
as close to as possible, and such that C s is as short as possible. This leads to the
consideration of highest posterior density (HPD) intervals, which are of the form

C s : s c ,

where s is the marginal posterior density of and where c is chosen as large as
possible so that (7.2.3) is satisfied. In Figure 7.2.1, we have plotted an example of an
HPD interval for a given value of c

  | s)



c

l(s) u(s)
[ ]

Figure 7.2.1: An HPD interval C s [l s u s ] : s c

Clearly, C s contains the mode whenever c max s . We can take the
length of an HPD interval as a measure of the accuracy of the mode of s as an
estimator of . The length of a 0 95credible interval for will serve the same
purpose as the margin of error does with confidence intervals.

Consider now some applications of the concept of credible interval.

EXAMPLE 7.2.7 Location Normal Model
Suppose that x1 xn is a sample from an N 2

0 distribution, where R1 is
unknown and 2

0 is known, and we take the prior distribution on to be N 0
2
0 . In

Example 7.1.2, we showed that the posterior distribution of is given by the

N
1
2
0

n
2
0

1
0
2
0

n
2
0

x
1
2
0

n
2
0

1

distribution. Since this distribution is symmetric about its mode (also mean) , a short
est HPD interval is of the form

1
2
0

n
2
0

1 2

c,
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where c is such that

1
2
0

n
2
0

1 2

c x1 xn

c
1
2
0

n
2
0

1 2

c x1 xn

Since

1
2
0

n
2
0

1 2

x1 xn N 0 1

we have c c , where is the standard normal cumulative distribution
function (cdf). This immediately implies that c z 1 2 and the HPD interval is
given by

1
2
0

n
2
0

1
0
2
0

n
2
0

x
1
2
0

n
2
0

1 2

z 1 2

Note that as 2
0 namely, as the prior becomes increasingly diffuse, this

interval converges to the interval

x 0

n
z 1 2

which is also the confidence interval derived in Chapter 6 for this problem. So under
a diffuse normal prior, the Bayesian and frequentist approaches agree.

EXAMPLE 7.2.8 LocationScale Normal Model
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown, and we use the prior given in Example 7.1.4. In Example
7.2.1, we derived the marginal posterior distribution of to be the same as

x
1

2 0 n

2 x

n 1 2
0

T

where T t 2 0 n . Because this distribution is symmetric about its mode x a
HPD interval is of the form

x
1

2 0 n

2 x

n 1 2
0

c,



394 Section 7.2: Inferences Based on the Posterior

where c satisfies

x
1

2 0 n

2 x

n 1 2
0

c x1 xn

c
2 x

2 0 n n 1 2
0

1 2

c x1 xn

G2 0 n c G2 0 n c .

Here, G2 0 n is the t 2 0 n cdf, and therefore c t 1 2 2 0 n .
Using (7.1.9), (7.1.10), and (7.1.11) we have that this interval converges to the

interval

x
n 1

2 0 n

s

n
t n 2 0

as 0 and 0 0 Note that this is a little different from the confidence
interval we obtained for in Example 6.3.8, but when 0 n is small, they are virtually
identical.

In the examples we have considered so far, we could obtain closedform expres
sions for the HPD intervals. In general, this is not the case. In such situations, we have
to resort to numerical methods to obtain the HPD intervals, but we do not pursue this
topic further here.

There are other methods of deriving credible intervals. For example, a common
method of obtaining a credible interval for is to take the interval [ l r ] where

l is a 1 2 quantile for the posterior distribution of and r is a 1 1 2
quantile for this distribution. Alternatively, we could form onesided intervals. These
credible intervals avoid the more extensive computations that may be needed for HPD
intervals.

7.2.3 Hypothesis Testing and Bayes Factors

Suppose now that we want to assess the evidence in the observed data concerning
the hypothesis H0 : 0 It seems clear how we should assess this, namely,
compute the posterior probability

0 s . (7.2.4)

If this is small, then conclude that we have evidence against H0 We will see further
justification for this approach in Chapter 8.

EXAMPLE 7.2.9
Suppose we want to assess the evidence concerning whether or not A If we let

IA then we are assessing the hypothesis H0 : 1 and

1 s A s .

So in this case, we simply compute the posterior probability that A
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There can be a problem, however, with using (7.2.4) to assess a hypothesis. For
when the prior distribution of is absolutely continuous, then 0 s 0
for all data s. Therefore, we would always find evidence against H0 no matter what
is observed, which does not make sense. In general, if the value 0 is assigned small
prior probability, then it can happen that this value also has a small posterior probability
no matter what data are observed.

To avoid this problem, there is an alternative approach to hypothesis assessment that
is sometimes used. Recall that, if 0 is a surprising value for the posterior distribution
of , then this is evidence that H0 is false. The value 0 is surprising whenever it
occurs in a region of low probability for the posterior distribution of . A region of low
probability will correspond to a region where the posterior density s is relatively
low. So, one possible method for assessing this is by computing the (Bayesian) Pvalue

: s 0 s s . (7.2.5)

Note that when s is unimodal, (7.2.5) corresponds to computing a tail probability.
If the probability (7.2.5) is small, then 0 is surprising, at least with respect to our
posterior beliefs. When we decide to reject H0 whenever the Pvalue is less than 1
then this approach is equivalent to computing a HPD region for and rejecting H0
whenever 0 is not in the region.

EXAMPLE 7.2.10 (Example 7.2.9 continued)
Applying the Pvalue approach to this problem, we see that IA has pos
terior given by the Bernoulli A s distribution. Therefore, s is defined by

0 s 1 A s Ac s and 1 s A s .
Now 0 1 so

: s 1 s : IA s A s

A s Ac s
A A s Ac s .

Therefore, (7.2.5) becomes

: s 1 s s
1 A s Ac s

A s A s Ac s ,

so again we have evidence against H0 whenever A s is small.

We see from Examples 7.2.9 and 7.2.10 that computing the Pvalue (7.2.5) is essen
tially equivalent to using (7.2.4), whenever the marginal parameter takes only two
values. This is not the case whenever takes more than two values, however, and the
statistician has to decide which method is more appropriate in such a context.

As previously noted, when the prior distribution of is absolutely continuous,
then (7.2.4) is always 0, no matter what data are observed. As the following example
illustrates, there is also a difficulty with using (7.2.5) in such a situation.

EXAMPLE 7.2.11
Suppose that the posterior distribution of is Beta 2 1 , i.e., s 2 when
0 1 and we want to assess H0 : 3 4 Then s 3 4 s if and
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only if 3 4 and (7.2.5) is given by

3 4

0
2 d 9 16

On the other hand, suppose we make a 1–1 transformation to 2 so that
the hypothesis is now H0 : 9 16 The posterior distribution of is Beta 1 1
Since the posterior density of is constant, this implies that the posterior density at
every possible value is less than or equal to the posterior density evaluated at 9 16.
Therefore, (7.2.5) equals 1, and we would never find evidence against H0 using this
parameterization

This example shows that our assessment of H0 via (7.2.5) depends on the parame
terization used, which does not seem appropriate.

The difficulty in using (7.2.5), as demonstrated in Example 7.2.11, only occurs with
continuous posterior distributions. So, to avoid this problem, it is often recommended
that the hypothesis to be tested always be assigned a positive prior probability. As
demonstrated in Example 7.2.10, the approach via (7.2.5) is then essentially equivalent
to using (7.2.4) to assess H0.

In problems where it seems natural to use continuous priors, this is accomplished by
taking the prior to be a mixture of probability distributions, as discussed in Section
2.5.4, namely, the prior distribution equals

p 1 1 p 2,

where 1 0 1 and 2 0 0, i.e., 1 is degenerate at 0
and 2 is continuous at 0. Then

0 p 1 0 1 p 2 0 p 0

is the prior probability that H0 is true.
The prior predictive for the data s is then given by

m s pm1 s 1 p m2 s ,

where mi is the prior predictive obtained via prior i (see Problem 7.2.34) This im
plies (see Problem 7.2.34) that the posterior probability measure for when using the
prior is

A s

pm1 s

pm1 s 1 p m2 s 1 A s
1 p m2 s

pm1 s 1 p m2 s 2 A s (7.2.6)

where i s is the posterior measure obtained via the prior i . Note that this a
mixture of the posterior probability measures 1 s and 2 s with mixture prob
abilities

pm1 s

pm1 s 1 p m2 s
and

1 p m2 s

pm1 s 1 p m2 s
.
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Now 1 s is degenerate at 0 (if the prior is degenerate at a point then the posterior
must be degenerate at that point too) and 2 s is continuous at 0 Therefore,

0 s
pm1 s

pm1 s 1 p m2 s
, (7.2.7)

and we use this probability to assess H0
The following example illustrates this approach.

EXAMPLE 7.2.12 Location Normal Model
Suppose that x1 xn is a sample from an N 2

0 distribution, where R1

is unknown and 2
0 is known, and we want to assess the hypothesis H0 : 0. As

in Example 7.1.2, we will take the prior for to be an N 0
2
0 distribution. Given

that we are assessing whether or not 0 it seems reasonable to place the mode of
the prior at the hypothesized value. The choice of the hyperparameter 2

0 then reects
the degree of our prior belief that H0 is true. We let 2 denote this prior probability
measure, i.e., 2 is the N 0

2
0 probability measure.

If we use 2 as our prior, then, as shown in Example 7.1.2, the posterior distribution
of is absolutely continuous. This implies that (7.2.4) is 0. So, following the preceding
discussion, we consider instead the prior p 1 1 p 2 obtained by mixing

2 with a probability measure 1 degenerate at 0. Then 1 0 1 and so

0 p. As shown in Example 7.1.2, under 2 the posterior distribution of is

N
1
2
0

n
2
0

1
0
2
0

n
2
0

x
1
2
0

n
2
0

1

while the posterior under 1 is the distribution degenerate at 0. We now need to
evaluate (7.2.7), and we will do this in Example 7.2.13.

Bayes Factors

Bayes factors comprise another method of hypothesis assessment and are defined in
terms of odds.

Definition 7.2.1 In a probability model with sample space S and probability mea
sure P the odds in favor of event A S is defined to be P A P Ac namely, the
ratio of the probability of A to the probability of Ac

Obviously, large values of the odds in favor of A indicate a strong belief that A is true.
Odds represent another way of presenting probabilities that are convenient in certain
contexts, e.g., horse racing. Bayes factors compare posterior odds with prior odds.

Definition 7.2.2 The Bayes factor BFH0 in favor of the hypothesis H0 : 0
is defined, whenever the prior probability of H0 is not 0 or 1, to be the ratio of the
posterior odds in favor of H0 to the prior odds in favor of H0 or

B FH0
0 s

1 0 s
0

1 0
(7.2.8)
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So the Bayes factor in favor of H0 is measuring the degree to which the data have
changed the odds in favor of the hypothesis. If B FH0 is small, then the data are provid
ing evidence against H0 and evidence in favor of H0 when B FH0 is large.

There is a relationship between the posterior probability of H0 being true and
B FH0 . From (7.2.8), we obtain

0 s
r BFH0

1 r B FH0

, (7.2.9)

where

r 0

1 0

is the prior odds in favor of H0 So, when BFH0 is small, then 0 s is
small and conversely.

One reason for using Bayes factors to assess hypotheses is the following result.
This establishes a connection with likelihood ratios.

Theorem 7.2.1 If the prior is a mixture p 1 1 p 2, where 1 A
1 2 AC 1, and we want to assess the hypothesis H0 : A then

B FH0 m1 s m2 s

where mi is the prior predictive of the data under i

PROOF Recall that, if a prior concentrates all of its probability on a set, then the
posterior concentrates all of its probability on this set, too. Then using (7.2.6), we have

B FH0

A s

1 A s

A

1 A

pm1 s

1 p m2 s

p

1 p

m1 s

m2 s

Interestingly, Theorem 7.2.1 indicates that the Bayes factor is independent of p We
note, however, that it is not immediately clear how to interpret the value of B FH0 . In
particular, how large does B FH0 have to be to provide strong evidence in favor of H0?
One approach to this problem is to use (7.2.9), as this gives the posterior probability
of H0, which is directly interpretable. So we can calibrate the Bayes factor. Note,
however, that this requires the specification of p.

EXAMPLE 7.2.13 Location Normal Model (Example 7.2.12 continued)
We now compute the prior predictive under 2 We have that the joint density of
x1 xn given equals

2 2
0

n 2 exp
n 1

2 2
0

s2 exp
n

2 2
0

x 2
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and so

m2 x1 xn

2 2
0

n 2
exp n 1

2 2
0

s2 exp n
2 2

0
x 2

2 2
0

1 2
exp 1

2 2
0

0
2

d

2 2
0

n 2 exp
n 1

2 2
0

s2

1
0 2 1 2 exp

n

2 2
0

x 2 exp
1

2 2
0

0
2

d

Then using (7.1.2), we have

1
0 2 1 2 exp

n

2 2
0

x 2 exp
1

2 2
0

0
2 d

1
0 exp

1

2

1
2
0

n
2
0

1
0
2
0

n
2
0

x

2

exp
1

2

2
0
2
0

nx2

2
0

n
2
0

1
2
0

1 2

(7.2.10)

Therefore,

m2 x1 xn

2 2
0

n 2 exp
n 1

2 2
0

s2 1
0 exp

1

2

1
2
0

n
2
0

1
0
2
0

n
2
0

x

2

exp
1

2

2
0
2
0

nx2

2
0

n
2
0

1
2
0

1 2

Because 1 is degenerate at 0 it is immediate that the prior predictive under 1
is given by

m1 x1 xn 2 2
0

n 2 exp
n 1

2 2
0

s2 exp
n

2 2
0

x 0
2

Therefore, BFH0 equals

exp
n

2 2
0

x 0
2

divided by (7.2.10).
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For example, suppose that 0 0 2
0 2 2

0 1 n 10 and x 0 2 Then

exp
n

2 2
0

x 0
2 exp

10

2
0 2 2 0 81873

while (7.2.10) equals

1

2
exp

1

2

1

2
10

1

10 0 2 2 exp
10 0 2 2

2
10

1

2

1 2

0 21615

So

B FH0

0 81873

0 21615
3 7878

which gives some evidence in favor of H0 : 0. If we suppose that p 1 2
so that we are completely indifferent between H0 being true and not being true, then
r 1 and (7.2.9) gives

0 x1 xn
3 7878

1 3 7878
0 79114

indicating a large degree of support for H0.

7.2.4 Prediction

Prediction problems arise when we have an unobserved response value t in a sample
space T and observed response s S Furthermore, we have the statistical model
P : for s and the conditional statistical model Q s : for t given

s. We assume that both models have the same true value of The objective is to
construct a prediction t s T of the unobserved value t based on the observed data
s The value of t could be unknown simply because it represents a future outcome.

If we denote the conditional density or probability function (whichever is relevant)
of t by q s , the joint distribution of s t is given by

q t s f s .

Then, once we have observed s (assume here that the distributions of and t are ab
solutely continuous; if not, we replace integrals by sums), the conditional density of
t , given s is

q t s f s

T q t s f s dt d

q t s f s

f s d

q t s f s

m s

Then the marginal posterior distribution of t known as the posterior predictive of t is

q t s
q t s f s

m s
d q t s s d
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Notice that the posterior predictive of t is obtained by averaging the conditional density
of t given s with respect to the posterior distribution of

Now that we have obtained the posterior predictive distribution of t we can use it to
select an estimate of the unobserved value. Again, we could choose the posterior mode
t or the posterior expectation E t x T tq t s dt as our prediction, whichever is
deemed most relevant.

EXAMPLE 7.2.14 Bernoulli Model
Suppose we want to predict the next independent outcome Xn 1 having observed
a sample x1 xn from the Bernoulli and Beta . Here, the future
observation is independent of the observed data. The posterior predictive probability
function of Xn 1 at t is then given by

q t x1 xn

1

0

t 1 1 t n

nx n 1 x
nx 1 1 n 1 x 1 d

n

nx n 1 x

1

0

nx t 1 1 n 1 x 1 t 1 d

n

nx n 1 x

nx t n 1 x 1 t

n 1
nx

n t 1
n 1 x

n t 0

which is the probability function of a Bernoulli nx n distribution.
Using the posterior mode as the predictor, i.e., maximizing q t x1 xn for t

leads to the prediction

t
1 if nx

n
n 1 x

n

0 otherwise.

The posterior expectation predictor is given by

E t x1 xn
nx

n

Note that the posterior mode takes a value in 0 1 , and the future Xn 1 will be in this
set, too. The posterior mean can be any value in [0 1].

EXAMPLE 7.2.15 Location Normal Model
Suppose that x1 xn is a sample from an N 2

0 distribution, where
R1 is unknown and 2

0 is known, and we use the prior given in Example 7.1.2.
Suppose we want to predict a future observation Xn 1, but this time Xn 1 is from the

N x
1
2
0

n
2
0

1
2
0 (7.2.11)
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distribution. So, in this case, the future observation is not independent of the observed
data, but it is independent of the parameter. A simple calculation (see Exercise 7.2.9)
shows that (7.2.11) is the posterior predictive distribution of t and so we would predict
t by x , as this is both the posterior mode and mean.

We can also construct a prediction region C s for a future value t from the
model q s : A prediction region for t satisfies Q C s s , where
Q s is the posterior predictive measure for t One approach to constructing C s is
to apply the HPD concept to q t s . We illustrate this via several examples.

EXAMPLE 7.2.16 Bernoulli Model (Example 7.2.14 continued)
Suppose we want a prediction region for a future value Xn 1. In Example 7.2.14,
we derived the posterior predictive distribution of Xn 1 to be

Bernoulli
nx

n

Accordingly, a prediction region for t , derived via the HPD concept, is given by

C x1 xn

0 1 if max nx
n

n 1 x
n

1 if max nx
n

n 1 x
n

nx
n

0 if max nx
n

n 1 x
n

n 1 x
n

We see that this predictive region contains just the mode or encompasses all possible
values for Xn 1. In the latter case, this is not an informative inference.

EXAMPLE 7.2.17 Location Normal Model (Example 7.2.15 continued)
Suppose we want a prediction interval for a future observation Xn 1 from a

N x
1
2
0

n
2
0

1
2
0

distribution. As this is also the posterior predictive distribution of Xn 1 and is sym
metric about x a prediction interval for Xn 1 derived via the HPD concept, is given
by

x
1
2
0

n
2
0

1 2

0 z 1 2

Summary of Section 7.2

Based on the posterior distribution of a parameter, we can obtain estimates of
the parameter (posterior modes or means), construct credible intervals for the
parameter (HPD intervals), and assess hypotheses about the parameter (posterior
probability of the hypothesis, Bayesian Pvalues, Bayes factors).
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A new type of inference was discussed in this section, namely, prediction prob
lems where we are concerned with predicting an unobserved value from a sam
pling model.

EXERCISES

7.2.1 For the model discussed in Example 7.1.1, derive the posterior mean of m

where m 0
7.2.2 For the model discussed in Example 7.1.2, determine the posterior distribution
of the third quartile 0z0 75 Determine the posterior mode and the posterior
expectation of

7.2.3 In Example 7.2.1, determine the posterior expectation and mode of 1 2.
7.2.4 In Example 7.2.1, determine the posterior expectation and mode of 2. (Hint:
You will need the posterior density of 2 to determine the mode.)
7.2.5 Carry out the calculations to verify the posterior mode and posterior expectation
of 1 in Example 7.2.4.

7.2.6 Establish that the variance of the in Example 7.2.2 is as given in Example 7.2.6.
Prove that this goes to 0 as n

7.2.7 Establish that the variance of 1 in Example 7.2.4 is as given in Example 7.2.6.
Prove that this goes to 0 as n
7.2.8 In Example 7.2.14, which of the two predictors derived there do you find more
sensible? Why?
7.2.9 In Example 7.2.15, prove that the posterior predictive distribution for Xn 1 is as
stated. (Hint: Write the posterior predictive distribution density as an expectation.)
7.2.10 Suppose that x1 xn is a sample from the Exponential distribution,
where 0 is unknown and Gamma 0 0 . Determine the mode of posterior
distribution of . Also determine the posterior expectation and posterior variance of .

7.2.11 Suppose that x1 xn is a sample from the Exponential distribution
where 0 is unknown and Gamma 0 0 . Determine the mode of poste
rior distribution of a future independent observation Xn 1. Also determine the poste
rior expectation of Xn 1 and posterior variance of Xn 1. (Hint: Problems 3.2.16 and
3.3.20.)
7.2.12 Suppose that in a population of students in a course with a large enrollment, the
mark, out of 100, on a final exam is approximately distributed N 9 The instructor
places the prior N 65 1 on the unknown parameter. A sample of 10 marks is
obtained as given below.

46 68 34 86 75 56 77 73 53 64

(a) Determine the posterior mode and a 0.95credible interval for . What does this
interval tell you about the accuracy of the estimate?
(b) Use the 0.95credible interval for to test the hypothesis H0 : 65.
(c) Suppose we assign prior probability 0 5 to 65. Using the mixture prior
0 5 1 0 5 2, where 1 is degenerate at 65 and 2 is the N 65 1 distribution,
compute the posterior probability of the null hypothesis.
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(d) Compute the Bayes factor in favor of H0 : 65 when using the mixture prior.

7.2.13 A manufacturer believes that a machine produces rods with lengths in centime
ters distributed N 0

2 , where 0 is known and 2 0 is unknown, and that the
prior distribution 1 2 Gamma 0 0 is appropriate.
(a) Determine the posterior distribution of 2 based on a sample x1 xn .
(b) Determine the posterior mean of 2.
(c) Indicate how you would assess the hypothesis H0 : 2 2

0.

7.2.14 Consider the sampling model and prior in Exercise 7.1.1.
(a) Suppose we want to estimate based upon having observed s 1 Determine the
posterior mode and posterior mean. Which would you prefer in this situation? Explain
why.
(b) Determine a 0.8 HPD region for based on having observed s 1

(c) Suppose instead interest was in I 1 2 Identify the prior distribution of
Identify the posterior distribution of based on having observed s 1 Determine

a 0.5 HPD region for
7.2.15 For an event A, we have that P Ac 1 P A
(a) What is the relationship between the odds in favor of A and the odds in favor of Ac?

(b) When A is a subset of the parameter space, what is the relationship between the
Bayes factor in favor of A and the Bayes factor in favor of Ac?
7.2.16 Suppose you are told that the odds in favor of a subset A are 3 to 1. What is the
probability of A? If the Bayes factor in favor of A is 10 and the prior probability of A
is 1/2, then determine the posterior probability of A
7.2.17 Suppose data s is obtained. Two statisticians analyze these data using the same
sampling model but different priors, and they are asked to assess a hypothesis H0 Both
statisticians report a Bayes factor in favor of H0 equal to 100. Statistician I assigned
prior probability 1/2 to H0 whereas statistician II assigned prior probability 1/4 to H0
Which statistician has the greatest posterior degree of belief in H0 being true?

7.2.18 You are told that a 0.95credible interval, determined using the HPD criterion,
for a quantity is given by 3 3 2 6 If you are asked to assess the hypothesis
H0 : 0 then what can you say about the Bayesian Pvalue? Explain your
answer.
7.2.19 What is the range of possible values for a Bayes factor in favor of A ?
Under what conditions will a Bayes factor in favor of A take its smallest value?

PROBLEMS

7.2.20 Suppose that x1 xn is a sample from the Uniform[0 ] distribution, where
0 is unknown, and we have Gamma 0 0 . Determine the mode of the pos

terior distribution of . (Hint: The posterior is not differentiable at x n .)
7.2.21 Suppose that x1 xn is a sample from the Uniform[0 ] distribution, where

0 1 is unknown, and we have Uniform[0 1]. Determine the form of the 
credible interval for based on the HPD concept.
7.2.22 In Example 7.2.1, write out the integral given in (7.2.2).
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7.2.23 (MV) In Example 7.2.1, write out ithe integral that you would need to evaluate
if you wanted to compute the posterior density of the third quartile of the population
distribution, i.e., z0 75.
7.2.24 Consider the location normal model discussed in Example 7.1.2 and the popu
lation coefficient of variation 0 .

(a) Show that the posterior expectation of does not exist. (Hint: Show that we can
write the posterior expectation as

0

a bz

1

2
e z2 2 dz

where b 0 and show that this integral does not exist by considering the behavior of
the integrand at z a b )
(b) Determine the posterior density of
(c) Show that you can determine the posterior mode of by evaluating the posterior
density at two specific points (Hint: Proceed by maximizing the logarithm of the pos
terior density using the methods of calculus.)
7.2.25 (MV) Suppose that 1 k 1 Dirichlet 1 2 k .
(a) Prove that 1 k 2 Dirichlet 1 2 k 1 k . (Hint: In the inte
gral to integrate out k 1 make the transformation k 1 k 1 1 1 k 2 .)
(b) Prove that 1 Beta 1 2 k . (Hint: Use part (a).)
(c) Suppose i1 ik is a permutation of 1 k . Prove that i1 ik 1

Dirichlet i1 i2 ik . (Hint: What is the Jacobian of this transformation?)
(d) Prove that i Beta i i . (Hint: Use parts (b) and (c).)
7.2.26 (MV) In Example 7.2.4, show that the plugin MLE of 1 is given by x1 n i.e.,
find the MLE of 1 k and determine the first coordinate. (Hint: Show there is
a unique solution to the score equations and then use the facts that the loglikelihood is
bounded above and goes to whenever i 0 )
7.2.27 Compare the results obtained in Exercises 7.2.3 and 7.2.4. What do you con
clude about the invariance properties of these estimation procedures? (Hint: Consider
Theorem 6.2.1.)
7.2.28 In Example 7.2.5, establish that the posterior variance of is as stated in Ex
ample 7.2.6. (Hint: Problem 4.6.16.)

7.2.29 In a prediction problem, as described in Section 7.2.4, derive the form of the
prior predictive density for t when the joint density of s t is q t s f s
(assume s and are realvalued)
7.2.30 In Example 7.2.16, derive the posterior predictive probability function of
Xn 1 Xn 2 having observed x1 xn when X1 Xn Xn 1 Xn 2 are inde

pendently and identically distributed (i.i.d.) Bernoulli .

7.2.31 In Example 7.2.15, derive the posterior predictive distribution for Xn 1 having
observed x1 xn when X1 Xn Xn 1 are i.i.d. N 2

0 . (Hint: We can write
Xn 1 0 Z , where Z N 0 1 is independent of the posterior distribution of

)
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7.2.32 For the context of Example 7.2.1, prove that the posterior predictive distribution
of an additional future observation Xn 1 from the population distribution has the same
distribution as

x

2 x n 1 2
0

1
1

2 0 n
T

where T t 2 0 n . (Hint: Note that we can write Xn 1 U , where
U N 0 1 independent of X1 Xn and then reason as in Example 7.2.1.)

7.2.33 In Example 7.2.1, determine the form of an exact prediction interval for an
additional future observation Xn 1 from the population distribution, based on the HPD
concept. (Hint: Use Problem 7.2.32.)
7.2.34 Suppose that 1 and 2 are discrete probability distributions on the parameter
space . Prove that when the prior is a mixture p 1 1 p 2, then the
prior predictive for the data s is given by m s pm1 s 1 p m2 s and the
posterior probability measure is given by (7.2.6).
7.2.35 (MV) Suppose that 1 2 R2 and h 1 2 R2.
Assume that h satisfies the necessary conditions and establish (7.2.1). (Hint: Theorem
2.9.2.)

CHALLENGES

7.2.36 Another way to assess the null hypothesis H0 : 0 is to compute the
Pvalue

s 0 s

0
s (7.2.12)

where is the marginal prior density or probability function of We call (7.2.12) the
observed relative surprise ofH0.

The quantity 0 s 0 is a measure of how the data s have changed our a
priori belief that 0 is the true value of When (7.2.12) is small, 0 is a surprising
value for , as this indicates that the data have increased our belief more for other
values of
(a) Prove that (7.2.12) is invariant under 1–1 continuously differentiable transforma
tions of
(b) Show that a value 0 that makes (7.2.12) smallest, maximizes 0 s 0
We call such a value a least relative suprise estimate of
(c) Indicate how to use (7.2.12) to form a credible region, known as a relative
surprise region, for
(d) Suppose that is realvalued with prior density and posterior density s
both continuous and positive at 0 Let A 0 0 Show that BFA

0 s 0 as 0 Generalize this to the case where takes its values in an
open subset of Rk This shows that we can think of the observed relative surprise as a
way of calibrating Bayes factors.
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7.3 Bayesian Computations
In virtually all the examples in this chapter so far, we have been able to work out the
exact form of the posterior distributions and carry out a number of important com
putations using these. It often occurs, however, that we cannot derive any convenient
form for the posterior distribution. Furthermore, even when we can derive the posterior
distribution, there computations might arise that cannot be carried out exactly — e.g.,
recall the discussion in Example 7.2.1 that led to the integral (7.2.2). These calculations
involve evaluating complicated sums or integrals. Therefore, when we apply Bayesian
inference in a practical example, we need to have available methods for approximating
these quantities.

The subject of approximating integrals is an extensive topic that we cannot deal
with fully here.1 We will, however, introduce several approximation methods that arise
very naturally in Bayesian inference problems.

7.3.1 Asymptotic Normality of the Posterior

In many circumstances, it turns out that the posterior distribution of R1 is approx
imately normally distributed. We can then use this to compute approximate credible
regions for the true value of , carry out hypothesis assessment, etc. One such re
sult says that, under conditions that we will not describe here, when x1 xn is a
sample from f , then

x1 xn

x1 xn
z x1 xn z

as n where x1 xn is the posterior mode, and

2 x1 xn

2 ln L x1 xn
2

1

.

Note that this result is similar to Theorem 6.5.3 for the MLE. Actually, we can replace
x1 xn by the MLE and replace 2 x1 xn by the observed information

(see Section 6.5), and the result still holds. When is kdimensional, there is a similar
but more complicated result.

7.3.2 Sampling from the Posterior

Typically, there are many things we want to compute as part of implementing a Bayesian
analysis. Many of these can be written as expectations with respect to the posterior dis
tribution of For example, we might want to compute the posterior probability content
of a subset A namely,

A s E IA s .

1See, for example, Approximating Integrals via Monte Carlo and Deterministic Methods, by M. Evans
and T. Swartz (Oxford University Press, Oxford, 2000).
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More generally, we want to be able to compute the posterior expectation of some arbi
trary function , namely

E s . (7.3.1)

It would certainly be convenient if we could compute all these quantities exactly,
but quite often we cannot. In fact, it is not really necessary that we evaluate (7.3.1)
exactly. This is because we naturally expect any inference we make about the true
value of the parameter to be subject (different data sets of the same size lead to different
inferences) to sampling error. It is not necessary to carry out our computations to a
much higher degree of precision than what sampling error contributes. For example, if
the sampling error only allows us to know the value of a parameter to within only 0 1
units, then there is no point in computing an estimate to many more digits of accuracy.

In light of this, many of the computational problems associated with implementing
Bayesian inference are effectively solved if we can sample from the posterior for
For when this is possible, we simply generate an i.i.d. sequence 1 2 N from
the posterior distribution of and estimate (7.3.1) by

1

N

N

i 1
i .

We know then, from the strong law of large numbers (see Theorem 4.3.2), that
a s

E x as N
Of course, for any given N the value of only approximates (7.3.1); we would like

to know that we have chosen N large enough so that the approximation is appropriately
accurate. When E 2 s then the central limit theorem (see Theorem 4.4.3)
tells us that

E s

N

D
N 0 1

as N where 2 Var s . In general, we do not know the value of 2 ,
but we can estimate it by

s2 1

N 1

N

i 1
i

2

when is a quantitative variable, and by s2 1 when IA for A
As shown in Section 4.4.2, in either case, s2 is a consistent estimate of 2 Then, by
Corollary 4.4.4, we have that

E s

s N

D
N 0 1

as N .
From this result we know that

3
s

N
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is an approximate 100% confidence interval for E s so we can look at 3s N
to determine whether or not N is large enough for the accuracy required.

One caution concerning this approach to assessing error is that 3s N is itself
subject to error, as s is an estimate of so this could be misleading. A common
recommendation then is to monitor the value of 3s N for successively larger values
of N and stop the sampling only when it is clear that the value of 3s N is small
enough for the accuracy desired and appears to be declining appropriately. Even this
approach, however, will not give a guaranteed bound on the accuracy of the computa
tions, so it is necessary to be cautious.

It is also important to remember that application of these results requires that 2

For a bounded , this is always true, as any bounded random variable always has
a finite variance. For an unbounded however, this must be checked — sometimes
this is very difficult to do.

We consider an example where it is possible to exactly sample from the posterior.

EXAMPLE 7.3.1 LocationScale Normal
Suppose that x1 xn is a sample from an N 2 distribution where R1

and 0 are unknown, and we use the prior given in Example 7.1.4. The posterior
distribution for 2 developed there is

2 x1 xn N x n 1 2
0

1 2 (7.3.2)

and
1 2 x1 xn Gamma 0 n 2 x , (7.3.3)

where x is given by (7.1.7) and x is given by (7.1.8).
Most statistical packages have builtin generators for gamma distributions and for

the normal distribution. Accordingly, it is very easy to generate a sample 1
2
1

N
2
N from this posterior. We simply generate a value for 1 2

i from the specified
gamma distribution; then, given this value, we generate the value of i from the speci
fied normal distribution.

Suppose, then, that we want to derive the posterior distribution of the coefficient
of variation . To do this we generate N values from the joint posterior of

2 , using (7.3.2) and (7.3.3), and compute for each of these. We then know
immediately that 1 N is a sample from the posterior distribution of

As a specific numerical example, suppose that we observed the following sample
x1 x15

11 6714 1 8957 2 1228 2 1286 1 0751
8 1631 1 8236 4 0362 6 8513 7 6461
1 9020 7 4899 4 9233 8 3223 7 9486

Here, x 5 2 and s 3 3 Suppose further that the prior is specified by 0 4 2
0

2 0 2 and 0 1
From (7.1.7), we have

x 15
1

2

1 4

2
15 5 2 5 161,
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and from (7.1.8),

x 1
15

2
5 2 2 42

2 2

14

2
3 3 2 1

2
15

1

2

1 4

2
15 5 2

2

77 578

Therefore, we generate

1 2 x1 xn Gamma 9 5 77 578

followed by

2 x1 xn N 5 161 15 5 1 2

See Appendix B for some code that can be used to generate from this joint distribution.
In Figure 7.3.1, we have plotted a sample of N 200 values of 2 from this

joint posterior. In Figure 7.3.2, we have plotted a density histogram of the 200 values
of that arise from this sample.

76543

25

15

5

mu

si
g

m
a 

sq
u

ar
ed

Figure 7.3.1: A sample of 200 values of 2 from the joint posterior in Example 7.3.1
when n 15 x 5 2 s 3 3, 0 4 2

0 2 0 2 and 0 1.
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3.53.02.52.01.51.00.50.0

4

3

2

1

0

Figure 7.3.2: A density histogram of 200 values from the posterior distribution of in
Example 7.3.1.

A sample of 200 is not very large, so we next generated a sample of N 103

values from the posterior distribution of A density histogram of these values is pro
vided in Figure 7.3.3. In Figure 7.3.4, we have provided a density histogram based on
a sample of N 104 values. We can see from this that at N 103, the basic shape of
the distribution has been obtained, although the right tail is not being very accurately
estimated. Things look better in the right tail for N 104, but note there are still some
extreme values quite disconnected from the main mass of values. As is characteristic
of most distributions, we will need very large values of N to accurately estimate the
tails. In any case, we have learned that this distribution is skewed to the right with a
long right tail.

3.53.02.52.01.51.00.50.0

4

3

2

1

0

Figure 7.3.3: A density histogram of 1000 values from the posterior distribution of in
Example 7.3.1.
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3.53.02.52.01.51.00.50.0
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1

0

Figure 7.3.4: A density histogram of N 104 values from the posterior distribution of in
Example 7.3.1.

Suppose we want to estimate

0 5 x1 xn E I 0 5 x1 xn .

Now I 0 5 is bounded so its posterior variance exists. In the following table,
we have recorded the estimates for each N together with the standard error based on
each of the generated samples. We have included some code for computing these
estimates and their standard errors in Appendix B. Based on the results from N 104

it would appear that this posterior probability is in the interval 0 289 3 0 0045
[0 2755 0 3025].

N Estimate of 0 5 x1 xn Standard Error
200 0 265 0 0312
103 0 271 0 0141
104 0 289 0 0045

This example also demonstrates an important point. It would be very easy for us to
calculate the sample mean of the values of generated from its posterior distribution
and then consider this as an estimate of the posterior mean of But Problem 7.2.24
suggests (see Problem 7.3.15) that this mean will not exist. Accordingly, a Monte Carlo
estimate of this quantity does not make any sense! So we must always check first that
any expectation we want to estimate exists, before we proceed with some estimation
procedure.

When we cannot sample directly from the posterior, then the methods of the fol
lowing section are needed.
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7.3.3 Sampling from the Posterior Via Gibbs Sampling (Advanced)

Sampling from the posterior, as described in Section 7.3.2, is very effective, when it
can be implemented. Unfortunately, it is often difficult or even impossible to do this
directly, as we did in Example 7.3.1. There are, however, a number of algorithms that
allow us to approximately sample from the posterior. One of these, known as Gibbs
sampling, is applicable in many statistical contexts.

To describe this algorithm, suppose we want to generate samples from the joint
distribution of Y1 Yk Rk Further suppose that we can generate from each of
the full conditional distributions Yi Y i y i , where

Y i Y1 Yi 1 Yi 1 Yk ,

namely, we can generate from the conditional distribution of Yi given the values of all
the other coordinates. The Gibbs sampler then proceeds iteratively as follows.

1. Specify an initial value y1 0 yk 0 for Y1 Yk .

2. For N 0 generate Yi N from its conditional distribution given
y1 N yi 1 N yi 1 N 1 yk N 1 for each i 1 k.

For example, if k 3 we first specify y1 0 y2 0 y3 0 . Then we generate

Y1 1 Y2 0 y2 0 Y3 0 y3 0

Y2 1 Y1 1 y1 1 Y3 0 y3 0

Y3 1 Y1 1 y1 1 Y2 1 y2 1

to obtain Y1 1 Y2 1 Y3 1 . Next we generate

Y1 2 Y2 1 y2 1 Y3 1 y3 1

Y2 2 Y1 2 y1 2 Y3 1 y3 1

Y3 2 Y1 2 y1 2 Y2 2 y2 2

to obtain Y1 2 Y2 2 Y3 2 etc. Note that we actually did not need to specify Y1 0
as it is never used.

It can then be shown (see Section 11.3) that, in fairly general circumstances, Y1 N
Yk N converges in distribution to the joint distribution of Y1 Yk as N

So for large N , we have that the distribution of Y1 N Yk N is approximately
the same as the joint distribution of Y1 Yk from which we want to sample. So
Gibbs sampling provides an approximate method for sampling from a distribution of
interest.

Furthermore, and this is the result that is most relevant for simulations, it can be
shown that, under conditions,

1

N

N

i 1

Y1 i Yk i
a s

E Y1 Yk .
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Estimation of the variance of is different than in the i.i.d. case, where we used the
sample variance, because now the Y1 i Yk i terms are not independent.

There are several approaches to estimating the variance of but perhaps the most
commonly used is the technique of batching. For this we divide the sequence

Y1 0 Yk 0 Y1 N Yk N

into N m nonoverlapping sequential batches of size m (assuming here that N is divisi
ble by m), calculate the mean in each batch obtaining 1 N m , and then estimate
the variance of by

s2
b

N m
, (7.3.4)

where s2
b is the sample variance obtained from the batch means, i.e.,

s2
b

1

N m 1

N m

i 1
i

2 .

It can be shown that Y1 i Yk i and Y1 i m Yk i m are approximately
independent for m large enough. Accordingly, we choose the batch size m large enough
so that the batch means are approximately independent, but not so large as to leave
very few degrees of freedom for the estimation of the variance. Under ideal conditions,

1 N m is an i.i.d. sequence with sample mean

1

N m

N m

i 1
i ,

and, as usual, we estimate the variance of by (7.3.4).
Sometimes even Gibbs sampling cannot be directly implemented because we can

not obtain algorithms to generate from all the full conditionals. There are a variety
of techniques for dealing with this, but in many statistical applications the technique
of latent variables often works. For this, we search for some random variables, say
V1 Vl where each Yi is a function of V1 Vl and such that we can apply

Gibbs sampling to the joint distribution of V1 Vl We illustrate Gibbs sampling
via latent variables in the following example.

EXAMPLE 7.3.2 LocationScale Student
Suppose now that x1 xn is a sample from a distribution that is of the form X

Z , where Z t (see Section 4.6.2 and Problem 4.6.14). If 2, then is
the mean and 2 1 2 is the standard deviation of the distribution (see Problem
4.6.16). Note that corresponds to normal variation, while 1 corresponds to
Cauchy variation.

We will fix at some specified value to reect the fact that we are interested in
modeling situations in which the variable under consideration has a distribution with
longer tails than the normal distribution. Typically, this manifests itself in a histogram
of the data with a roughly symmetric shape but exhibiting a few extreme values out in
the tails, so a t distribution might be appropriate.
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Suppose we place the prior on 2 , given by 2 N 0
2
0

2 and 1 2

Gamma 0 0 . The likelihood function is given by

1
2

n 2 n

i 1

1
1 xi

2 1 2

, (7.3.5)

hence the posterior density of 1 2 is proportional to

1
2

n 2 n

i 1

1
1 xi

2 1 2

1
2

1 2

exp
1

2 2
0

2 0
2 1

2

0 1

exp 0
2

This distribution is not immediately recognizable, and it is not at all clear how to gen
erate from it.

It is natural, then, to see if we can implement Gibbs sampling. To do this directly,
we need an algorithm to generate from the posterior of given the value of 2 and
an algorithm to generate from the posterior of 2 given Unfortunately, neither of
these conditional distributions is amenable to the techniques discussed in Section 2.10,
so we cannot implement Gibbs sampling directly.

Recall, however, that when V 2 Gamma 2 1 2 (see Problem 4.6.13)
independent of Y N 2 then (Problem 4.6.14)

Z
Y

V
t .

Therefore, writing

X Z
Y

V

Y

V

we have that X V N 2 .
We now introduce the n latent or hidden variables V1 Vn which are i.i.d.

2 and suppose Xi Vi i N 2
i . The Vi are considered latent be

cause they are not really part of the problem formulation but have been added here for
convenience (as we shall see). Then, noting that there is a factor 1 2

i associated with
the density of Xi Vi i the joint density of the values X1 V1 Xn Vn is
proportional to

1
2

n 2 n

i 1

exp i

2 2
xi

2 2 1 2
i exp i

2
.

From the above argument, the marginal joint density of X1 Xn (after integrating
out the i ’s) is proportional to (7.3.5), namely, a sample of n from the distribution
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specified by X Z , where Z t . With the same prior structure as before,
we have that the joint density of

X1 V1 Xn Vn 1 2

is proportional to

1
2

n 2 n

i 1

exp i

2 2 xi
2 2 1 2

i exp i

2

1
2

1 2

exp
1

2 2
0

2 0
2 1

2

0 1

exp 0
2 . (7.3.6)

In (7.3.6), treat x1 xn as constants (we observed these values) and consider
the conditional distributions of each of the variables V1 Vn 1 2 given all the
other variables. From (7.3.6), we have that the full conditional density of is propor
tional to

exp
1

2 2

n

i 1

i xi
2 1

2
0

0
2 ,

which is proportional to

exp
1

2 2

n

i 1

i 1
2
0

2 2

2 2

n

i 1

i xi
0
2
0

.

From this, we immediately deduce that

x1 xn 1 n
2

N r 1 n

n

i 1

i xi
0
2
0

r 1 n
2 ,

where

r 1 n

n

i 1

i 1
2
0

1

From (7.3.6), we have that the conditional density of 1 2 is proportional to

1
2

n 2 0 1 2

exp
n
i 1

i xi
2

1
2
0

0
2

2 0

1

2 2 ,

and we immediately deduce that

1
2

x1 xn 1 n

Gamma
n

2 0
1

2

1

2

n

i 1

i xi
2 1

2
0

0
2 2 0 .
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Finally, the conditional density of Vi is proportional to

2 1 2
i exp

xi
2

2 2

1

2 i ,

and it is immediate that

Vi x1 xn 1 i 1 i 1 n
2

Gamma
2

1

2

1

2

xi
2

2 1 .

We can now easily generate from all these distributions and implement a Gibbs
sampling algorithm. As we are not interested in the values of V1 Vn we simply
discard these as we iterate.

Let us now consider a specific computation using the same data and prior as in
Example 7.3.1. The analysis of Example 7.3.1 assumed that the data were coming from
a normal distribution, but now we are going to assume that the data are a sample from
a t 3 distribution, i.e., 3 We again consider approximating the posterior
distribution of the coefficient of variation

We carry out the Gibbs sampling iteration in the order 1 n 1 2 This
implies that we need starting values only for and 2 (the full conditionals of the i
do not depend on the other j ) We take the starting value of to be x 5 2 and the
starting value of to be s 3 3 For each generated value of 2 , we calculate
to obtain the sequence 1 2 N .

The values 1 2 N are not i.i.d. from the posterior of . The best we can
say is that

m
D

x1 xn

as m , where x1 xn is the posterior density of . Also, values suf
ficiently far apart in the sequence, will be like i.i.d. values from x1 xn . Thus,
one approach is to determine an appropriate value m and then extract m 2m 3m
as an approximate i.i.d. sequence from the posterior. Often it is difficult to determine
an appropriate value for m however.

In any case, it is known that, under fairly weak conditions,

1

N

N

i 1
i

a s
E x1 xn

as N So we can use the whole sequence 1 2 N and record a density
histogram for just as we did in Example 7.3.1. The value of the density histogram
between two cut points will converge almost surely to the correct value as N
However, we will have to take N larger when using the Gibbs sampling algorithm than
with i.i.d. sampling, to achieve the same accuracy. For many examples, the effect of the
deviation of the sequence from being i.i.d. is very small, so N will not have to be much
larger. We always need to be cautious, however, and the general recommendation is to
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compute estimates for successively higher values of N only stopping when the results
seem to have stabilized.

In Figure 7.3.5, we have plotted the density histogram of the values that resulted
from 104 iterations of the Gibbs sampler. In this case, plotting the density histogram of

based upon N 5 104 and N 8 104 resulted in only minor deviations from
this plot. Note that this density looks very similar to that plotted in Example 7.3.1, but
it is not quite so peaked and it has a shorter right tail.

3.53.02.52.01.51.00.50.0

4

3

2

1

0

Figure 7.3.5: A density histogram of N 104 values of generated sequentially via Gibbs
sampling in Example 7.3.2.

We can also estimate 0 5 x1 xn just as we did in Example 7.3.1,
by recording the proportion of values in the sequence that are smaller than 0.5, i.e.,

IA , where A : 0 5 . In this case, we obtained the estimate
0 5441, which is quite different from the value obtained in Example 7.3.1. So using a
t 3 distribution to describe the variation in the response has made a big difference in
the results.

Of course, we must also quantify how accurate we believe our estimate is. Using
a batch size of m 10 we obtained the standard error of the estimate 0 5441 to be
0 00639. When we took the batch size to be m 20, the standard error of the mean
is 0 00659; with a batch size of m 40 the standard error of the mean is 0 00668.
So we feel quite confident that we are assessing the error in the estimate appropriately.
Again, under conditions, we have that is asymptotically normal so that in this case
we can assert that the interval 0 5441 3 0 0066 [0 5243 0 5639] contains the true
value of 0 5 x1 xn with virtual certainty.

See Appendix B for some code that was used to implement the Gibbs sampling
algorithm described here.

It is fair to say that the introduction of Gibbs sampling has resulted in a revolution
in statistical applications due to the wide variety of previously intractable problems
that it successfully handles. There are a number of modifications and closely related
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algorithms. We refer the interested reader to Chapter 11, where the general theory of
what is called Markov chain Monte Carlo (MCMC) is discussed.

Summary of Section 7.3

Implementation of Bayesian inference often requires the evaluation of compli
cated integrals or sums.

If, however, we can sample from the posterior of the parameter, this will often
lead to sufficiently accurate approximations to these integrals or sums via Monte
Carlo.

It is often difficult to sample exactly from a posterior distribution of interest.
In such circumstances, Gibbs sampling can prove to be an effective method for
generating an approximate sample from this distribution.

EXERCISES

7.3.1 Suppose we have the following sample from an N 2 distribution, where is
unknown.

2 6 4 2 3 1 5 2 3 7 3 8 5 6 1 8 5 3 4 0
3 0 4 0 4 1 3 2 2 2 3 4 4 5 2 9 4 7 5 2

If the prior on is Uniform 2 6 , determine an approximate 0.95credible interval for
based on the large sample results described in Section 7.3.1.

7.3.2 Determine the form of the approximate 0.95credible interval of Section 7.3.1,
for the Bernoulli model with a Beta prior, discussed in Example 7.2.2.
7.3.3 Determine the form of the approximate 0.95credible intervals of Section 7.3.1,
for the locationnormal model with an N 0

2
0 prior, discussed in Example 7.2.3.

7.3.4 Suppose that X Uniform[0 1 ] and Exponential 1 . Derive a crude
Monte Carlo algorithm, based on generating from a gamma distribution, to generate a
value from the conditional distribution X x Generalize this to a sample of n from
the Uniform[0 1 ] distribution. When will this algortithm be inefficient in the sense
that we need a lot of computation to generate a single value?
7.3.5 Suppose that X N 1 and Uniform[0 1]. Derive a crude Monte Carlo
algorithm, based on generating from a normal distribution, to generate from the con
ditional distribution X x Generalize this to a sample of n from the N 1
distribution. When will this algortithm be inefficient in the sense that we need a lot of
computation to generate a single value?
7.3.6 Suppose that X 0 5N 1 0 5N 2 and Uniform[0 1]. Derive a
crude Monte Carlo algorithm, based on generating from a mixure of normal distrib
utions, to generate from the conditional distribution X x Generalize this to a
sample of n 2 from the 0 5N 1 0 5N 2 distribution.
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COMPUTER EXERCISES

7.3.7 In the context of Example 7.3.1, construct a density histogram of the posterior
distribution of z0 25, i.e., the population first quartile, using N 5 103

and N 104 and compare the results. Estimate the posterior mean of this distribution
and assess the error in your approximation. (Hint: Modify the program in Appendix
B.)
7.3.8 Suppose that a manufacturer takes a random sample of manufactured items and
tests each item as to whether it is defective or not. The responses are felt to be i.i.d.
Bernoulli , where is the probability that the item is defective. The manufacturer
places a Beta 0 5 10 distribution on If a sample of n 100 items is taken and 5
defectives are observed, then, using a Monte Carlo sample with N 1000 estimate
the posterior probability that 0 1 and assess the error in your estimate.
7.3.9 Suppose that lifelengths (in years) of a manufactured item are known to follow
an Exponential distribution, where 0 is unknown and for the prior we take
Gamma 10 2 . Suppose that the lifelengths 4.3, 6.2, 8.4, 3.1, 6.0, 5.5, and 7.8 were
observed.
(a) Using a Monte Carlo sample of size N 103, approximate the posterior probability
that [3 6] and assess the error of your estimate.
(b) Using a Monte Carlo sample of size N 103, approximate the posterior probability
function of 1 ( x equals the greatest integer less than or equal to x).
(c) Using a Monte Carlo sample of size N 103, approximate the posterior expecta
tion of 1 and assess the error in your approximation.
7.3.10 Generate a sample of n 10 from a Pareto 2 distribution. Now pretend you
only know that you have a sample from a Pareto distribution, where 0 is
unknown, and place a Gamma 2 1 prior on Using a Monte Carlo sample of size
N 104, approximate the posterior expectation of 1 1 based on the observed
sample, and assess the accuracy of your approximation by quoting an interval that
contains the exact value with virtual certainty. (Hint: Problem 2.10.15.)

PROBLEMS

7.3.11 Suppose X1 Xn is a sample from the model f : and all the reg
ularity conditions of Section 6.5 apply. Assume that the prior is a continuous
function of and that the posterior mode X1 Xn

a s
when X1 Xn is a

sample from f (the latter assumption holds under very general conditions).

(a) Using the fact that, if Yn
a s

Y and g is a continuous function, then g Yn
a s

g Y ,
prove that

1

n

2 ln L x1 xn
2

a s
I

when X1 Xn is a sample from f .
(b) Explain to what extent the large sample approximate methods of Section 7.3.1 de
pend on the prior if the assumptions just described apply.
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7.3.12 In Exercise 7.3.10, explain why the interval you constructed to contain the pos
terior mean of 1 1 with virtual certainty may or may not contain the true value
of 1 1 .
7.3.13 Suppose that X Y is distributed Bivariate Normal 1 2 1 2 . Deter
mine a Gibbs sampling algorithm to generate from this distribution. Assume that you
have an algorithm for generating from univariate normal distributions. Is this the best
way to sample from this distribution? (Hint: Problem 2.8.27.)
7.3.14 Suppose that the joint density of X Y is given by fX Y x y 8xy for
0 x y 1 Fully describe a Gibbs sampling algorithm for this distribution. In
particular, indicate how you would generate all random variables. Can you design an
algorithm to generate exactly from this distribution?
7.3.15 In Example 7.3.1, prove that the posterior mean of does not exist.
(Hint: Use Problem 7.2.24 and the theorem of total expectation to split the integral into
two parts, where one part has value and the other part has value )
7.3.16 (Importance sampling based on the prior) Suppose we have an algorithm to
generate from the prior.
(a) Indicate how you could use this to approximate a posterior expectation using im
portance sampling (see Problem 4.5.21).
(b) What do you suppose is the major weakness is of this approach?

COMPUTER PROBLEMS

7.3.17 In the context of Example 7.3.2, construct a density histogram of the posterior
distribution of z0 25 i.e., the population first quartile, using N 104. Esti
mate the posterior mean of this distribution and assess the error in your approximation.

7.4 Choosing Priors
The issue of selecting a prior for a problem is an important one. Of course, the idea is
that we choose a prior to reect our a priori beliefs about the true value of Because
this will typically vary from statistician to statistician, this is often criticized as being
too subjective for scientific studies. It should be remembered, however, that the sam
pling model f : is also a subjective choice by the statistician. These choices
are guided by the statistician’s judgment. What then justifies one choice of a statistical
model or prior over another?

In effect, when statisticians choose a prior and a model, they are prescribing a joint
distribution for s . The only way to assess whether or not an appropriate choice
was made is to check whether the observed s is reasonable given this choice If s is
surprising, when compared to the distribution prescribed by the model and prior, then
we have evidence against the statistician’s choices Methods designed to assess this
are called modelchecking procedures, and are discussed in Chapter 9. At this point,
however, we should recognize the subjectivity that enters into statistical analyses, but
take some comfort that we have a methodology for checking whether or not the choices
made by the statistician make sense.
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Often a statistician will consider a particular family : of priors for a
problem and try to select a suitable prior 0 : . In such a context the
parameter is called a hyperparameter. Note that this family could be the set of all
possible priors, so there is no restriction in this formulation. We now discuss some
commonly used families : and methods for selecting 0

7.4.1 Conjugate Priors

Depending on the sampling model, the family may be conjugate.

Definition 7.4.1 The family of priors : for the parameter of the model
f : is conjugate, if for all data s S and all the posterior s

: .

Conjugacy is usually a great convenience as we start with some choice 0 for
the prior, and then we find the relevant s for the posterior, often without much
computation. While conjugacy can be criticized as a mere mathematical convenience,
it has to be acknowledged that many conjugate families offer sufficient variety to allow
for the expression of a wide spectrum of prior beliefs.

EXAMPLE 7.4.1 Conjugate Families
In Example 7.1.1, we have effectively shown that the family of all Beta distributions is
conjugate for sampling from the Bernoulli model. In Example 7.1.2, it is shown that
the family of normal priors is conjugate for sampling from the location normal model.
In Example 7.1.3, it is shown that the family of Dirichlet distributions is conjugate for
Multinomial models. In Example 7.1.4, it is shown that the family of priors specified
there is conjugate for sampling from the locationscale normal model.

Of course, using a conjugate family does not tell us how to select 0 Perhaps the
most justifiable approach is to use prior elicitation.

7.4.2 Elicitation

Elicitation involves explicitly using the statistician’s beliefs about the true value of
to select a prior in : that reects these beliefs. Typically, these involve the
statistician asking questions of himself, or of experts in the application area, in such a
way that the answers specify a prior from the family.

EXAMPLE 7.4.2 Location Normal
Suppose we are sampling from an N 2

0 distribution with unknown and 2
0

known, and we restrict attention to the family N 0
2
0 : 0 R1 2

0 0 of
priors for So here, 0

2
0 and there are two degrees of freedom in this family.

Thus, specifying two independent characteristics specifies a prior.
Accordingly, we could ask an expert to specify two quantiles of his or her prior

distribution for (see Exercise 7.4.10), as this specifies a prior in the family. For
example, we might ask an expert to specify a number 0 such that the true value of
was as likely to be greater than as less than 0 so that 0 is the median of the prior.
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We might also ask the expert to specify a value 0 such that there is 99% certainty that
the true value of is less than 0 This of course is the 0.99quantile of their prior.

Alternatively, we could ask the expert to specify the center 0 of their prior dis
tribution and for a constant 0 such that 0 3 0 contains the true value of with
virtual certainty. Clearly, in this case, 0 is the prior mean and 0 is the prior standard
deviation.

Elicitation is an important part of any Bayesian statistical analysis. If the experts
used are truly knowledgeable about the application, then it seems intuitively clear that
we will improve a statistical analysis by including such prior information.

The process of elicitation can be somewhat involved, however, for complicated
problems. Furthermore, there are various considerations that need to be taken into ac
count involving, prejudices and aws in the way we reason about probability outside of
a mathematical formulation. See Garthwaite, Kadane and O’Hagan (2005), “Statisti
cal methods for eliciting probability distributions”, Journal of the American Statistical
Association (Vol. 100, No. 470, pp. 680–700), for a deeper discussion of these issues.

7.4.3 Empirical Bayes

When the choice of 0 is based on the data s these methods are referred to as empirical
Bayesian methods. Logically, such methods would seem to violate a basic principle
of inference, namely, the principle of conditional probability. For when we compute
the posterior distribution of using a prior based on s in general this is no longer
the conditional distribution of given the data. While this is certainly an important
concern, in many problems the application of empirical Bayes leads to inferences with
satisfying properties.

For example, one empirical Bayesian method is to compute the prior predictive
m s for the data s and then base the choice of on these values. Note that the
prior predictive is like a likelihood function for (as it is the density or probability
function for the observed s), and so the methods of Chapter 6 apply for inference about

. For example, we could select the value of s that maximizes m s . The required
computations can be extensive, as is typically multidimensional. We illustrate with a
simple example.

EXAMPLE 7.4.3 Bernoulli
Suppose we have a sample x1 xn from a Bernoulli distribution and we contem
plate putting a Beta prior on for some 0 So the prior is symmetric about
1/2 and the spread in this distribution is controlled by Since the prior mean is 1/2
and the prior variance is 2 [ 2 1 2 2] 1 4 2 1 0 as we see
that choosing large leads to a very precise prior. Then we have that

m x1 xn
2

2

1

0

nx 1 1 n 1 x 1 d

2
2

nx n 1 x

n 2
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It is difficult to find the value of that maximizes this, but for real data we can tabulate
and plot m x1 xn to obtain this value. More advanced computational methods
can also be used.

For example, suppose that n 20 and we obtained nx 5 as the number of 1’s
observed. In Figure 7.4.1 we have plotted the graph of m x1 xn as a function of

We can see from this that the maximum occurs near 2 More precisely, from a
tabulation we determine that 2 3 is close to the maximum. Accordingly, we use
the Beta 5 2 3 15 2 3 Beta 7 3 17 3 distribution for inferences about
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Figure 7.4.1: Plot of m x1 xn in Example 7.4.3.

There are many issues concerning empirical Bayes methods. This represents an
active area of statistical research.

7.4.4 Hierarchical Bayes

An alternative to choosing a prior for in : consists of putting yet another
prior distribution , called a hyperprior, on . This approach is commonly called hi
erarchical Bayes. The prior for basically becomes d , so we
have in effect integrated out the hyperparameter. The problem then is how to choose
the prior . In essence, we have simply replaced the problem of choosing the prior
on with choosing the hyperprior on It is common, in applications using hierarchi
cal Bayes, that default choices are made for although we could also make use of
elicitation techniques We will discuss this further in Section 7.4.5.

So in this situation, the posterior density of is equal to

s
f s d

m s

f s

m s

m s

m s
d ,
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where m s f s d d m s d and, for fixed
m s f s d (assuming is continuous with prior density given by ).
Note that the posterior density of is m s m s while f s m s is the
posterior density of given

Therefore, we can use s for inferences about the model parameter (e.g.,
estimation, credible regions, and hypothesis assessment) and m s m s for in
ferences about Typically, however, we are not interested in and in fact it doesn’t
really make sense to talk about the “true” value of The true value of corresponds
to the distribution that actually produced the observed data s at least when the model
is correct, while we are not thinking of as being generated from This also implies
another distinction between and For is part of the likelihood function based on
how the data was generated, while is not.

EXAMPLE 7.4.4 LocationScale Normal
Suppose the situation is as is discussed in Example 7.1.4. In that case, both and

2 are part of the likelihood function and so are model parameters, while 0
2
0 0

and 0 are not, and so they are hyperparameters. To complete this specification as a
hierarchical model, we need to specify a prior 0

2
0 0 0 , a task we leave to a

higherlevel course.

7.4.5 Improper Priors and Noninformativity

One approach to choosing a prior, and to stop the chain of priors in a hierarchical Bayes
approach, is to prescribe a noninformative prior based on ignorance. Such a prior is
also referred to as a default prior or reference prior. The motivation is to specify a
prior that puts as little information into the analysis as possible and in some sense
characterizes ignorance. Surprisingly, in many contexts, statisticians have been led to
choose noninformative priors that are improper, i.e., d so they do not
correspond to probability distributions.

The idea here is to give a rule such that, if a statistician has no prior beliefs about
the value of a parameter or hyperparameter, then a prior is prescribed that reects this.
In the hierarchical Bayes approach, one continues up the chain until the statistician
declares ignorance, and a default prior completes the specification.

Unfortunately, just how ignorance is to be expressed turns out to be a rather subtle
issue. In many cases, the default priors turn out to be improper, i.e., the integral or
sum of the prior over the whole parameter space equals e.g., d so
the prior is not a probability distribution The interpretation of an improper prior is not
at all clear, and their use is somewhat controversial. Of course, s no longer has a
joint probability distribution when we are using improper priors, and we cannot use the
principle of conditional probability to justify basing our inferences on the posterior.

There have been numerous difficulties associated with the use of improper priors,
which is perhaps not surprising. In particular, it is important to note that there is no
reason in general for the posterior of to exist as a proper probability distribution
when is improper. If an improper prior is being used, then we should always check
to make sure the posterior is proper, as inferences will not make sense if we are using
an improper posterior.
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When using an improper prior , it is completely equivalent to instead use the prior
c for any c 0 for the posterior under is proper if and only if the posterior under
c is proper; then the posteriors are identical (see Exercise 7.4.6).

The following example illustrates the use of an improper prior.

EXAMPLE 7.4.5 Location Normal Model with an Improper Prior
Suppose that x1 xn is a sample from an N 2

0 distribution, where
R1 is unknown and 2

0 is known Many arguments for default priors in this context lead
to the choice 1, which is clearly improper.

Proceeding as in Example 7.1.2, namely, pretending that this is a proper proba
bility density, we get that the posterior density of is proportional to

exp
n

2 2
0

x 2 .

This immediately implies that the posterior distribution of is N x 2
0 n . Note

that this is the same as the limiting posterior obtained in Example 7.1.2 as 0
although the point of view is quite different.

One commonly used method of selecting a default prior is to use, when it is avail
able, the prior given by I 1 2 when R1 (and by det I 1 2 in the multidimen
sional case), where I is the Fisher information for the statistical model as defined in
Section 6.5. This is referred to as Jeffreys’ prior. Note that Jeffreys’ prior is dependent
on the model.

Jeffreys’ prior has an important invariance property. From Challenge 6.5.19, we
have that, under some regularity conditions, if we make a 1–1 transformation of the
realvalued parameter via then the Fisher information of is given by

I 1 1
2

Therefore, the default Jeffreys’ prior for is

I 1 2 1 1 (7.4.1)

Now we see that, if we had started with the default prior I 1 2 for and made the
change of variable to then this prior transforms to (7.4.1) by Theorems 2.6.2 and
2.6.3. A similar result can be obtained when is multidimensional.

Jeffreys’ prior often turns out to be improper, as the next example illustrates.

EXAMPLE 7.4.6 Location Normal (Example 7.4.5 continued)
In this case, Jeffreys’ prior is given by n 0 which gives the same posterior
as in Example 7.4.5. Note that Jeffreys’ prior is effectively a constant and hence the
prior of Example 7.4.5 is equivalent to Jeffreys’ prior.

Research into rules for determining noninformative priors and the consequences of
using such priors is an active area in statistics. While the impropriety seems counterin
tuitive, their usage often produces inferences with good properties.
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Summary of Section 7.4

To implement Bayesian inference, the statistician must choose a prior as well as
the sampling model for the data.

These choices must be checked if the inferences obtained are supposed to have
practical validity. This topic is discussed in Chapter 9.

Various techniques have been devised to allow for automatic selection of a prior.
These include empirical Bayes methods, hierarchical Bayes, and the use of non
informative priors to express ignorance.

Noninformative priors are often improper. We must always check that an im
proper prior leads to a proper posterior.

EXERCISES

7.4.1 Prove that the family Gamma : 0 0 is a conjugate family of
priors with respect to sampling from the model given by Pareto distributions with

0.
7.4.2 Prove that the family : 1 0 of priors given by

I[

1 1

is a conjugate family of priors with respect to sampling from the model given by the
Uniform[0 ] distributions with 0.
7.4.3 Suppose that the statistical model is given by

p 1 p 2 p 3 p 4
a 1 3 1 6 1 3 1 6
b 1 2 1 4 1 8 1 8

and that we consider the family of priors given by

a b
1 1 2 1 2
2 1 3 2 3

and we observe the sample x1 1 x2 1 x2 3.

(a) If we use the maximum value of the prior predictive for the data to determine the
value of and hence the prior, which prior is selected here?

(b) Determine the posterior of based on the selected prior.
7.4.4 For the situation described in Exercise 7.4.3, put a uniform prior on the hyperpa
rameter and determine the posterior of (Hint: Theorem of total probability.)

7.4.5 For the model for proportions described in Example 7.1.1, determine the prior
predictive density. If n 10 and nx 7 which of the priors given by 1 1
or 5 5 would the prior predictive criterion select for further inferences
about ?
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7.4.6 Prove that when using an improper prior the posterior under is proper if and
only if the posterior under c is proper for c 0 and then the posteriors are identical.
7.4.7 Determine Jeffreys’ prior for the Bernoulli model and determine the posterior
distribution of based on this prior.
7.4.8 Suppose we are sampling from a Uniform[0 ] 0 model and we want to
use the improper prior 1
(a) Does the posterior exist in this context?
(b) Does Jeffreys’ prior exist in this context?
7.4.9 Suppose a student wants to put a prior on the mean grade out of 100 that their
class will obtain on the next statistics exam. The student feels that a normal prior
centered at 66 is appropriate and that the interval 40 92 should contain 99% of the
marks. Fully identify the prior.
7.4.10 A lab has conducted many measurements in the past on water samples from
a particular source to determine the existence of a certain contaminant. From their
records, it was determined that 50% of the samples had contamination less than 5.3
parts per million, while 95% had contamination less than 7.3 parts per million. If a
normal prior is going to be used for a future analysis, what prior do these data deter
mine?
7.4.11 Suppose that a manufacturer wants to construct a 0.95credible interval for the
mean lifetime of an item sold by the company. A consulting engineer is 99% certain
that the mean lifetime is less than 50 months. If the prior on is an Exponential ,
then determine based on this information.
7.4.12 Suppose the prior on a model parameter is taken to be N 0

2
0 , where 0

and 2
0 are hyperparameters. The statistician is able to elicit a value for 0 but feels

unable to do this for 2
0 Accordingly, the statistician puts a hyperprior on 2

0 given by
1/ 2

0 Gamma 0 1 for some value of 0 Determine the prior on (Hint: Write

0 0z, where z N 0 1 )

COMPUTER EXERCISES

7.4.13 Consider the situation discussed in Exercise 7.4.5.
(a) If we observe n 10 nx 7, and we are using a symmetric prior, i.e., plot
the prior predictive as a function of in the range 0 20 (you will need a statistical
package that provides evaluations of the gamma function for this). Does this graph
clearly select a value for ?
(b) If we observe n 10 nx 9, plot the prior predictive as a function of in the
range 0 20 . Compare this plot with that in part (a).
7.4.14 Reproduce the plot given in Example 7.4.3 and verify that the maximum occurs
near 2 3

PROBLEMS

7.4.15 Show that a distribution in the family N 0
2
0 : 0 R1 2

0 0 is com
pletely determined once we specify two quantiles of the distribution.
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7.4.16 (Scale normal model) Consider the family of N 0
2 distributions, where

0 is known and 2 0 is unknown. Determine Jeffreys’ prior for this model.
7.4.17 Suppose that for the locationscale normal model described in Example 7.1.4,
we use the prior formed by the Jeffreys’ prior for the location model (just a constant)
times the Jeffreys’ prior for the scale normal model. Determine the posterior distribu
tion of 2 .
7.4.18 Consider the location normal model described in Example 7.1.2.
(a) Determine the prior predictive density m. (Hint: Write down the joint density of
the sample and Use (7.1.2) to integrate out and do not worry about getting m into
a recognizable form.)
(b) How would you generate a value X1 Xn from this distribution?
(c) Are X1 Xn mutually independent? Justify your answer. (Hint: Write Xi

0 Zi 0 0 Z , where Z Z1 Zn are i.i.d. N 0 1 )
7.4.19 Consider Example 7.3.2, but this time use the prior 2 1 2. De
velop the Gibbs sampling algorithm for this situation. (Hint: Simply adjust each full
conditional in Example 7.3.2 appropriately.)

COMPUTER PROBLEMS

7.4.20 Use the formulation described in Problem 7.4.17 and the data in the following
table

2.6 4.2 3.1 5.2 3.7 3.8 5.6 1.8 5.3 4.0
3.0 4.0 4.1 3.2 2.2 3.4 4.5 2.9 4.7 5.2

generate a sample of size N 104 from the posterior. Plot a density histogram estimate
of the posterior density of based on this sample.

CHALLENGES

7.4.21 When 1 2 , the Fisher information matrix I 1 2 is defined in Prob
lem 6.5.15. The Jeffreys’ prior is then defined as det I 1 2

1 2. Determine Jef
freys’ prior for the locationscale normal model and compare this with the prior used
in Problem 7.4.17.

DISCUSSION TOPICS

7.4.22 Using empirical Bayes methods to determine a prior violates the Bayesian prin
ciple that all unknowns should be assigned probability distributions. Comment on this.
Is the hierarchical Bayesian approach a solution to this problem?
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7.5 Further Proofs (Advanced)
Derivation of the Posterior Distribution for the LocationScale
Normal Model

In Example 7.1.4, the likelihood function is given by

L x1 xn 2 2 n 2 exp
n

2 2 x 2 exp
n 1

2 2 s2

The prior on 2 is given by 2 N 0
2
0

2 and 1 2 Gamma 0 0 ,
where 0

2
0 0 and 0 are fixed and known.

The posterior density of 2 is then proportional to the likelihood times the
joint prior. Therefore, retaining only those parts of the likelihood and the prior that
depend on and 2 the joint posterior density is proportional to

1
2

n 2

exp
n

2 2
x 2 exp

n 1

2 2
s2

1
2

1 2

exp
1

2 2
0

2 0
2 1

2

0 1

exp 0
2

exp
n

2 2 x 2 1

2 2
0

2 0
2 1

2

0 n 2 1 2

exp 0
n 1

2
s2 1

2

exp
1

2 2 n
1
2
0

2 2 nx 0
2
0

1
2

0 n 2 1 2

exp 0
n

2
x2 1

2 2
0

2
0

n 1

2
s2 1

2

1
2

1 2

exp
1

2 2 n
1
2
0

n
1
2
0

1
0
2
0

nx

2

1
2

0 n 2 1

exp
0

n
2 x2 1

2 2
0

2
0

n 1
2 s2

1
2 n 1

2
0

1
0
2
0

nx
2

1
2

From this, we deduce that the posterior distribution of 2 is given by

2 x N x n
1
2
0

1
2
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and
1
2 x Gamma 0 n 2 x ,

where

x n
1
2
0

1
0
2
0

nx

and

x 0
n

2
x2

2
0

2 2
0

n 1

2
s2 1

2
n

1
2
0

1
0
2
0

nx

2

0
n 1

2
s2 1

2

n x 0
2

1 n 2
0

Derivation of J 0 for the LocationScale Normal

Here we have that
2 1 1

2

1 2

and
2 1

2

We have that

det
1
2

1
2

det
2 1

2

1 2
1
2

1 1
2

3 2

0 1

det
2 1 2 1

2
1

0 1
2 1 2

and so
J 0

2 1 2 1.





Chapter 8

Optimal Inferences

CHAPTER OUTLINE

Section 1 Optimal Unbiased Estimation
Section 2 Optimal Hypothesis Testing
Section 3 Optimal Bayesian Inferences
Section 4 Decision Theory (Advanced)
Section 5 Further Proofs (Advanced)

In Chapter 5, we introduced the basic ingredient of statistical inference — the statistical
model. In Chapter 6, inference methods were developed based on the model alone via
the likelihood function. In Chapter 7, we added the prior distribution on the model
parameter, which led to the posterior distribution as the basis for deriving inference
methods.

With both the likelihood and the posterior, however, the inferences were derived
largely based on intuition. For example, when we had a characteristic of interest ,
there was nothing in the theory in Chapters 6 and 7 that forced us to choose a particular
estimator, confidence or credible interval, or testing procedure. A complete theory of
statistical inference, however, would totally prescribe our inferences.

One attempt to resolve this issue is to introduce a performance measure on infer
ences and then choose an inference that does best with respect to this measure. For
example, we might choose to measure the performance of estimators by their mean
squared error (MSE) and then try to obtain an estimator that had the smallest possible
MSE. This is the optimality approach to inference, and it has been quite successful
in a number of problems. In this chapter, we will consider several successes for the
optimality approach to deriving inferences.

Sometimes the performance measure we use can be considered to be based on
what is called a loss function. Loss functions form the basis for yet another approach
to statistical inference called decision theory. While it is not always the case that a
performance measure is based on a loss function, this holds in some of the most impor
tant problems in statistical inference. Decision theory provides a general framework in
which to discuss these problems. A brief introduction to decision theory is provided in
Section 8.4 as an advanced topic.

433
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8.1 Optimal Unbiased Estimation
Suppose we want to estimate the realvalued characteristic for the statistical
model f : If we have observed the data s an estimate is a value T s that the
statistician hopes will be close to the true value of . We refer to T as an estimator
of The error in the estimate is given by T s . For a variety of reasons
(mostly to do with mathematics) it is more convenient to consider the squared error
T s 2.

Of course, we would like this squared error to be as small as possible. Because
we do not know the true value of this leads us to consider the distributions of the
squared error, when s has distribution given by f for each . We would then
like to choose the estimator T so that these distributions are as concentrated as possible
about 0. A convenient measure of the concentration of these distributions about 0 is
given by their means, or

MSE T E T 2 (8.1.1)

called the meansquared error (recall Definition 6.3.1).
An optimal estimator of is then a T that minimizes (8.1.1) for every

In other words, T would be optimal if, for any other estimator T defined on S we
have that

MSE T MSE T

for each Unfortunately, it can be shown that, except in very artificial circumstances,
there is no such T so we need to modify our optimization problem.

This modification takes the form of restricting the estimators T that we will enter
tain as possible choices for the inference. Consider an estimator T such that E T
does not exist or is infinite. It can then be shown that (8.1.1) is infinite (see Challenge
8.1.26). So we will first restrict our search to those T for which E T is finite for
every

Further restrictions on the types of estimators that we consider make use of the
following result (recall also Theorem 6.3.1).

Theorem 8.1.1 If T is such that E T 2 is finite, then

E T c 2 Var T E T c 2

This is minimized by taking c E T .

PROOF We have that

E T c 2 E T E T E T c 2

E T E T 2 2E T E T E T c E T c 2

Var T E T c 2, (8.1.2)

because E T E T E T E T 0. As E T c 2 0, and Var T does
not depend on c, the value of (8.1.2) is minimized by taking c E T .
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8.1.1 The Rao–Blackwell Theorem and Rao–Blackwellization

We will prove that, when we are looking for T to minimize (8.1.1), we can further
restrict our attention to estimators T that depend on the data only through the value
of a sufficient statistic. This simplifies our search, as sufficiency often results in a
reduction of the dimension of the data (recall the discussion and examples in Section
6.1.1). First, however, we need the following property of sufficiency.

Theorem 8.1.2 A statistic U is sufficient for a model if and only if the conditional
distribution of the data s given U u is the same for every

PROOF See Section 8.5 for the proof of this result.

The implication of this result is that information in the data s beyond the value of
U s u can tell us nothing about the true value of because this information comes
from a distribution that does not depend on the parameter. Notice that Theorem 8.1.2
is a characterization of sufficiency, alternative to that provided in Section 6.1.1.

Consider a simple example that illustrates the content of Theorem 8.1.2.

EXAMPLE 8.1.1
Suppose that S 1 2 3 4 a b , where the two probability distributions are
given by the following table.

s 1 s 2 s 3 s 4
a 1 2 1 6 1 6 1 6
b 1 4 1 4 1 4 1 4

Then L 2 L 3 L 4 , and so U : S 0 1 , given by U 1 0 and
U 2 U 3 U 4 1 is a sufficient statistic.

As we must have s 1 when we observe U s 0 the conditional distribution of
the response s given U s 0 is degenerate at 1 (i.e., all the probability mass is at
the point 1) for both a and b When a the conditional distribution of the
response s given U s 1 places 1/3 of its mass at each of the points in 2 3 4 and
similarly when b So given U s 1 the conditional distributions are as in the
following table.

s 1 s 2 s 3 s 4
a 0 1 3 1 3 1 3
b 0 1 3 1 3 1 3

Thus, we see that indeed the conditional distributions are independent of .

We now combine Theorems 8.1.1 and 8.1.2 to show that we can restrict our at
tention to estimators T that depend on the data only through the value of a sufficient
statistic U . By Theorem 8.1.2 we can denote the conditional probability measure for
s given U s u, by P U u , i.e., this probability measure does not depend on

, as it is the same for every .
For estimator T of , such that E T is finite for every put TU s equal to

the conditional expectation of T given the value of U s namely,

TU s EP U U s T ,



436 Section 8.1: Optimal Unbiased Estimation

i.e., TU is the average value of T when we average using P U U s Notice
that TU s1 TU s2 whenever U s1 U s2 (this is because P U U s1
P U U s2 ), and so TU depends on the data s only through the value of U s .

Theorem 8.1.3 (Rao–Blackwell) Suppose that U is a sufficient statistic and E T 2

is finite for every . Then MSE TU MSE T for every

PROOF Let P U denote the marginal probability measure of U induced by P . By
the theorem of total expectation (see Theorem 3.5.2), we have that

MSE T EP U EP U u T 2 ,

where EP U u T 2 denotes the conditional MSE of T , given U u. Now
by Theorem 8.1.1,

EP U u T 2 VarP U u T EP U u T 2. (8.1.3)

As both terms in (8.1.3) are nonnegative, and recalling the definition of TU we have

MSE T EP U VarP U u T EP U TU s 2

EP U TU s 2 .

Now TU s 2 EP U u TU s 2 (Theorem 3.5.4) and so, by
the theorem of total expectation,

EP U TU s 2 EP U EP U u TU s 2

EP TU s 2 MSE TU

and the theorem is proved.

Theorem 8.1.3 shows that we can always improve on (or at least make no worse)
any estimator T that possesses a finite second moment, by replacing T s by the esti
mate TU s . This process is sometimes referred to as the RaoBlackwellization of an
estimator.

Notice that putting E E and c in Theorem 8.1.1 implies that

MSE T Var T E T 2. (8.1.4)

So the MSE of T can be decomposed as the sum of the variance of T plus the squared
bias of T (this was also proved in Theorem 6.3.1).

Theorem 8.1.1 has another important implication, for (8.1.4) is minimized by tak
ing E T . This indicates that, on average, the estimator T comes closer (in
terms of squared error) to E T than to any other value. So, if we are sampling from
the distribution specified by T s is a natural estimate of E T . Therefore, for a
general characteristic , it makes sense to restrict attention to estimators that have
bias equal to 0. This leads to the following definition.
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Definition 8.1.1 An estimator T of is unbiased if E T for every

Notice that, for unbiased estimators with finite second moment, (8.1.4) becomes

MSE T Var T .

Therefore, our search for an optimal estimator has become the search for an unbiased
estimator with smallest variance. If such an estimator exists, we give it a special name.

Definition 8.1.2 An unbiased estimator of with smallest variance for each
is called a uniformly minimum variance unbiased (UMVU) estimator.

It is important to note that the Rao–Blackwell theorem (Theorem 8.1.3) also ap
plies to unbiased estimators. This is because the Rao–Blackwellization of an unbiased
estimator yields an unbiased estimator, as the following result demonstrates.

Theorem 8.1.4 (Rao–Blackwell for unbiased estimators) If T has finite second mo
ment, is unbiased for and U is a sufficient statistic, then E TU for
every (so TU is also unbiased for ) and Var TU Var T

PROOF Using the theorem of total expectation (Theorem 3.5.2), we have

E TU EP U TU EP U EP U u T E T .

So TU is unbiased for and MSE T Var T , MSE TU Var TU Ap
plying Theorem 8.1.3 gives Var TU Var T .

There are many situations in which the theory of unbiased estimation leads to good
estimators. However, the following example illustrates that in some problems, there
are no unbiased estimators and hence the theory has some limitations.

EXAMPLE 8.1.2 The Nonexistence of an Unbiased Estimator
Suppose that x1 xn is a sample from the Bernoulli and we wish to find a
UMVU estimator of 1 , the odds in favor of a success occurring From
Theorem 8.1.4, we can restrict our search to unbiased estimators T that are functions
of the sufficient statistic nx .

Such a T satisfies E T nX 1 for every [0 1]. Recalling that
nX Binomial n this implies that

1

n

k 0

T k
n

k
k 1 n k

for every [0 1]. By the binomial theorem, we have

1 n k
n k

l 0

n k

l
1 l l
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Substituting this into the preceding expression for 1 and writing this in terms
of powers of leads to

1

n

m 0

m

k 0

T k
n

k
1 m k m . (8.1.5)

Now the lefthand side of (8.1.5) goes to as 1 but the righthand side is a
polynomial in , which is bounded in [0 1] Therefore, an unbiased estimator of
cannot exist.

If a characteristic has an unbiased estimator, then it is said to be Uestimable.
It should be kept in mind, however, that just because a parameter is not Uestimable
does not mean that we cannot estimate it! For example, in Example 8.1.2, is a 1–1
function of so the MLE of is given by x 1 x (see Theorem 6.2.1); this seems
like a sensible estimator, even if it is biased.

8.1.2 Completeness and the Lehmann–Scheffé Theorem

In certain circumstances, if an unbiased estimator exists, and is a function of a sufficient
statistic U then there is only one such estimator — so it must be UMVU. We need the
concept of completeness to establish this.

Definition 8.1.3 A statistic U is complete if any function h of U which satisfies
E h U 0 for every , also satisfies h U s 0 with probability 1 for
each (i.e., P s : h U s 0 1 for every ).

In probability theory, we treat two functions as equivalent if they differ only on a set
having probability content 0, as the probability of the functions taking different values
at an observed response value is 0. So in Definition 8.1.3, we need not distinguish
between h and the constant 0. Therefore, a statistic U is complete if the only unbiased
estimator of 0, based on U is given by 0 itself.

We can now derive the following result.

Theorem 8.1.5 (Lehmann–Scheffé) If U is a complete sufficient statistic, and if T
depends on the data only through the value of U has finite second moment for every

and is unbiased for then T is UMVU.

PROOF Suppose that T is also an unbiased estimator of By Theorem 8.1.4
we can assume that T depends on the data only through the value of U Then there
exist functions h and h such that T s h U s and T s h U s and

0 E T E T E h U E h U E h U h U .

By the completeness of U , we have that h U h U with probability 1 for each
which implies that T T with probability 1 for each This says

there is essentially only one unbiased estimator for based on U and so it must be
UMVU.
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The Rao–Blackwell theorem for unbiased estimators (Theorem 8.1.4), together
with the Lehmann–Scheffé theorem, provide a method for obtaining a UMVU esti
mator of . Suppose we can find an unbiased estimator T that has finite second
moment. If we also have a complete sufficient statistic U then by Theorem 8.1.4
TU s EP U U s T is unbiased for and depends on the data only through
the value of U because TU s1 TU s2 whenever U s1 U s2 . Therefore, by
Theorem 8.1.5, TU is UMVU for .

It is not necessary, in a given problem, that a complete sufficient statistic exist.
In fact, it can be proved that the only candidate for this is a minimal sufficient statistic
(recall the definition in Section 6.1.1). So in a given problem, we must obtain a minimal
sufficient statistic and then determine whether or not it is complete. We illustrate this
via an example.

EXAMPLE 8.1.3 Location Normal
Suppose that x1 xn is a sample from an N 2

0 distribution, where R1

is unknown and 2
0 0 is known. In Example 6.1.7, we showed that x is a minimal

sufficient statistic for this model.
In fact, x is also complete for this model. The proof of this is a bit involved and is

presented in Section 8.5.
Given that x is a complete, minimal sufficient statistic, this implies that T x is a

UMVU estimator of its mean E T X whenever T has a finite second moment for
every R1 In particular, x is the UMVU estimator of because E X and
E X2 2

0 n 2 Furthermore, x 0z p is the UMVU estimator of
E X 0z p 0z p (the pth quantile of the true distribution).

The arguments needed to show the completeness of a minimal sufficient statistic in
a problem are often similar to the one required in Example 8.1.3 (see Challenge 8.1.27).
Rather than pursue such technicalities here, we quote some important examples in
which the minimal sufficient statistic is complete.

EXAMPLE 8.1.4 LocationScale Normal
Suppose that x1 xn is a sample from an N 2 distribution, where R1

and 0 are unknown. The parameter in this model is twodimensional and is given
by 2 R1 0 .

We showed, in Example 6.1.8, that x s2 is a minimal sufficient statistic for this
model. In fact, it can be shown that x s2 is a complete minimal sufficient statistic.
Therefore, T x s2 is a UMVU estimator of E T X S2 whenever the second mo
ment of T x s2 is finite for every 2 In particular, x is the UMVU estimator of

and s2 is UMVU for 2

EXAMPLE 8.1.5 DistributionFree Models
Suppose that x1 xn is a sample from some continuous distribution on R1 The
statistical model comprises all continuous distributions on R1

It can be shown that the order statistics x 1 x n make up a complete minimal
sufficient statistic for this model. Therefore, T x 1 x n is UMVU for

E T X 1 X n
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whenever
E T 2 X 1 X n (8.1.6)

for every continuous distribution. In particular, if T : Rn R1 is bounded, then this
is the case. For example, if

T x 1 x n
1

n

n

i 1

IA x i

the relative frequency of the event A in the sample, then T x 1 x n is UMVU
for E T X 1 X n P A .

Now change the model assumption so that x1 xn is a sample from some
continuous distribution on R1 that possesses its first m moments. Again, it can be
shown that the order statistics make up a complete minimal sufficient statistic. There
fore, T x 1 x n is UMVU for E T X 1 X n whenever (8.1.6) holds for
every continuous distribution possessing its first m moments. For example, if m 2
then this implies that T x 1 x n x is UMVU for E X . When m 4 we
have that s2 is UMVU for the population variance (see Exercise 8.1.2).

8.1.3 The Cramer–Rao Inequality (Advanced)

There is a fundamental inequality that holds for the variance of an estimator T This is
given by the Cramer–Rao inequality (sometimes called the information inequality). It
is a corollary to the following inequality.

Theorem 8.1.6 (Covariance inequality) Suppose T U : S R1 and E T 2

0 E U2 for every Then

Var T
Cov T U 2

Var U

for every Equality holds if and only if

T s E T
Cov T U

Var U
U s E U s

with probability 1 for every (i.e., if and only if T s and U s are linearly
related).

PROOF This result follows immediately from the Cauchy–Schwartz inequality (The
orem 3.6.3).

Now suppose that is an open subinterval of R1 and we take

U s S s
ln f s

(8.1.7)

i.e., U is the score function. Assume that the conditions discussed in Section 6.5 hold,
so that E S s 0 for all and, Fisher’s information I Var S s is
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finite. Then using
ln f s f s 1

f s

we have

Cov T U

E T s
ln f s

E T s
f s 1

f s

s
T s

f s 1

f s
f s

s
T s f s

E T
(8.1.8)

in the discrete case, where we have assumed conditions like those discussed in Section
6.5, so we can pull the partial derivative through the sum. A similar argument gives the
equality (8.1.8) in the continuous case as well.

The covariance inequality, applied with U specified as in (8.1.7) and using (8.1.8),
gives the following result.

Corollary 8.1.1 (Cramer–Rao or information inequality) Under conditions,

Var T
E T 2

I 1

for every Equality holds if and only if

T s E T
E T

I 1S s

with probability 1 for every .

The Cramer–Rao inequality provides a fundamental lower bound on the variance
of an estimator T From (8.1.4), we know that the variance is a relevant measure of the
accuracy of an estimator only when the estimator is unbiased, so we restate Corollary
8.1.1 for this case.

Corollary 8.1.2 Under the conditions of Corollary 8.1.1, when T is an unbiased
estimator of

Var T 2 I 1

for every Equality holds if and only if

T s I 1S s (8.1.9)

with probability 1 for every .

Notice that when then Corollary 8.1.2 says that the variance of the
unbiased estimator T is bounded below by the reciprocal of the Fisher information.
More generally, when is a 1–1, smooth transformation, we have (using Challenge
6.5.19) that the variance of an unbiased T is again bounded below by the reciprocal of
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the Fisher information, but this time the model uses the parameterization in terms of
.

Corollary 8.1.2 has several interesting implications. First, if we obtain an unbiased
estimator T with variance at the lower bound, then we know immediately that it is
UMVU. Second, we know that any unbiased estimator that achieves the lower bound
is of the form given in (8.1.9). Note that the righthand side of (8.1.9) must be inde
pendent of in order for this to be an estimator. If this is not the case, then there are no
UMVU estimators whose variance achieves the lower bound. The following example
demonstrates that there are cases in which UMVU estimators exist, but their variance
does not achieve the lower bound.

EXAMPLE 8.1.6 Poisson Model
Suppose that x1 xn is a sample from the Poisson distribution where 0 is
unknown. The loglikelihood is given by l x1 xn nx ln n , so the score
function is given by S x1 xn nx n Now

S x1 xn nx
2

and thus

I E
nx

2

n

Suppose we are estimating Then the Cramer–Rao lower bound is given by
I 1 n. Noting that x is unbiased for and that Var X n we see
immediately that x is UMVU and achieves the lower bound.

Now suppose that we are estimating e P 0 . The Cramer–Rao
lower bound equals e 2 n and

I 1 S x1 xn e e
n

nx
n

e 1 x ,

which is clearly not independent of . So there does not exist a UMVU estimator for
that attains the lower bound.
Does there exist a UMVU estimator for ? Observe that when n 1 then I 0 x1

is an unbiased estimator of . As it turns out, x is (for every n) a complete mini
mal sufficient statistic for this model, so by the Lehmann–Scheffé theorem I 0 x1 is
UMVU for Furthermore, I 0 X1 has variance

P X1 0 1 P X1 0 e 1 e

since I 0 X1 Bernoulli e This implies that e 1 e e 2 .
In general, we have that

1

n

n

i 1

I 0 xi

is an unbiased estimator of , but it is not a function of x . Thus we cannot apply the
Lehmann–Scheffé theorem, but we can Rao–Blackwellize this estimator. Therefore,
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the UMVU estimator of is given by

1

n

n

i 1

E I 0 Xi X x .

To determine this estimator in closed form, we reason as follows. The condi
tional probability function of X1 Xn given X x , because nX is distributed
Poisson n is

x1

x1!

xn

xn!
e n n nx

nx !
e n

1
nx

x1 xn

1

n

x1 1

n

xn

,

i.e., X1 Xn given X x is distributed Multinomial nx 1 n 1 n Ac
cordingly, the UMVU estimator is given by

E I 0 X1 X x P X1 0 X x 1
1

n

nx

because X i X x Binomial nx 1 n for each i 1 n
Certainly, it is not at all obvious from the functional form that this estimator is

unbiased, let alone UMVU. So this result can be viewed as a somewhat remarkable
application of the theory.

Recall now Theorems 6.5.2 and 6.5.3. The implications of these results, with some
additional conditions, are that the MLE of is asymptotically unbiased for and that
the asymptotic variance of the MLE is at the information lower bound. This is often
interpreted to mean that, with large samples, the MLE makes full use of the information
about contained in the data.

Summary of Section 8.1

An estimator comes closest (using squared distance) on average to its mean (see
Theorem 8.1.1), so we can restrict attention to unbiased estimators for quantities
of interest.

The Rao–Blackwell theorem says that we can restrict attention to functions of a
sufficient statistic when looking for an estimator minimizing MSE.

When a sufficient statistic is complete, then any function of that sufficient statis
tic is UMVU for its mean.

The Cramer–Rao lower bound gives a lower bound on the variance of an unbi
ased estimator and a method for obtaining an estimator that has variance at this
lower bound when such an estimator exists.
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EXERCISES

8.1.1 Suppose that a statistical model is given by the two distributions in the following
table.

s 1 s 2 s 3 s 4
fa s 1 3 1 6 1 12 5 12
fb s 1 2 1 4 1 6 1 12

If T : 1 2 3 4 1 2 3 4 is defined by T 1 T 2 1 and T s s
otherwise, then prove that T is a sufficient statistic. Derive the conditional distributions
of s given T s and show that these are independent of
8.1.2 Suppose that x1 xn is a sample from a distribution with mean and vari
ance 2 Prove that s2 n 1 1 n

i 1 xi x 2 is unbiased for 2

8.1.3 Suppose that x1 xn is a sample from an N 2
0 distribution, where

R1 is unknown and 2
0 is known. Determine a UMVU estimator of the second moment

2 2
0

8.1.4 Suppose that x1 xn is a sample from an N 2
0 distribution, where

R1 is unknown and 2
0 is known. Determine a UMVU estimator of the first quartile

0z0 25.

8.1.5 Suppose that x1 xn is a sample from an N 2
0 distribution, where

R1 is unknown and 2
0 is known. Is 2x 3 a UMVU estimator of anything? If so, what

is it UMVU for? Justify your answer.
8.1.6 Suppose that x1 xn is a sample from a Bernoulli distribution, where

[0 1] is unknown. Determine a UMVU estimator of (use the fact that a minimal
sufficient statistic for this model is complete).

8.1.7 Suppose that x1 xn is a sample from a Gamma 0 distribution, where
0 is known and 0 is unknown. Using the fact that x is a complete sufficient

statistic (see Challenge 8.1.27), determine a UMVU estimator of 1.
8.1.8 Suppose that x1 xn is a sample from an N 0

2 distribution, where 0

is known and 2 0 is unknown. Show that n
i 1 xi 0

2 is a sufficient statistic
for this problem. Using the fact that it is complete, determine a UMVU estimator for

2.
8.1.9 Suppose a statistical model comprises all continuous distributions on R1. Based
on a sample of n, determine a UMVU estimator of P 1 1 , where P is the true
probability measure. Justify your answer.
8.1.10 Suppose a statistical model comprises all continuous distributions on R1 that
have a finite second moment. Based on a sample of n, determine a UMVU estimator
of 2 where is the true mean. Justify your answer. (Hint: Find an unbiased esti
mator for n 2 Rao–Blackwellize this estimator for a sample of n, and then use the
Lehmann–Scheffé theorem.)

8.1.11 The estimator determined in Exercise 8.1.10 is also unbiased for 2 when the
statistical model comprises all continuous distributions on R1 that have a finite first
moment. Is this estimator still UMVU for 2?
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PROBLEMS

8.1.12 Suppose that x1 xn is a sample from a Uniform[0 ] distribution, where
0 is unknown. Show that x n is a sufficient statistic and determine its distribution.

Using the fact that x n is complete, determine a UMVU estimator of .
8.1.13 Suppose that x1 xn is a sample from a Bernoulli distribution, where

[0 1] is unknown. Then determine the conditional distribution of x1 xn ,
given the value of the sufficient statistic x .
8.1.14 Prove that L a a 2 satisfies

L a1 1 a2 L a1 1 L a2

when a ranges in a subinterval of R1. Use this result together with Jensen’s inequality
(Theorem 3.6.4) to prove the Rao–Blackwell theorem.
8.1.15 Prove that L a a satisfies

L a1 1 a2 L a1 1 L a2

when a ranges in a subinterval of R1. Use this result together with Jensen’s inequality
(Theorem 3.6.4) to prove the Rao–Blackwell theorem for absolute error. (Hint: First
show that x y x y for any x and y.)
8.1.16 Suppose that x1 xn is a sample from an N 2 distribution, where

2 R1 0 is unknown. Show that the optimal estimator (in the sense
of minimizing the MSE), of the form cs2 for 2 is given by c n 1 n 1 .
Determine the bias of this estimator and show that it goes to 0 as n .
8.1.17 Prove that if a statistic T is complete for a model and U h T for a 1–1
function h then U is also complete.
8.1.18 Suppose that x1 xn is a sample from an N 2 distribution, where

2 R1 0 is unknown. Derive a UMVU estimator of the standard devia
tion (Hint: Calculate the expected value of the sample standard deviation s.)
8.1.19 Suppose that x1 xn is a sample from an N 2 distribution, where

2 R1 0 is unknown. Derive a UMVU estimator of the first quartile
z0 25. (Hint: Problem 8.1.17.)

8.1.20 Suppose that x1 xn is a sample from an N 2
0 distribution, where

1 2 is unknown and 2
0 0 is known. Establish that x is a minimal

sufficient statistic for this model but that it is not complete.
8.1.21 Suppose that x1 xn is a sample from an N 2

0 distribution, where
R1 is unknown and 2

0 is known. Determine the information lower bound, for an
unbiased estimator, when we consider estimating the second moment 2 2

0. Does
the UMVU estimator in Exercise 8.1.3 attain the information lower bound?
8.1.22 Suppose that x1 xn is a sample from a Gamma 0 distribution, where

0 is known and 0 is unknown. Determine the information lower bound for the
estimation of 1 using unbiased estimators, and determine if the UMVU estimator
obtained in Exercise 8.1.7 attains this.
8.1.23 Suppose that x1 xn is a sample from the distribution with density f
x x 1 for x [0 1] and 0 is unknown. Determine the information lower
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bound for estimating using unbiased estimators Does a UMVU estimator with vari
ance at the lower bound exist for this problem?
8.1.24 Suppose that a statistic T is a complete statistic based on some statistical model.
A submodel is a statistical model that comprises only some of the distributions in the
original model. Why is it not necessarily the case that T is complete for a submodel?

8.1.25 Suppose that a statistic T is a complete statistic based on some statistical model.
If we construct a larger model that contains all the distributions in the original model
and is such that any set that has probability content equal to 0 for every distribution in
the original model also has probability content equal to 0 for every distribution in the
larger model, then prove that T is complete for the larger model as well.

CHALLENGES

8.1.26 If X is a random variable such that E X either does not exist or is infinite, then
show that E X c 2 for any constant c.

8.1.27 Suppose that x1 xn is a sample from a Gamma 0 distribution, where
0 is known and 0 is unknown. Show that x is a complete minimal sufficient

statistic.

8.2 Optimal Hypothesis Testing
Suppose we want to assess a hypothesis about the realvalued characteristic for
the model f : . Typically, this will take the form H0 : 0, where we
have specified a value for . After observing data s, we want to assess whether or not
we have evidence against H0.

In Section 6.3.3, we discussed methods for assessing such a hypothesis based on
the plugin MLE for These involved computing a Pvalue as a measure of how
surprising the data s are when the null hypothesis is assumed to be true. If s is sur
prising for each of the distributions f for which 0 then we have evidence
against H0 The development of such procedures was largely based on the intuitive
justification for the likelihood function.

8.2.1 The Power Function of a Test

Closely associated with a specific procedure for computing a Pvalue is the concept
of a power function as defined in Section 6.3.6. For this, we specified a critical
value such that we declare the results of the test statistically significant whenever the
Pvalue is less than or equal to The power is then the probability of the Pvalue
being less than or equal to when we are sampling from f The greater the value
of when 0 the better the procedure is at detecting departures from
H0. The power function is thus a measure of the sensitivity of the testing procedure to
detecting departures from H0

Recall the following fundamental example.
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EXAMPLE 8.2.1 Location Normal Model
Suppose we have a sample x1 xn from the N 2

0 model, where R1 is
unknown and 2

0 0 is known, and we want to assess the null hypothesis H0 : 0
In Example 6.3.9, we showed that a sensible test for this problem is based on the z
statistic

z
x 0

0 n

with Z N 0 1 under H0 The Pvalue is then given by

P 0 Z
x 0

0 n
2 1

x 0

0 n

where denotes the N 0 1 distribution function.
In Example 6.3.18, we showed that, for critical value the power function of the

ztest is given by

P 2 1
X 0

0 n
P

X 0

0 n
1

2

1 0

0 n
z1 2

0

0 n
z1 2

because X N 2
0 n .

We see that specifying a value for specifies a set of data values

R x1 xn :
x 0

0 n
1

2

such that the results of the test are determined to be statistically significant whenever
x1 xn R Using the fact that is 1–1 increasing, we can also write R as

R x1 xn :
x 0

0 n
1 1

2

x1 xn :
x 0

0 n
z1 2

Furthermore, the power function is given by P R and 0 P 0 R .

8.2.2 Type I and Type II Errors

We now adopt a different point of view. We are going to look for tests that are optimal
for testing the null hypothesis H0 : 0. First, we will assume that, having
observed the data s we will decide to either accept or reject H0 If we reject H0 then
this is equivalent to accepting the alternative Ha : 0. Our performance
measure for assessing testing procedures will then be the probability that the testing
procedure makes an error.
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There are two types of error. We can make a type I error — rejecting H0 when it is
true — or make a type II error — accepting H0 when H0 is false. Note that if we reject
H0 then this implies that we are accepting the alternative hypothesis Ha : 0

It turns out that, except in very artificial circumstances, there are no testing proce
dures that simultaneously minimize the probabilities of making the two kinds of errors.
Accordingly, we will place an upper bound called the critical value, on the proba
bility of making a type I error. We then search among those tests whose probability of
making a type I error is less than or equal to for a testing procedure that minimizes
the probability of making a type II error.

Sometimes hypothesis testing problems for realvalued parameters are distinguished
as being onesided or twosided. For example, if is realvalued, then H0 : 0 ver
sus Ha : 0 is a twosided testing problem, while H0 : 0 versus Ha : 0
or H0 : 0 versus Ha : 0 are examples of onesided problems. Notice,
however, that if we define

I 0 ,

then H0 : 0 versus Ha : 0 is equivalent to the problem H0 : 0
versus Ha : 0. Similarly, if we define

I 0 ,

then H0 : 0 versus Ha : 0 is equivalent to the problem H0 : 0
versus Ha : 0. So the formulation we have adopted for testing problems about
a general includes the onesided problems as special cases.

8.2.3 Rejection Regions and Test Functions

One approach to specifying a testing procedure is to select a subset R S before we
observe s. We then reject H0 whenever s R and accept H0 whenever s R The
set R is referred to as a rejection region. Putting an upper bound on the probability of
rejecting H0 when it is true leads to the following.

Definition 8.2.1 A rejection region R satisfying

P R (8.2.1)

whenever 0 is called a size rejection region for H0.

So (8.2.1) expresses the bound on the probability of making a type I error.
Among all size rejection regions R we want to find the one (if it exists) that will

minimize the probability of making a type II error. This is equivalent to finding the
size rejection region R that maximizes the probability of rejecting the null hypothesis
when it is false. This probability can be expressed in terms of the power function of R
and is given by P R whenever 0

To fully specify the optimality approach to testing hypotheses, we need one addi
tional ingredient. Observe that our search for an optimal size rejection region R is
equivalent to finding the indicator function IR that satisfies E IR P R



Chapter 8: Optimal Inferences 449

when 0 and maximizes E IR P R , when 0 It
turns out that, in a number of problems, there is no such rejection region.

On the other hand, there is often a solution to the more general problem of finding
a function : S [0 1] satisfying

E , (8.2.2)

when 0 and maximizes

E ,

when 0 We have the following terminology.

Definition 8.2.2 We call : S [0 1] a test function and E the
power function associated with the test function . If satisfies (8.2.2) when

0 it is called a size test function. If satisfies E when

0 it is called an exact size test function. A size test function that
maximizes E when 0 is called a uniformly most powerful
(UMP) size test function.

Note that IR is a test function with power function given by E IR
P R .

For observed data s we interpret s 0 to mean that we accept H0 and interpret
s 1 to mean that we reject H0 In general, we interpret s to be the conditional

probability that we reject H0 given the data s Operationally, this means that, after we
observe s we generate a Bernoulli s random variable. If we get a 1 we reject
H0 if we get a 0 we accept H0 Therefore, by the theorem of total expectation, E
is the unconditional probability of rejecting H0. The randomization that occurs when
0 s 1 may seem somewhat counterintuitive, but it is forced on us by our search
for a UMP size test, as we can increase power by doing this in certain problems.

8.2.4 The Neyman–Pearson Theorem

For a testing problem specified by a null hypothesis H0 : 0 and a critical
value we want to find a UMP size test function Note that a UMP size test
function 0 for H0 : 0 is characterized (letting denote the power function
of ) by

0

when 0 and by

0
,

when 0, for any other size test function
Still, this optimization problem does not have a solution in general. In certain prob

lems, however, an optimal solution can be found. The following result gives one such
example. It is fundamental to the entire theory of optimal hypothesis testing.
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Theorem 8.2.1 (Neyman–Pearson) Suppose that 0 1 and that we want to
test H0 : 0 Then an exact size test function 0 exists of the form

0 s

1 f 1 s f 0 s c0

f 1 s f 0 s c0

0 f 1 s f 0 s c0

(8.2.3)

for some [0 1] and c0 0 This test is UMP size

PROOF See Section 8.5 for the proof of this result.

The following result can be established by a simple extension of the proof of the
Neyman–Pearson theorem.

Corollary 8.2.1 If is a UMP size test, then s 0 s everywhere except
possibly on the boundary B s : f 1 s f 0 s c0 Furthermore, has exact
size unless the power of a UMP size test equals 1.

PROOF See Challenge 8.2.22.

Notice the intuitive nature of the test given by the Neyman–Pearson theorem, for
(8.2.3) indicates that we categorically reject H0 as being true when the likelihood ratio
of 1 versus 0 is greater than the constant c0 and we accept H0 when it is smaller.
When the likelihood ratio equals c0, we randomly decide to reject H0 with probability

. Also, Corollary 8.2.1 says that a UMP size test is basically unique, although there
are possibly different randomization strategies on the boundary.

The proof of the Neyman–Pearson theorem reveals that c0 is the smallest real num
ber such that

P 0

f 1 s

f 0 s
c0 (8.2.4)

and
P 0

f
1

s

f
0

s c0

P 0

f
1

s

f
0

s c0

P 0

f 1 s
f 0 s c0 0

0 otherwise.

(8.2.5)

We use (8.2.4) and (8.2.5) to calculate c0 and , and so determine the UMP size test,
in a particular problem.

Note that the test is nonrandomized whenever P 0 f 1 s f 0 s c0 as
then 0, i.e., we categorically accept or reject H0 after seeing the data. This
always occurs whenever the distribution of f 1 s f 0 s is continuous when s P 0 .
Interestingly, it can happen that the distribution of the ratio is not continuous even when
the distribution of s is continuous (see Problem 8.2.17).

Before considering some applications of the Neyman–Pearson theorem, we estab
lish the analog of the Rao–Blackwell theorem for hypothesis testing problems. Given
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the value of the sufficient statistic U s u, we denote the conditional probability
measure for the response s by P U u (by Theorem 8.1.2, this probability mea
sure does not depend on ) For test function put U s equal to the conditional
expectation of given the value of U s namely,

U s EP U U s .

Theorem 8.2.2 Suppose that U is a sufficient statistic and is a size test function
for H0 : 0 Then U is a size test function for H0 : 0 that
depends on the data only through the value of U Furthermore, and U have the
same power function.

PROOF It is clear that U s1 U s2 whenever U s1 U s2 and so U
depends on the data only through the value of U Now let P U denote the marginal
probability measure of U induced by P . Then by the theorem of total expectation, we
have E EP U EP U u EP U U E U . Now E when

0, which implies that E U when 0, and E
E U when 0

This result allows us to restrict our search for a UMP size test to those test functions
that depend on the data only through the value of a sufficient statistic.

We now consider some applications of the Neyman–Pearson theorem. The follow
ing example shows that this result can lead to solutions to much more general problems
than the simple case being addressed.

EXAMPLE 8.2.2 Optimal Hypothesis Testing in the Location Normal Model
Suppose that x1 xn is a sample from an N 2

0 distribution, where

0 1 and 2
0 0 is known, and we want to test H0 : 0 versus Ha : 1.

The likelihood function is given by

L x1 xn exp
n

2 2
0

x 2 ,

and x is a sufficient statistic for this restricted model.
By Theorem 8.2.2, we can restrict our attention to test functions that depend on the

data through x Now X N 2
0 n so that

f 1 x

f 0 x

exp n
2 2

0
x 1

2

exp n
2 2

0
x 0

2

exp
n

2 2
0

x2 2x 1
2
1 x2 2x 0

2
0

exp
n

2
0

1 0 x exp
n

2 2
0

2
1

2
0
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Therefore,

P 0

f 1 X

f 0 X
c0

P 0 exp
n

2
0

1 0 X exp
n

2 2
0

2
1

2
0 c0

P 0 exp
n

2
0

1 0 X c0 exp
n

2 2
0

2
1

2
0

P 0 1 0 X
2
0

n
ln c0 exp

n

2 2
0

2
1

2
0

P 0
X 0

0 n
c0 1 0

P 0
X 0

0 n
c0 1 0,

where

c0
n

0

2
0

n 1 0
ln c0 exp

n

2 2
0

2
1

2
0 0

Using (8.2.4), when 1 0 we select c0 so that c0 z1 when 1 0 we
select c0 so that c0 z These choices imply that

P 0

f 1 X

f 0 X
c0

and, by (8.2.5), 0.
So the UMP size test is nonrandomized. When 1 0 the test is given by

0 x

1 x 0
0
n

z1

0 x 0
0
n

z1

(8.2.6)

When 1 0 the test is given by

0 x

1 x 0
0
n

z

0 x 0
0
n

z
(8.2.7)

Notice that the test function in (8.2.6) does not depend on 1 in any way. The
subsequent implication is that this test function is UMP size for H0 : 0 versus
Ha : 1 for any 1 0 This implies that 0 is UMP size for H0 : 0
versus the alternative Ha : 0
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Furthermore, we have

0
P X 0

0

n
z1 P

X

0 n
0

0 n
z1

1 0

0 n
z1

Note that this is increasing in , which implies that 0 is a size test function for
H0 : 0 versus Ha : 0 Observe that, if is a size test function for
H0 : 0 versus Ha : 0 then it is also a size test for H0 : 0 versus
Ha : 0 From this, we conclude that 0 is UMP size for H0 : 0 versus
Ha : 0 Similarly (see Problem 8.2.12), it can be shown that 0 in (8.2.7) is
UMP size for H0 : 0 versus Ha : 0

We might wonder if a UMP size test exists for the twosided problem H0 :

0 versus Ha : 0 Suppose that is a size UMP test for this problem. Then
is also size for H0 : 0 versus Ha : 1 when 1 0. Using Corollary
8.2.1 and the preceding developments (which also shows that there does not exist a test
of the form (8.2.3) having power equal to 1 for this problem), this implies that 0
(the boundary B has probability 0 here). But is also UMP size for H0 : 0
versus Ha : 1 when 1 0; thus, by the same reasoning, 0 But clearly

0 0 so there is no UMP size test for the twosided problem.
Intuitively, we would expect that the size test given by

x

1 x 0

0 n
z1 2

0 x 0

0 n
z1 2

(8.2.8)

would be a good test to use, but it is not UMP size . It turns out, however, that the test
in (8.2.8) is UMP size among all tests satisfying 0 and when

0.

Example 8.2.2 illustrated a hypothesis testing problem for which no UMP size
test exists. Sometimes, however, by requiring that the test possess another very natural
property, we can obtain an optimal test.

Definition 8.2.3 A test that satisfies when 0 and
when 0 is said to be an unbiased size test for the hypothesis testing

problem H0 : 0

So (8.2.8) is a UMP unbiased size test. An unbiased test has the property that the
probability of rejecting the null hypothesis, when the null hypothesis is false, is always
greater than the probability of rejecting the null hypothesis, when the null hypothesis
is true. This seems like a very reasonable property. In particular, it can be proved that
any UMP size is always an unbiased size test (Problem 8.2.14). We do not pursue
the theory of unbiased tests further in this text.

We now consider an example which shows that we cannot dispense with the use of
randomized tests.
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EXAMPLE 8.2.3 Optimal Hypothesis Testing in the Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli distribution, where

0 1 , and we want to test H0 : 0 versus Ha : 1 where 1 0 Then
nx is a minimal sufficient statistic and, by Theorem 8.2.2, we can restrict our attention
to test functions that depend on the data only through nx

Now nX Binomial n so

f 1 nx

f 0 nx

nx
1 1 1

n nx

nx
0 1 0

n nx
1

0

nx 1 1

1 0

n nx

.

Therefore,

P 0

f 1 nX

f 0 nX
c0

P 0
1

0

nX 1 1

1 0

n nX

c0

P 0
1

1 1

1 0

0

nX

c0
1 1

1 0

n

P 0 nX ln 1

1 1

1 0

0
ln c0

1 1

1 0

n

P 0 nX
ln c0

1 1
1 0

n

ln 1
1 1

1 0
0

P 0 nX c0

because

ln 1

1 1

1 0

0
0

as 1 is increasing in which implies 1 1 1 0 1 0 .
Now, using (8.2.4), we choose c0 so that c0 is an integer satisfying

P 0 nX c0 and P 0 nX c0 1

Because nX Binomial n 0 is a discrete distribution, we see that, in general, we
will not be able to achieve P 0 nX c0 exactly. So, using (8.2.5),

P 0 nX c0

P 0 nX c0

will not be equal to 0. Then

0 nx

1 nx c0

nx c0

0 nx c0
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is UMP size for H0 : 0 versus Ha : 1 Note that we can use statistical
software (or Table D.6) for the binomial distribution to obtain c0

For example, suppose n 6 and 0 0 25 The following table gives the values
of the Binomial 6 0 25 distribution function to three decimal places.

x 0 1 2 3 4 5 6
F x 0 178 0 534 0 831 0 962 0 995 1 000 1 000

Therefore, if 0 05 we have that c0 3 because P0 25 nX 3 1 0 962
0 038 and P0 25 nX 2 1 0 831 0 169 This implies that

0 05 1 0 962

0 962
0 012

So with this test, we reject H0 : 0 categorically if the number of successes is
greater than 3, accept H0 : 0 categorically when the number of successes is less
than 3, and when the number of 1’s equals 3, we randomly reject H0 : 0 with
probability 0 012 (e.g., generate U Uniform[0 1] and reject whenever U 0 012

Notice that the test 0 does not involve 1 so indeed it is UMP size for H0 :
0 versus Ha : 0 Furthermore, using Problem 8.2.18, we have

P nX c0

n

k c0 1

n

k
k 1 n k

1
n 1

c0 1 n c0

1

uc0 1 u n c0 1 du

Because
1

uc0 1 u n c0 1 du

is decreasing in we must have that P nX c0 is increasing in Arguing as in
Example 8.2.2, we conclude that 0 is UMP size for H0 : 0 versus Ha : 0

Similarly, we obtain a UMP size test for H0 : 0 versus Ha : 0 As in
Example 8.2.2, there is no UMP size test for H0 : 0 versus Ha : 0 but
there is a UMP unbiased size test for this problem.

8.2.5 Likelihood Ratio Tests (Advanced)

In the examples considered so far, the Neyman–Pearson theorem has led to solutions
to problems in which H0 or Ha are not just single values of the parameter, even though
the theorem was only stated for the singlevalue case. We also noted, however, that
this is not true in general (for example, the twosided problems discussed in Examples
8.2.2 and 8.2.3).

The method of generalized likelihood ratio tests for H0 : 0 has been
developed to deal with the general case. This is motivated by the Neyman–Pearson
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theorem, for observe that in (8.2.3),

f 1 s

f 0 s

L 1 s

L 0 s
.

Therefore, (8.2.3) can be thought of as being based on the ratio of the likelihood at 1
to the likelihood at 0 and we reject H0 : 0 when the likelihood gives much more
support to 1 than to 0 The amount of the additional support required for rejection is
determined by c0 The larger c0 is, the larger the likelihood L 1 s has to be relative
to L 0 s before we reject H0 : 0

Denote the overall MLE of by s and the MLE, when H0 by H0 s . So
we have

L s L H0 s s

for all such that 0 The generalized likelihood ratio test then rejects H0
when

L s s

L H0 s s
(8.2.9)

is large, as this indicates evidence against H0 being true.
How do we determine when (8.2.9) is large enough to reject? Denoting the ob

served data by s0 we do this by computing the Pvalues

P
L s s

L H0 s s

L s0 s0

L H0 s0 s0
(8.2.10)

when H0. Small values of (8.2.10) are evidence against H0 Of course, when

0 for more than one value of then it is not clear which value of (8.2.10) to
use. It can be shown, however, that under conditions such as those discussed in Section
6.5, if s corresponds to a sample of n values from a distribution, then

2 ln
L s s

L H0 s s

D 2 dim dim H0

as n whenever the true value of is in H0 Here, dim and dim H0 are the
dimensions of these sets. This leads us to a test that rejects H0 whenever

2 ln
L s s

L H0 s s
(8.2.11)

is greater than a particular quantile of the 2 dim dim H0 distribution.
For example, suppose that in a locationscale normal model, we are testing H0 :

0 Then R1 [0 H0 0 [0 dim 2 dim H0 1 and,
for a size 0.05 test, we reject whenever (8.2.11) is greater than 2

0 95 1 . Note that,
strictly speaking, likelihood ratio tests are not derived via optimality considerations.
We will not discuss likelihood ratio tests further in this text.
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Summary of Section 8.2

In searching for an optimal hypothesis testing procedure, we place an upper
bound on the probability of making a type I error (rejecting H0 when it is true)
and search for a test that minimizes the probability of making a type II error
(accepting H0 when it is false).

The Neyman–Pearson theorem prescribes an optimal size test when H0 and
Ha each specify a single value for the full parameter .

Sometimes the Neyman–Pearson theorem leads to solutions to hypothesis test
ing problems when the null or alternative hypotheses allow for more than one
possible value for but in general we must resort to likelihood ratio tests for
such problems.

EXERCISES

8.2.1 Suppose that a statistical model is given by the two distributions in the following
table.

s 1 s 2 s 3 s 4
fa s 1 3 1 6 1 12 5 12
fb s 1 2 1 4 1 6 1 12

Determine the UMP size 0.10 test for testing H0 : a versus Ha : b What is
the power of this test? Repeat this with the size equal to 0.05.
8.2.2 Suppose for the hypothesis testing problem of Exercise 8.2.1, a statistician de
cides to generate U Uniform[0 1] and reject H0 whenever U 0 05. Show that
this test has size 0.05. Explain why this is not a good choice of test and why the test
derived in Exercise 8.2.1 is better. Provide numerical evidence for this.

8.2.3 Suppose an investigator knows that an industrial process yields a response vari
able that follows an N 1 2 distribution. Some changes have been made in the indus
trial process, and the investigator believes that these have possibly made a change in
the mean of the response (not the variance), increasing its value. The investigator wants
the probability of a type I error occurring to be less than 1%. Determine an appropriate
testing procedure for this problem based on a sample of size 10.
8.2.4 Suppose you have a sample of 20 from an N 1 distribution. You form a
0.975confidence interval for and use it to test H0 : 0 by rejecting H0 whenever
0 is not in the confidence interval.
(a) What is the size of this test?

(b) Determine the power function of this test.
8.2.5 Suppose you have a sample of size n 1 from a Uniform[0 ] distribution,
where 0 is unknown. You test H0 : 1 by rejecting H0 whenever the sampled
value is greater than 1.
(a) What is the size of this test?

(b) Determine the power function of this test.
8.2.6 Suppose you are testing a null hypothesis H0 : 0, where R1 You use a
size 0.05 testing procedure and accept H0 You feel you have a fairly large sample, but
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when you compute the power at 0 2, you obtain a value of 0 10 where 0 2 represents
the smallest difference from 0 that is of practical importance. Do you believe it makes
sense to conclude that the null hypothesis is true? Justify your conclusion.
8.2.7 Suppose you want to test the null hypothesis H0 : 0 based on a sample of
n from an N 1 distribution, where 0 2 How large does n have to be so that
the power at 2 of the optimal size 0.05 test, is equal to 0.99?
8.2.8 Suppose we have available two different test procedures in a problem and these
have the same power function. Explain why, from the point of view of optimal hypoth
esis testing theory, we should not care which test is used.
8.2.9 Suppose you have a UMP size test for testing the hypothesis H0 :

0, where is realvalued. Explain how the graph of the power function of another
size test that was not UMP would differ from the graph of the power function of

COMPUTER EXERCISES

8.2.10 Suppose you have a coin and you want to test the hypothesis that the coin is
fair, i.e., you want to test H0 : 1 2 where is the probability of getting a head
on a single toss. You decide to reject H0 using the rejection region R 0 1 7 8
based on n 10 tosses. Tabulate the power function for this procedure for
0 1 8 2 8 7 8 1
8.2.11 On the same graph, plot the power functions for the twosided ztest of H0 :

0 for samples of sizes n 1 4 10 20 and 100 based on 0 05
(a) What do you observe about these graphs?

(b) Explain how these graphs demonstrate the unbiasedness of this test.

PROBLEMS

8.2.12 Prove that 0 in (8.2.7) is UMP size for H0 : 0 versus Ha : 0.

8.2.13 Prove that the test function s for every s S is an exact size test
function. What is the interpretation of this test function?
8.2.14 Using the test function in Problem 8.2.13, show that a UMP size test is also a
UMP unbiased size test.
8.2.15 Suppose that x1 xn is a sample from a Gamma 0 distribution, where

0 is known and 0 is unknown. Determine the UMP size test for testing H0 :

0 versus Ha : 1, where 1 0 Is this test UMP size for H0 : 0
versus Ha : 0?
8.2.16 Suppose that x1 xn is a sample from an N 0

2 distribution, where

0 is known and 2 0 is unknown. Determine the UMP size test for testing
H0 : 2 2

0 versus Ha : 2 2
1 where 2

0
2
1 Is this test UMP size for

H0 : 2 2
0 versus Ha : 2 2

0?

8.2.17 Suppose that x1 xn is a sample from a Uniform[0 ] distribution, where
0 is unknown. Determine the UMP size test for testing H0 : 0 versus

Ha : 1, where 0 1 Is this test function UMP size for H0 : 0 versus
Ha : 0?



Chapter 8: Optimal Inferences 459

8.2.18 Suppose that F is the distribution function for the Binomial n distribution.
Then prove that

F x
n 1

x 1 n x

1
yx 1 y n x 1 dy

for x 0 1 n 1 This establishes a relationship between the binomial probability
distribution and the beta function. (Hint: Integration by parts.)
8.2.19 Suppose that F is the distribution function for the Poisson distribution. Then
prove that

F x
1

x!
yxe y dy

for x 0 1 . This establishes a relationship between the Poisson probability
distribution and the gamma function. (Hint: Integration by parts.)

8.2.20 Suppose that x1 xn is a sample from a Poisson distribution, where
0 is unknown. Determine the UMP size test for H0 : 0 versus Ha : 1,

where 0 1 Is this test function UMP size for H0 : 0 versus Ha : 0?
(Hint: You will need the result of Problem 8.2.19.)
8.2.21 Suppose that x1 xn is a sample from an N 2 distribution, where

2 R1 0 is unknown. Derive the form of the exact size likelihood
ratio test for testing H0 : 0 versus H0 : 0

8.2.22 (Optimal confidence intervals) Suppose that for model f : we have a
UMP size test function

0
for H0 : 0 for each possible value of 0 Sup

pose further that each
0

only takes values in 0 1 , i.e., each
0

is a nonrandomized
size test function.
(a) Prove that

C s 0 :
0

s 0

satisfies
P C s 1

for every . Conclude that C s is a 1 confidence set for .

(b) If C is a 1 confidence set for , then prove that the test function defined
by

0
s

1 0 C s

0 0 C s

is size for H0 : 0.

(c) Suppose that for each value 0 the test function
0

is UMP size for testing
H0 : 0 versus H0 : 0. Then prove that

P C s (8.2.12)

is minimized, when 0 among all 1 confidence sets for . The
probability (8.2.12) is the probability of C containing the false value and a
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1 confidence region that minimizes this probability when 0 is called a
uniformly most accurate (UMA) 1 confidence region for .

CHALLENGES

8.2.23 Prove Corollary 8.2.1 in the discrete case.

8.3 Optimal Bayesian Inferences
We now add the prior probability measure with density . As we will see, this
completes the specification of an optimality problem, as now there is always a solution.
Solutions to Bayesian optimization problems are known as Bayes rules.

In Section 8.1, the unrestricted optimization problem was to find the estimator T
of that minimizes MSE T E T 2 for each The Bayesian
version of this problem is to minimize

E MSE T E E T 2 . (8.3.1)

By the theorem of total expectation (Theorem 3.5.2), (8.3.1) is the expected value of
the squared error T s 2 under the joint distribution on s induced by the
conditional distribution for s given (the sampling model), and by the marginal dis
tribution for (the prior distribution of ). Again, by the theorem of total expectation,
we can write this as

E MSE T EM E s T 2 , (8.3.2)

where s denotes the posterior probability measure for given the data s (the
conditional distribution of given s), and M denotes the prior predictive probability
measure for s (the marginal distribution of s).

We have the following result.

Theorem 8.3.1 When (8.3.1) is finite, a Bayes rule is given by

T s E s

namely, the posterior expectation of .

PROOF First, consider the expected posterior squared error

E s T s 2

of an estimate T s . By Theorem 8.1.1 this is minimized by taking T s equal to
T s E s (note that the “random” quantity here is ).

Now suppose that T is any estimator of Then we have just shown that

0 E s T s 2 E s T s 2



Chapter 8: Optimal Inference Methods 461

and thus,

E MSE T EM E s T s 2

EM E s T s 2 E MSE T .

Therefore, T minimizes (8.3.1) and is a Bayes rule.

So we see that, under mild conditions, the optimal Bayesian estimation problem
always has a solution and there is no need to restrict ourselves to unbiased estimators,
etc.

For the hypothesis testing problem H0 : 0 we want to find the test
function that minimizes the prior probability of making an error (type I or type II).
Such a is a Bayes rule. We have the following result.

Theorem 8.3.2 A Bayes rule for the hypothesis testing problem H0 : 0
is given by

0 s
1 0 s 0 s

0 otherwise.

PROOF Consider test function and let I
0

denote the indicator function
of the set : 0 (so I

0
1 when 0 and equals 0

otherwise). Observe that s is the probability of rejecting H0 having observed s
which is an error when I

0
1; 1 s is the probability of accepting H0

having observed s which is an error when I 0 0 Therefore, given s and
the probability of making an error is

e s s I
0

1 s 1 I
0

.

By the theorem of total expectation, the prior probability of making an error (taking
the expectation of e s under the joint distribution of s ) is

EM E s e s (8.3.3)

As in the proof of Theorem 8.3.1, if we can find that minimizes E s e s for
each s then also minimizes (8.3.3) and is a Bayes rule.

Using Theorem 3.5.4 to pull s through the conditional expectation, and the fact
that E s IA A s for any event A then

E s e s s 0 s 1 s 1 0 s .

Because s [0 1] we have

min 0 s 1 0 s

s 0 s 1 s 1 0 s .
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Therefore, the minimum value of E s e s is attained by s 0 s .

Observe that Theorem 8.3.2 says that the Bayes rule rejects H0 whenever the pos
terior probability of the null hypothesis is less than or equal to the posterior probability
of the alternative. This is an intuitively satisfying result.

The following problem does arise with this approach, however. We have

0 s
E I : 0

f s

m s
max : 0

f s 0

m s
. (8.3.4)

When 0 0 (8.3.4) implies that 0 s 0 for every s.
Therefore, using the Bayes rule, we would always reject H0 no matter what data s are
obtained, which does not seem sensible. As discussed in Section 7.2.3, we have to be
careful to make sure we use a prior that assigns positive mass to H0 if we are going
to use the optimal Bayes approach to a hypothesis testing problem.

Summary of Section 8.3

Optimal Bayesian procedures are obtained by minimizing the expected perfor
mance measure using the posterior distribution.

In estimation problems, when using squared error as the performance measure,
the posterior mean is optimal.

In hypothesis testing problems, when minimizing the probability of making an
error as the performance measure, then computing the posterior probability of
the null hypothesis and accepting H0 when this is greater than 1/2 is optimal.

EXERCISES

8.3.1 Suppose that S 1 2 3 1 2 , with data distributions given by the
following table. We place a uniform prior on and want to estimate

s 1 s 2 s 3
f1 s 1 6 1 6 2 3
f2 s 1 4 1 4 1 2

Using a Bayes rule, test the hypothesis H0 : 2 when s 2 is observed.
8.3.2 For the situation described in Exercise 8.3.1, determine the Bayes rule estimator
of when using expected squared error as our performance measure for estimators.
8.3.3 Suppose that we have a sample x1 xn from an N 2

0 distribution,
where is unknown and 2

0 is known, and we want to estimate using expected
squared error as our performance measure for estimators If we use the prior distrib
ution N 2

0 , then determine the Bayes rule for this problem. Determine the
limiting Bayes rule as 0 .
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8.3.4 Suppose that we observe a sample x1 xn from a Bernoulli distribution,
where is completely unknown, and we want to estimate using expected squared
error as our performance measure for estimators. If we use the prior distribution
Beta , then determine a Bayes rule for this problem.
8.3.5 Suppose that x1 xn is a sample from a Gamma 0 distribution, where

0 is known, and Gamma 0 0 , where 0 and 0 are known. If we want to
estimate using expected squared error as our performance measure for estimators,
then determine the Bayes rule. Use the weak (or strong) law of large numbers to
determine what this estimator converges to as n .
8.3.6 For the situation described in Exercise 8.3.5, determine the Bayes rule for esti
mating 1 when using expected squared error as our performance measure for esti
mators.

8.3.7 Suppose that we have a sample x1 xn from an N 2
0 distribution,

where is unknown and 2
0 is known, and we want to find the test of H0 : 0

that minimizes the prior probability of making an error (type I or type II). If we use the
prior distribution p0 I 0 1 p0 N 0

2
0 , where p0 0 1 is known (i.e.,

the prior is a mixture of a distribution degenerate at 0 and an N 0
2
0 distribution),

then determine the Bayes rule for this problem. Determine the limiting Bayes rule as
0 . (Hint: Make use of the computations in Example 7.2.13.)
8.3.8 Suppose that we have a sample x1 xn from a Bernoulli distribution,
where is unknown, and we want to find the test of H0 : 0 that minimizes the
prior probability of making an error (type I or type II). If we use the prior distribution

p0 I 0 1 p0 Uniform[0 1], where p0 0 1 is known (i.e., the prior is a
mixture of a distribution degenerate at 0 and a uniform distribution), then determine
the Bayes rule for this problem.

PROBLEMS

8.3.9 Suppose that 1 2 , that we put a prior on and that we want to esti
mate Suppose our performance measure for estimators is the probability of making
an incorrect choice of . If the model is denoted f : , then obtain the form of
the Bayes rule when data s are observed.
8.3.10 For the situation described in Exercise 8.3.1, use the Bayes rule obtained via the
method of Problem 8.3.9 to estimate when s 2. What advantage does this estimate
have over that obtained in Exercise 8.3.2?
8.3.11 Suppose that x1 xn is a sample from an N 2 distribution where

2 R1 0 is unknown, and want to estimate using expected squared
error as our performance measure for estimators. Using the prior distribution given by

2 N 0
2
0

2 ,

and using
1
2

Gamma 0 0

where 0
2
0 0 and 0 are fixed and known, then determine the Bayes rule for .
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8.3.12 (Model selection) Generalize Problem 8.3.9 to the case 1 k .

CHALLENGES

8.3.13 In Section 7.2.4, we described the Bayesian prediction problem. Using the
notation found there, suppose we wish to predict t R1 using a predictor T s If we
assess the accuracy of a predictor by

E T s t 2 E EP EQ s T s t 2

then determine the prior predictor that minimizes this quantity (assume all relevant
expectations are finite). If we observe s0 then determine the best predictor. (Hint:
Assume all the probability measures are discrete.)

8.4 Decision Theory (Advanced)
To determine an optimal inference, we chose a performance measure and then at
tempted to find an inference, of a given type, that has optimal performance with respect
to this measure. For example, when considering estimates of a realvalued character
istic of interest , we took the performance measure to be MSE and then searched
for the estimator that minimizes this for each value of

Decision theory is closely related to the optimal approach to deriving inferences,
but it is a little more specialized. In the decision framework, we take the point of view
that, in any statistical problem, the statistician is faced with making a decision, e.g.,
deciding on a particular value for . Furthermore, associated with a decision is
the notion of a loss incurred whenever the decision is incorrect. A decision rule is a
procedure, based on the observed data s that the statistician uses to select a decision.
The decision problem is then to find a decision rule that minimizes the average loss
incurred.

There are a number of realworld contexts in which losses are an obvious part of
the problem, e.g., the monetary losses associated with various insurance plans that an
insurance company may consider offering. So the decision theory approach has many
applications. It is clear in many practical problems, however, that losses (as well as
performance measures) are somewhat arbitrary components of a statistical problem,
often chosen simply for convenience. In such circumstances, the approaches to deriv
ing inferences described in Chapters 6 and 7 are preferred by many statisticians.

So the decision theory model for inference adds another ingredient to the sampling
model (or to the sampling model and prior) to derive inferences — the loss function. To
formalize this, we conceive of a set of possible actions or decisions that the statistician
could take after observing the data s. This set of possible actions is denoted by and
is called the action space. To connect these actions with the statistical model, there
is a correct action function A : such that A is the correct action to take
when is the true value of the parameter. Of course, because we do not know we
do not know the correct action A so there is uncertainty involved in our decision.
Consider a simple example.
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EXAMPLE 8.4.1
Suppose you are told that an urn containing 100 balls has either 50 white and 50 black
balls or 60 white and 40 black balls. Five balls are drawn from the urn without replace
ment and their colors are observed. The statistician’s job is to make a decision about
the true proportion of white balls in the urn based on these data.

The statistical model then comprises two distributions P1 P2 where, using para
meter space 1 2 P1 is the Hypergeometric 100 50 5 distribution (see Exam
ple 2.3.7) and P2 is the Hypergeometric 100 60 5 distribution. The action space is

0 5 0 6 , and A : is given by A 1 0 5 and A 2 0 6 The data are
given by the colors of the five balls drawn.

We suppose now that there is also a loss or penalty L a incurred when we select
action a and is true. If we select the correct action, then the loss is 0; it is greater
than 0 otherwise.

Definition 8.4.1 A loss function is a function L defined on and taking values
in [0 such that L a 0 if and only if a A

Sometimes the loss can be an actual monetary loss. Actually, decision theory is a
little more general than what we have just described, as we can allow for negative
losses (gains or profits), but the restriction to nonnegative losses is suitable for purely
statistical applications.

In a specific problem, the statistician chooses a loss function that is believed to
lead to reasonable statistical procedures. This choice is dependent on the particular
application. Consider some examples.

EXAMPLE 8.4.2 (Example 8.4.1 continued)
Perhaps a sensible choice in this problem would be

L a
1 1 a 0 6
2 2 a 0 5
0 otherwise.

Here we have decided that selecting a 0 5 when it is not correct is a more serious
error than selecting a 0 6 when it is not correct. If we want to treat errors symmetri
cally, then we could take

L a I 1 0 6 2 0 5 a

i.e., the losses are 1 or 0.

EXAMPLE 8.4.3 Estimation as a Decision Problem
Suppose we have a marginal parameter of interest, and we want to specify an
estimate T s after observing s S. Here, the action space is :
and A Naturally, we want T s

For example, suppose x1 xn is a sample from an N 2 distribution,
where 2 R1 R is unknown, and we want to estimate 2 In
this case, R1 and a possible estimator is the sample average T x1 xn x
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There are many possible choices for the loss function. Perhaps a natural choice is
to use

L a a (8.4.1)

the absolute deviation between and a Alternatively, it is common to use

L a a 2 (8.4.2)

the squared deviations between and a
We refer to (8.4.2) as squared error loss. Notice that (8.4.2) is just the square of

the Euclidean distance between and a It might seem more natural to actually use
the distance (8.4.1) as the loss function. It turns out, however, that there are a number
of mathematical conveniences that arise from using squared distance.

EXAMPLE 8.4.4 Hypothesis Testing as a Decision Problem
In this problem, we have a characteristic of interest and want to assess the plau
sibility of the value 0 after viewing the data s In a hypothesis testing problem, this is
written as H0 : 0 versus Ha : 0. As in Section 8.2, we refer to H0
as the null hypothesis and to Ha as the alternative hypothesis.

The purpose of a hypothesis testing procedure is to decide which of H0 or Ha is
true based on the observed data s So in this problem, the action space is H0 Ha
and the correct action function is

A
H0 0
Ha 0

An alternative, and useful, way of thinking of the two hypotheses is as subsets of
. We write H0

1
0 as the subset of all values that make the null hypothesis

true, and Ha Hc
0 is the subset of all values that make the null hypothesis false.

Then, based on the data s we want to decide if the true value of is in H0 or if is in
Ha If H0 (or Ha) is composed of a single point, then it is called a simple hypothesis or
a point hypothesis; otherwise, it is referred to as a composite hypothesis.

For example, suppose that x1 xn is a sample from an N 2 distribution
where 2 R1 R and we want to test the null hypothesis
H0 : 0 versus the alternative Ha : 0 Then H0 0 R and
Ha 0

c R For the same model, let

I
0] R

2

i.e., is the indicator function for the subset 0] R Then testing H0 : 1
versus the alternative Ha : 0 is equivalent to testing that the mean is less than or
equal to 0 versus the alternative that it is greater than 0 This onesided hypothesis
testing problem is often denoted as H0 : 0 versus Ha : 0

There are a number of possible choices for the loss function, but the most com
monly used is of the form

L a

0 H0 a H0 or Ha a Ha

b H0 a H0

c Ha a Ha
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If we reject H0 when H0 is true (a type I error), we incur a loss of c; if we accept H0
when H0 is false (a type II error), we incur a loss of b. When b c, we can take
b c 1 and produce the commonly used 0–1 loss function.

A statistician faced with a decision problem — i.e., a model, action space, correct
action function, and loss function — must now select a rule for choosing an element of
the action space when the data s are observed. A decision function is a procedure
that specifies how an action is to be selected in the action space

Definition 8.4.2 A nonrandomized decision function d is a function d : S

So after observing s we decide that the appropriate action is d s
Actually, we will allow our decision procedures to be a little more general than this,

as we permit a random choice of an action after observing s.

Definition 8.4.3 A decision function is such that s is a probability measure
on the action space for each s S (so s A is the probability that the action
taken is in A )

Operationally, after observing s a random mechanism with distribution specified by
s is used to select the action from the set of possible actions. Notice that if s

is a probability measure degenerate at the point d s (so s d s 1) for each
s then is equivalent to the nonrandomized decision function d and conversely (see
Problem 8.4.8).

The use of randomized decision procedures may seem rather unnatural, but, as
we will see, sometimes they are an essential ingredient of decision theory. In many
estimation problems, the use of randomized procedures provides no advantage, but this
is not the case in hypothesis testing problems. We let D denote the set of all decision
functions for the specific problem of interest.

The decision problem is to choose a decision function D. The selected will
then be used to generate decisions in applications. We base this choice on how the
various decision functions perform with respect to the loss function. Intuitively, we
want to choose to make the loss as small as possible. For a particular , because
s f and a s , the loss L a is a random quantity. Therefore, rather
than minimizing specific losses, we speak instead about minimizing some aspect of the
distribution of the losses for each Perhaps a reasonable choice is to minimize
the average loss. Accordingly, we define the risk function associated with D as
the average loss incurred by The risk function plays a central role in determining an
appropriate decision function for a problem.

Definition 8.4.4 The risk function associated with decision function is given by

R E E s L a (8.4.3)

Notice that to calculate the risk function we first calculate the average of L a
based on s fixed and a s Then we average this conditional average with respect
to s f . By the theorem of total expectation, this is the average loss. When s is
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degenerate at d s for each s then (8.4.3) simplifies (see Problem 8.4.8) to

R E L d s

Consider the following examples.

EXAMPLE 8.4.5
Suppose that S 1 2 3 1 2 , and the distributions are given by the following
table.

s 1 s 2 s 3
f1 s 1 3 1 3 1 3
f2 s 1 2 1 2 0

Further suppose that A and the loss function is given by L a 1
when a but is 0 otherwise.

Now consider the decision function specified by the following table.

a 1 a 2
1 a 1 4 3 4
2 a 1 4 3 4
3 a 1 0

So when we observe s 1 we randomly choose the action a 1 with probability 1/4
and choose the action a 2 with probability 3/4, etc. Notice that this decision function
does the sensible thing and selects the decision a 1 when we observe s 3 as we
know unequivocally that 1 in this case.

We have

E 1 L a
1

4
L 1

3

4
L 2

E 2 L a
1

4
L 1

3

4
L 2

E 3 L a L 1

so the risk function of is then given by

R 1 E1 E s L 1 a

1

3

1

4
L 1 1

3

4
L 1 2

1

3

1

4
L 1 1

3

4
L 1 2

1

3
L 1 1

3

12

3

12
0

1

2

and

R 2 E2 E s L 2 a

1

2

1

4
L 2 1

3

4
L 2 2

1

2

1

4
L 2 1

3

4
L 2 2 0L 2 1

1

8

1

8
0

1

4



Chapter 8: Optimal Inference Methods 469

EXAMPLE 8.4.6 Estimation
We will restrict our attention to nonrandomized decision functions and note that these
are also called estimators. The risk function associated with estimator T and loss func
tion (8.4.1) is given by

RT E T

and is called the mean absolute deviation (MAD). The risk function associated with
the estimator T and loss function (8.4.2) is given by

RT E T 2

and is called the MSE.
We want to choose the estimator T to minimize RT for every Note that,

when using (8.4.2), this decision problem is exactly the same as the optimal estimation
problem discussed in Section 8.1.

EXAMPLE 8.4.7 Hypothesis Testing
We note that for a given decision function for this problem, and a data value s
the distribution s is characterized by s s Ha , which is the probability
of rejecting H0 when s has been observed. This is because the probability measure

s is concentrated on two points, so we need only give its value at one of these to
completely specify it. We call the test function associated with and observe that a
decision function for this problem is also specified by a test function

We have immediately that

E s L a 1 s L H0 s L Ha (8.4.4)

Therefore, when using the 0–1 loss function,

R E 1 s L H0 s L Ha

L H0 E s L Ha L H0

E s H0

1 E s Ha

Recall that in Section 6.3.6, we introduced the power function associated with a
hypothesis assessment procedure that rejected H0 whenever the Pvalue was smaller
than some prescribed value. The power function, evaluated at is the probability that
such a procedure rejects H0 when is the true value. Because s is the conditional
probability, given s that H0 is rejected, the theorem of total expectation implies that
E s equals the unconditional probability that we reject H0 when is the true
value. So in general, we refer to the function

E s

as the power function of the decision procedure or, equivalently, as the power function
of the test function

Therefore, minimizing the risk function in this case is equivalent to choosing
to minimize for every H0 and to maximize for every Ha Ac
cordingly, this decision problem is exactly the same as the optimal inference problem
discussed in Section 8.2.
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Once we have written down all the ingredients for a decision problem, it is then
clear what form a solution to the problem will take. In particular, any decision function

0 that satisfies
R 0 R

for every and D is an optimal decision function and is a solution. If
two decision functions have the same risk functions, then, from the point of view of
decision theory, they are equivalent. So it is conceivable that there might be more than
one solution to a decision problem.

Actually, it turns out that an optimal decision function exists only in extremely
unrealistic cases, namely, the data always tell us categorically what the correct decision
is (see Problem 8.4.9). We do not really need statistical inference for such situations.
For example, suppose we have two coins — coin A has two heads and coin B has two
tails. As soon as we observe an outcome from a coin toss, we know exactly which coin
was tossed and there is no need for statistical inference.

Still, we can identify some decision rules that we do not want to use. For example,
if D is such that there exists 0 D satisfying R 0 R for every and if
there is at least one for which R 0 R then naturally we strictly prefer 0 to

Definition 8.4.5 A decision function is said to be admissible if there is no 0 that
is strictly preferred to it.

A consequence of decision theory is that we should use only admissible decision
functions. Still, there are many admissible decision functions and typically none is
optimal. Furthermore, a procedure that is only admissible may be a very poor choice
(see Challenge 8.4.11).

There are several routes out of this impasse for decision theory. One approach is
to use reduction principles. By this we mean that we look for an optimal decision
function in some subclass D0 D that is considered appropriate. So we then look for
a 0 D0 such that R 0 R for every and D0 i.e., we look for an
optimal decision function in D0. Consider the following example.

EXAMPLE 8.4.8 Size Tests for Hypothesis Testing
Consider a hypothesis testing problem H0 versus Ha Recall that in Section 8.2, we
restricted attention to those test functions that satisfy E for every H0
Such a is called a size test function for this problem. So in this case, we are
restricting to the class D0 of all decision functions for this problem, which correspond
to size test functions.

In Section 8.2, we showed that sometimes there is an optimal D0 For example,
when H0 and Ha are simple, the Neyman–Pearson theorem (Theorem 8.2.1) provides
an optimal thus, defined by s Ha s is optimal. We also showed in
Section 8.2, however, that in general there is no optimal size test function and so
there is no optimal D0 In this case, further reduction principles are necessary.

Another approach to selecting a D is based on choosing one particular real
valued characteristic of the risk function of and ordering the decision functions based
on that. There are several possibilities.
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One way is to introduce a prior into the problem and then look for the decision
procedure D that has smallest prior risk

r E R

We then look for a rule that has prior risk equal to min D r (or inf D r ) This ap
proach is called Bayesian decision theory.

Definition 8.4.6 The quantity r is called the prior risk of , min D r is called the
Bayes risk, and a rule with prior risk equal to the Bayes risk is called a Bayes rule.

We derived Bayes rules for several problems in Section 8.3. Interestingly, Bayesian
decision theory always effectively produces an answer to a decision problem. This is a
very desirable property for any theory of statistics.

Another way to order decision functions uses the maximum (or supremum) risk.
So for a decision function we calculate

max R

(or sup R ) and then select a D that minimizes this quantity. Such a has
the smallest, largest risk or the smallest, worst behavior.

Definition 8.4.7 A decision function 0 satisfying

max R 0 min
D

max R (8.1)

is called a minimax decision function.

Again, this approach will always effectively produce an answer to a decision problem
(see Problem 8.4.10).

Much more can be said about decision theory than this brief introduction to the
basic concepts. Many interesting, general results have been established for the decision
theoretic approach to statistical inference.

Summary of Section 8.4

The decision theoretic approach to statistical inference introduces an action space
and a loss function L

A decision function prescribes a probability distribution s on . The
statistician generates a decision in using this distribution after observing s

The problem in decision theory is to select for this, the risk function R
is used. The value R is the average loss incurred when using the decision
function and the goal is to minimize risk.

Typically, no optimal decision function exists. So, to select a various re
duction criteria are used to reduce the class of possible decision functions, or the
decision functions are ordered using some realvalued characteristic of their risk
functions, e.g., maximum risk or average risk with respect to some prior.
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EXERCISES

8.4.1 Suppose we observe a sample x1 xn from a Bernoulli distribution,
where is completely unknown, and we want to estimate using squared error loss.
Write out all the ingredients of this decision problem. Calculate the risk function of the
estimator T x1 xn x . Graph the risk function when n 10.
8.4.2 Suppose we have a sample x1 xn from a Poisson distribution, where
is completely unknown, and we want to estimate using squared error loss. Write out
all the ingredients of this decision problem. Consider the estimator T x1 xn x
and calculate its risk function. Graph the risk function when n 25.
8.4.3 Suppose we have a sample x1 xn from an N 2

0 distribution, where
is unknown and 2

0 is known, and we want to estimate using squared error loss. Write
out all the ingredients of this decision problem. Consider the estimator T x1 xn
x and calculate its risk function. Graph the risk function when n 25 2

0 2.
8.4.4 Suppose we observe a sample x1 xn from a Bernoulli distribution,
where is completely unknown, and we want to test the null hypothesis that 1 2
versus the alternative that it is not equal to this quantity, and we use 01 loss. Write
out all the ingredients of this decision problem. Suppose we reject the null hypothesis
whenever we observe nx 0 1 n 1 n . Determine the form of the test function
and its associated power function. Graph the power function when n 10.
8.4.5 Consider the decision problem with sample space S 1 2 3 4 , parameter
space a b , with the parameter indexing the distributions given in the following
table.

s 1 s 2 s 3 s 4
fa s 1 4 1 4 0 1 2
fb s 1 2 0 1 4 1 4

Suppose that the action space with A and the loss function is given
by L a 1 when a A and is equal to 0 otherwise.
(a) Calculate the risk function of the deterministic decision function given by d 1
d 2 d 3 a and d 4 b
(b) Is d in part (a) optimal?

COMPUTER EXERCISES

8.4.6 Suppose we have a sample x1 xn from a Poisson distribution, where
is completely unknown, and we want to test the hypothesis that 0 versus the

alternative that 0 using the 0–1 loss function. Write out all the ingredients
of this decision problem. Suppose we decide to reject the null hypothesis whenever
nx n 0 2 n 0 and randomly reject the null hypothesis with probability 1/2
when nx n 0 2 n 0 Determine the form of the test function and its associated
power function. Graph the power function when 0 1 and n 5.
8.4.7 Suppose we have a sample x1 xn from an N 2

0 distribution, where
is unknown and 2

0 is known, and we want to test the null hypothesis that the mean
response is 0 versus the alternative that the mean response is not equal to 0 using
the 0–1 loss function. Write out all the ingredients of this decision problem. Suppose
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that we decide to reject whenever x [ 0 2 0 n 0 2 0 n]. Determine the
form of the test function and its associated power function. Graph the power function
when 0 0 0 3 and n 10

PROBLEMS

8.4.8 Prove that a decision function that gives a probability measure s degen
erate at d s for each s S is equivalent to specifying a function d : S and
conversely. For such a prove that R E L d s .
8.4.9 Suppose we have a decision problem and that each probability distribution in the
model is discrete.

(a) Prove that is optimal in D if and only if s is degenerate at A for each s
for which P s 0

(b) Prove that if there exist 1 2 such that A 1 A 2 and P 1 P 2 are not
concentrated on disjoint sets, then there is no optimal D
8.4.10 If decision function has constant risk and is admissible, then prove that is
minimax.

CHALLENGES

8.4.11 Suppose we have a decision problem in which 0 is such that P 0 C 0
implies that P C 0 for every Further assume that there is no optimal
decision function (see Problem 8.4.9). Then prove that the nonrandomized decision
function d given by d s A 0 is admissible. What does this result tell you about
the concept of admissibility?

DISCUSSION TOPICS

8.4.12 Comment on the following statement: A natural requirement for any theory of
inference is that it produce an answer for every inference problem posed. Have we
discussed any theories so far that you believe will satisfy this?

8.4.13 Decision theory produces a decision in a given problem. It says nothing about
how likely it is that the decision is in error. Some statisticians argue that a valid ap
proach to inference must include some quantification of our uncertainty concerning any
statement we make about an unknown, as only then can a recipient judge the reliability
of the inference. Comment on this.

8.5 Further Proofs (Advanced)
Proof of Theorem 8.1.2

We want to show that a statistic U is sufficient for a model if and only if the conditional
distribution of the data s given U u is the same for every

We prove this in the discrete case so that f s P s . The general case re
quires more mathematics, and we leave that to a further course.
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Let u be such that P U 1 u 0 where U 1 u s : U s u so U 1 u
is the set of values of s such that U s u We have

P s s1 U u
P s s1 U u

P U u
(8.5.1)

Whenever s1 U 1 u ,

P s s1 U u P s1 s : U s u P 0

independently of Therefore, P s s1 U u 0 independently of
So let us suppose that s1 U 1 u Then

P s s1 U u P s1 s : U s u P s1 f s1

If U is a sufficient statistic, the factorization theorem (Theorem 6.1.1) implies f s
h s g U s for some h and g. Therefore, since

P U u
s U 1 u

f s

(8.5.1) equals

f s1

s U 1 u f s

f s1

s U 1 u c s s1 f s1

1

s U 1 u c s s1

where
f s

f s1

h s

h s1
c s s1 .

We conclude that (8.5.1) is independent of
Conversely, if (8.5.1) is independent of then for s1 s2 U 1 u we have

P U u
P s s2

P s s2 U u
.

Thus

f s1 P s s1 P s s1 U u P U u

P s s1 U u
P s s2

P s s2 U u
P s s1 U u

P s s2 U u
f s2 c s1 s2 f s2 ,

where

c s1 s2
P s s1 U u

P s s2 U u
.

By the definition of sufficiency in Section 6.1.1, this establishes the sufficiency of U
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Establishing the Completeness of x in Example 8.1.3

Suppose that x1 xn is a sample from an N 2
0 distribution, where R1

is unknown and 2
0 0 is known. In Example 6.1.7, we showed that x is a minimal

sufficient statistic.
Suppose that the function h is such that E h x 0 for every R1 Then

defining
h x max 0 h x and h x max 0 h x

we have h x h x h x . Therefore, setting

c E h X and c E h X ,

we must have

E h X E h X E h X c c 0

and so c c . Because h and h are nonnegative functions, we have that
c 0 and c 0

If c 0 then we have that h x 0 with probability 1, because a non
negative function has mean 0 if and only if it is 0 with probability 1 (see Challenge
3.3.22). Then h x 0 with probability 1 also, and we conclude that h x 0 with
probability 1.

If c 0 0 then h x 0 for all x in a set A having positive probability
with respect to the N 0

2
0 n distribution (otherwise h x 0 with probability 1,

which implies, as above, that c 0 0). This implies that c 0 for every
because every N 2

0 n distribution assigns positive probability to A as well (you
can think of A as a subinterval of R1).

Now note that

g x h x
1

2 0
exp nx2 2 2

0

is nonnegative and is strictly positive on A. We can write

c E h X h x
1

2 0
exp n x 2 2 2

0 dx

exp n 2 2 2
0 exp n x 2

0 g x dx (8.5.2)

Setting 0 establishes that 0 g x dx because 0 c for
every Therefore,

g x

g x dx

is a probability density of a distribution concentrated on A x : h x 0 . Fur
thermore, using (8.5.2) and the definition of momentgenerating function in Section
3.4,

c exp n 2 2 2
0

g x dx
(8.5.3)
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is the momentgenerating function of this distribution evaluated at n 2
0

Similarly, we define

g x h x
1

2 0
exp nx2 2 2

0

so that
g x

g x dx

is a probability density of a distribution concentrated on A x : h x 0 Also,

c exp n 2 2 2
0

g x dx
(8.5.4)

is the momentgenerating function of this distribution evaluated at n 2
0.

Because c c we have that (setting 0)

g x dx g x dx

This implies that (8.5.3) equals (8.5.4) for every and so the momentgenerating
functions of these two distributions are the same everywhere. By Theorem 3.4.6, these
distributions must be the same. But this is impossible, as the distribution given by g
is concentrated on A whereas the distribution given by g is concentrated on A and
A A Accordingly, we conclude that we cannot have c 0 and we are
done.

The Proof of Theorem 8.2.1 (the Neyman–Pearson Theorem)

We want to prove that when 0 1 and we want to test H0 : 0 then an
exact size test function 0 exists of the form

0 s

1 f 1 s f 0 s c0

f 1 s f 0 s c0

0 f 1 s f 0 s c0

(8.5.5)

for some [0 1] and c0 0 and this test is UMP size

We develop the proof of this result in the discrete case. The proof in the more
general context is similar.

First, we note that s : f 0 s f 1 s 0 has P measure equal to 0 for
both 0 and 1 Accordingly, without loss we can remove this set from the
sample space and assume hereafter that f 0 s and f 1 s cannot be simultaneously 0.
Therefore, the ratio f 1 s f 0 s is always defined.

Suppose that 1 Then setting c 0 and 1 in (8.5.5), we see that 0 s
1 and so E 1 0 1 Therefore, 0 is UMP size because no test can have power
greater than 1
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Suppose that 0 Setting c0 and 1 in (8.5.5), we see that 0 s 0 if
and only if f 0 s 0 (if f 0 s 0 then f 1 s f 0 s and conversely). So 0
is the indicator function for the set A s : f 0 s 0 and therefore E 0 0 0
Further, any size 0 test function must be 0 on Ac to have E 0 0 On A we have
that 0 s 1 0 s and so E 1 E 1 0 Therefore, 0 is UMP size

Now assume that 0 1. Consider the distribution function of the likelihood
ratio when 0, namely,

1 c P 0 f 1 s f 0 s c

So 1 c is a nondecreasing function of c with 1 0 and 1 1
Let c0 be the smallest value of c such that 1 1 c (recall that 1 c

is right continuous because it is a distribution function). Then we have that 1 c0
0 1 lim 0 c0 1 1 c0 and (using the fact that the jump
in a distribution function at a point equals the probability of the point)

P 0 f 1 s f 0 s c0 1 c0 1 c0 0

c0 0 c0

Using this value of c0 in (8.5.5), put

c0
c0 0 c0

c0 0 c0

0 otherwise,

and note that [0 1] Then we have

E 0 0 P 0 f 1 s f 0 s c0 P 0 f 1 s f 0 s c0

c0 c0

so 0 has exact size
Now suppose that is another size test and E 1 E 1 0 We partition the

sample space as S S0 S1 S2 where

S0 s : 0 s s 0

S1 s : 0 s s 0

S2 s : 0 s s 0

Note that
S1 s : 0 s s 0 f 1 s f 0 s c0

because f 1 s f 0 s c0 implies 0 s 1 which implies 0 s s 1
s 0 as 0 s 1 Also

S2 s : 0 s s 0 f 1 s f 0 s c0

because f 1 s f 0 s c0 implies 0 s 0 which implies 0 s s s
0 as 0 s 1
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Therefore,

0 E 1 0 E 1 E 1 0

E 1 IS1 s 0 s s E 1 IS2 s 0 s s

Now note that

E 1 IS1 s 0 s s
s S1

0 s s f 1 s

c0
s S1

0 s s f 0 s c0E 0 IS1 s 0 s s

because 0 s s 0 and f 1 s f 0 s c0 when s S1 Similarly, we have
that

E 1 IS2 s 0 s s
s S2

0 s s f 1 s

c0
s S2

0 s s f 0 s c0E 0 IS2 s 0 s s

because 0 s s 0 and f 1 s f 0 s c0 when s S2
Combining these inequalities, we obtain

0 E 1 0 E 1 c0E 0 0

c0 E 0 0 E 0 c0 E 0 0

because E 0 0 Therefore, E 1 0 E 1 which proves that 0 is UMP
among all size tests.



Chapter 9

Model Checking

CHAPTER OUTLINE

Section 1 Checking the Sampling Model
Section 2 Checking for Prior–Data Conict
Section 3 The Problem with Multiple Checks

The statistical inference methods developed in Chapters 6 through 8 all depend on
various assumptions. For example, in Chapter 6 we assumed that the data s were
generated from a distribution in the statistical model P : . In Chapter 7, we
also assumed that our uncertainty concerning the true value of the model parameter
could be described by a prior probability distribution . As such, any inferences drawn
are of questionable validity if these assumptions do not make sense in a particular
application.

In fact, all statistical methodology is based on assumptions or choices made by
the statistical analyst, and these must be checked if we want to feel confident that
our inferences are relevant. We refer to the process of checking these assumptions as
model checking, the topic of this chapter. Obviously, this is of enormous importance
in applications of statistics, and good statistical practice demands that effective model
checking be carried out. Methods range from fairly informal graphical methods to
more elaborate hypothesis assessment, and we will discuss a number of these.

9.1 Checking the Sampling Model
Frequencybased inference methods start with a statistical model f : , for the
true distribution that generated the data s. This means we are assuming that the true
distribution for the observed data is in this set If this assumption is not true, then
it seems reasonable to question the relevance of any subsequent inferences we make
about .

Except in relatively rare circumstances, we can never know categorically that a
model is correct. The most we can hope for is that we can assess whether or not the
observed data s could plausibly have arisen from the model.

479
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If the observed data are surprising for each distribution in the model, then we have
evidence that the model is incorrect. This leads us to think in terms of computing a
Pvalue to check the correctness of the model. Of course, in this situation the null
hypothesis is that the model is correct; the alternative is that the model could be any of
the other possible models for the type of data we are dealing with.

We recall now our discussion of Pvalues in Chapter 6, where we distinguished
between practical significance and statistical significance. It was noted that, while a P
value may indicate that a null hypothesis is false, in practical terms the deviation from
the null hypothesis may be so small as to be immaterial for the application. When the
sample size gets large, it is inevitable that any reasonable approach via Pvalues will
detect such a deviation and indicate that the null hypothesis is false. This is also true
when we are carrying out model checking using Pvalues. The resolution of this is to
estimate, in some fashion, the size of the deviation of the model from correctness, and
so determine whether or not the model will be adequate for the application. Even if
we ultimately accept the use of the model, it is still valuable to know, however, that we
have detected evidence of model incorrectness when this is the case.

One Pvalue approach to model checking entails specifying a discrepancy statistic
D : S R1 that measures deviations from the model under consideration. Typically,
large values of D are meant to indicate that a deviation has occurred. The actual value
D s is, of course, not necessarily an indication of this. The relevant issue is whether
or not the observed value D s is surprising under the assumption that the model is cor
rect. Therefore, we must assess whether or not D s lies in a region of low probability
for the distribution of this quantity when the model is correct. For example, consider
the density of a potential D statistic plotted in Figure 9.1.1. Here a value D s in the
left tail (near 0), right tail (out past 15), or between the two modes (in the interval from
about 7 to 9) all would indicate that the model is incorrect, because such values have a
low probability of occurrence when the model is correct.

0 2 4 6 8 10 12 14 16 18 20
0.0

0.1

0.2

0.3

D

Figure 9.1.1: Plot of a density for a discrepancy statistic D
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The above discussion places the restriction that, when the model is correct, D must
have a single distribution, i.e., the distribution cannot depend on . For many com
monly used discrepancy statistics, this distribution is unimodal. A value in the right
tail then indicates a lack of fit, or underfitting, by the model (the discrepancies are
unnaturally large); a value in the left tail then indicates overfitting by the model (the
discrepancies are unnaturally small).

There are two general methods available for obtaining a single distribution for the
computation of Pvalues. One method requires that D be ancillary.

Definition 9.1.1 A statistic D whose distribution under the model does not depend
upon is called ancillary, i.e., if s P , then D s has the same distribution for
every .

If D is ancillary, then it has a single distribution specified by the model. If D s is a
surprising value for this distribution, then we have evidence against the model being
true.

It is not the case that any ancillary D will serve as a useful discrepancy statistic.
For example, if D is a constant, then it is ancillary, but it is obviously not useful for
model checking. So we have to be careful in choosing D.

Quite often we can find useful ancillary statistics for a model by looking at resid
uals. Loosely speaking, residuals are based on the information in the data that is left
over after we have fit the model. If we have used all the relevant information in the data
for fitting, then the residuals should contain no useful information for inference about
the parameter . Example 9.1.1 will illustrate more clearly what we mean by residuals.
Residuals play a major role in model checking.

The second method works with any discrepancy statistic D. For this, we use the
conditional distribution of D given the value of a sufficient statistic T . By Theorem
8.1.2, this conditional distribution is the same for every value of . If D s is a surpris
ing value for this distribution, then we have evidence against the model being true.

Sometimes the two approaches we have just described agree, but not always. Con
sider some examples.

EXAMPLE 9.1.1 Location Normal
Suppose we assume that x1 xn is a sample from an N 2

0 distribution, where
R1 is unknown and 2

0 is known. We know that x is a minimal sufficient statistic
for this problem (see Example 6.1.7). Also, x represents the fitting of the model to the
data, as it is the estimate of the unknown parameter value

Now consider

r r x1 xn r1 rn x1 x xn x

as one possible definition of the residual. Note that we can reconstruct the original data
from the values of x and r .

It turns out that R X1 X Xn X has a distribution that is independent of
with E Ri 0 and Cov Ri R j

2
0 i j 1 n for every i j ( i j 1 when i

j and 0 otherwise). Moreover, R is independent of X and Ri N 0 2
0 1 1 n

(see Problems 9.1.19 and 9.1.20).
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Accordingly, we have that r is ancillary and so is any discrepancy statistic D that
depends on the data only through r . Furthermore, the conditional distribution of D R
given X x is the same as the marginal distribution of D R because they are inde
pendent. Therefore, the two approaches to obtaining a Pvalue agree here, whenever
the discrepancy statistic depends on the data only through r

By Theorem 4.6.6, we have that

D R
1
2
0

n

i 1

R2
i

1
2
0

n

i 1

Xi X
2

is distributed 2 n 1 , so this is a possible discrepancy statistic Therefore, the P
value

P D D r (9.1.1)

where D 2 n 1 , provides an assessment of whether or not the model is correct.
Note that values of (9.1.1) near 0 or near 1 are both evidence against the model, as

both indicate that D r is in a region of low probability when assuming the model is
correct. A value near 0 indicates that D r is in the right tail, whereas a value near 1
indicates that D r is in the left tail.

The necessity of examining the left tail of the distribution of D r as well as the
right, is seen as follows. Consider the situation where we are in fact sampling from an
N 2 distribution where 2 is much smaller than 2

0 In this case, we expect D r
to be a value in the left tail, because E D R n 1 2 2

0
There are obviously many other choices that could be made for the D statistic

At present, there is not a theory that prescribes one choice over another. One caution
should be noted, however. The choice of a statistic D cannot be based upon looking at
the data first. Doing so invalidates the computation of the Pvalue as described above,
as then we must condition on the data feature that led us to choose that particular D.

EXAMPLE 9.1.2 LocationScale Normal
Suppose we assume that x1 xn is a sample from an N 2 distribution, where

2 R1 0 is unknown. We know that x s2 is a minimal sufficient
statistic for this model (Example 6.1.8). Consider

r r x1 xn r1 rn
x1 x

s

xn x

s

as one possible definition of the residual. Note that we can reconstruct the data from
the values of x s2 and r .

It turns out R has a distribution that is independent of 2 (and hence is an
cillary — see Challenge 9.1.28) as well as independent of X S2 So again, the two
approaches to obtaining a Pvalue agree here, as long as the discrepancy statistic de
pends on the data only through r

One possible discrepancy statistic is given by

D r
1

n

n

i 1

ln
r2

i

n 1
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To use this statistic for model checking, we need to obtain its distribution when the
model is correct. Then we compare the observed value D r with this distribution, to
see if it is surprising.

We can do this via simulation. Because the distribution of D R is independent
of 2 , we can generate N samples of size n from the N 0 1 distribution (or
any other normal distribution) and calculate D R for each sample. Then we look
at histograms of the simulated values to see if D r , from the original sample, is a
surprising value, i.e., if it lies in a region of low probability like a left or right tail.

For example, suppose we observed the sample

2 08 0 28 2 01 1 37 40 08

obtaining the value D r 4 93 Then, simulating 104 values from the distribution
of D under the assumption of model correctness, we obtained the density histogram
given in Figure 9.1.2. See Appendix B for some code used to carry out this simulation.
The value D r 4 93 is out in the right tail and thus indicates that the sample is not
from a normal distribution. In fact, only 0 0057 of the simulated values are larger, so
this is definite evidence against the model being correct.

7654321

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

D

d
en

si
ty

Figure 9.1.2: A density histogram for a simulation of 104 values of D in Example 9.1.2.

Obviously, there are other possible functions of r that we could use for model
checking here. In particular, Dskew r n 1 3 2 n

i 1 r3
i , the skewness statis

tic, and Dkurtosis r n 1 2 n
i 1 r4

i , the kurtosis statistic, are commonly used.
The skewness statistic measures the symmetry in the data, while the kurtosis statistic
measures the “peakedness” in the data. As just described, we can simulate the distribu
tion of these statistics under the normality assumption and then compare the observed
values with these distributions to see if we have any evidence against the model (see
Computer Problem 9.1.27).

The following examples present contexts in which the two approaches to computing
a Pvalue for model checking are not the same.
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EXAMPLE 9.1.3 LocationScale Cauchy
Suppose we assume that x1 xn is a sample from the distribution given by

Z where Z t 1 and 2 R1 0 is unknown. This time, x s2 is
not a minimal sufficient statistic, but the statistic r defined in Example 9.1.2 is still
ancillary (Challenge 9.1.28). We can again simulate values from the distribution of R
(just generate samples from the t 1 distribution and compute r for each sample) to
estimate Pvalues for any discrepancy statistic such as the D r statistics discussed in
Example 9.1.2.

EXAMPLE 9.1.4 Fisher’s Exact Test
Suppose we take a sample of n from a population of students and observe the values
a1 b1 an bn where ai is gender (A 1 indicating male, A 2 indicating

female) and bi is a categorical variable for parttime employment status (B 1 indicat
ing employed, B 2 indicating unemployed). So each individual is being categorized
into one of four categories, namely,

Category 1, when A 1 B 1

Category 2, when A 1 B 2

Category 3, when A 2 B 1

Category 4, when A 2 B 2

Suppose our model for this situation is that A and B are independent with P A
1 1 P B 1 1 where 1 [0 1] and 1 [0 1] are completely unknown.
Then letting Xi j denote the count for the category, where A i B j , Example 2.8.5
gives that

X11 X12 X21 X22 Multinomial n 1 1 1 2 2 1 2 2

As we will see in Chapter 10, this model is equivalent to saying that there is no rela
tionship between gender and employment status.

Denoting the observed cell counts by x11 x12 x21 x22 , the likelihood function is
given by

1 1
x11

1 2
x12

2 1
x21

2 2
x22

x11 x12
1 1 1

n x11 x12 x11 x21
1 1 1

n x11 x21

x1
1 1 1

n x1 x 1
1 1 1

n x 1

where x1 x 1 x11 x12 x11 x21 . Therefore, the MLE (Problem 9.1.14) is
given by

1 1
x1

n

x 1

n
.

Note that 1 is the proportion of males in the sample and 1 is the proportion of all
employed in the sample. Because x1 x 1 determines the likelihood function and can
be calculated from the likelihood function, we have that x1 x 1 is a minimal sufficient
statistic.

In this example, a natural definition of residual does not seem readily apparent.
So we consider looking at the conditional distribution of the data, given the minimal
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sufficient statistic. The conditional distribution of the sample A1 B1 An Bn
given the values x1 x 1 is the uniform distribution on the set of all samples where
the restrictions

x11 x12 x1

x11 x21 x 1

x11 x12 x21 x22 n (9.1.2)

are satisfied. Notice that, given x1 x 1 all the other values in (9.1.2) are determined
when we specify a value for x11.

It can be shown that the number of such samples is equal to (see Problem 9.1.21)

n

x1

n

x 1

Now the number of samples with prescribed values for x1 x 1 and x11 i is given by

n

x1

x1

i

n x1

x 1 i

Therefore, the conditional probability function of x11 given x1 x 1 is

P x11 i x1 x 1

n
x1

x1
i

n x1
x 1 i

n
x1

n
x 1

x1
i

n x1
x 1 i

n
x 1

This is the Hypergeometric n x 1 x1 probability function.
So we have evidence against the model holding whenever x11 is out in the tails of

this distribution. Assessing this requires a tabulation of this distribution or the use of a
statistical package with the hypergeometric distribution function built in.

As a simple numerical example, suppose that we took a sample of n 20 students,
obtaining x 1 12 unemployed, x1 6 males, and x11 2 employed males. Then
the Hypergeometric 20 12 6 probability function is given by the following table.

i 0 1 2 3 4 5 6
p i 0 001 0 017 0 119 0 318 0 358 0 163 0 024

The probability of getting a value as far, or farther, out in the tails than x11 2 is equal
to the probability of observing a value of x11 with probability of occurrence as small
as or smaller than x11 2 This Pvalue equals

0 119 0 017 0 001 0 024 0 161

Therefore, we have no evidence against the model of independence between A and B
Of course, the sample size is quite small here.

There is another approach here to testing the independence of A and B. In particu
lar, we could only assume the independence of the initial unclassified sample, and then
we always have

X11 X12 X21 X22 Multinomial n 11 12 21 22
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where the i j comprise an unknown probability distribution. Given this model, we
could then test for the independence of A and B We will discuss this in Section 10.2.

Another approach to model checking proceeds as follows. We enlarge the model to
include more distributions and then test the null hypothesis that the true model is the
submodel we initially started with. If we can apply the methods of Section 8.2 to come
up with a uniformly most powerful (UMP) test of this null hypothesis, then we will
have a check of departures from the model of interest — at least as expressed by the
possible alternatives in the enlarged model. If the model passes such a check, however,
we are still required to check the validity of the enlarged model. This can be viewed as
a technique for generating relevant discrepancy statistics D.

9.1.1 Residual and Probability Plots

There is another, more informal approach to checking model correctness that is often
used when we have residuals available. These methods involve various plots of the
residuals that should exhibit specific characteristics if the model is correct. While this
approach lacks the rigor of the Pvalue approach, it is good at demonstrating gross
deviations from model assumptions. We illustrate this via some examples.

EXAMPLE 9.1.5 Location and LocationScale Normal Models
Using the residuals for the location normal model discussed in Example 9.1.1, we have
that E Ri 0 and Var Ri

2
0 1 1 n We standardize these values so that they

also have variance 1, and so obtain the standardized residuals r1 rn given by

ri
n

2
0 n 1

xi x . (9.1.3)

The standardized residuals are distributed N 0 1 and, assuming that n is reasonably
large, it can be shown that they are approximately independent. Accordingly, we can
think of r1 rn as an approximate sample from the N 0 1 distribution.

Therefore, a plot of the points i ri should not exhibit any discernible pattern.
Furthermore, all the values in the ydirection should lie in 3 3 unless of course
n is very large, in which case we might expect a few values outside this interval A
discernible pattern, or several extreme values, can be taken as some evidence that the
model assumption is not correct. Always keep in mind, however, that any observed
pattern could have arisen simply from sampling variability when the true model is
correct. Simulating a few of these residual plots (just generating several samples of n
from the N 0 1 distribution and obtaining a residual plot for each sample) will give
us some idea of whether or not the observed pattern is unusual.

Figure 9.1.3 shows a plot of the standardized residuals (9.1.3) for a sample of 100
from the N 0 1 distribution. Figure 9.1.4 shows a plot of the standardized residuals
for a sample of 100 from the distribution given by 3 1 2 Z where Z t 3 . Note that
a t 3 distribution has mean 0 and variance equal to 3, so Var 3 1 2 Z 1 (Problem
4.6.16). Figure 9.1.5 shows the standardized residuals for a sample of 100 from an
Exponential 1 distribution.
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Figure 9.1.3: A plot of the standardized residuals for a sample of 100 from an N 0 1
distribution.
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Figure 9.1.4: A plot of the standardized residuals for a sample of 100 from X 3 1 2Z
where Z t 3 .
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Figure 9.1.5: A plot of the standardized residuals for a sample of 100 from an Exponential 1
distribution.
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Note that the distributions of the standardized residuals for all these samples have
mean 0 and variance equal to 1. The difference in Figures 9.1.3 and 9.1.4 is due to the
fact that the t distribution has much longer tails. This is reected in the fact that a few
of the standardized residuals are outside 3 3 in Figure 9.1.4 but not in Figure 9.1.3.
Even though the two distributions are quite different — e.g., the N 0 1 distribution
has all of its moments whereas the 3 1 2 t 3 distribution has only two moments —
the plots of the standardized residuals are otherwise very similar. The difference in
Figures 9.1.3 and 9.1.5 is due to the asymmetry in the Exponential 1 distribution, as
it is skewed to the right.

Using the residuals for the locationscale normal model discussed in Example 9.1.2,
we define the standardized residuals r1 rn by

ri
n

s2 n 1
xi x . (9.1.4)

Here, the unknown variance is estimated by s2. Again, it can be shown that when n is
large, then r1 rn is an approximate sample from the N 0 1 distribution. So we
plot the values i ri and interpret the plot just as we described for the location normal
model.

It is very common in statistical applications to assume some basic form for the dis
tribution of the data, e.g., we might assume we are sampling from a normal distribution
with some mean and variance. To assess such an assumption, the use of a probability
plot has proven to be very useful.

To illustrate, suppose that x1 xn is a sample from an N 2 distribution.
Then it can be shown that when n is large, the expectation of the ith order statistic
satisfies

E X i
1 i n 1 (9.1.5)

If the data value x j corresponds to order statistic x i (i.e., x i x j ), then we call
1 i n 1 the normal score of x j in the sample Then (9.1.5) indicates that if

we plot the points x i
1 i n 1 , these should lie approximately on a line

with intercept and slope . We call such a plot a normal probability plot or normal
quantile plot. Similar plots can be obtained for other distributions.

EXAMPLE 9.1.6 LocationScale Normal
Suppose we want to assess whether or not the following data set can be considered a
sample of size n 10 from some normal distribution.

2 00 0 28 0 47 3 33 1 66 8 17 1 18 4 15 6 43 1 77

The order statistics and associated normal scores for this sample are given in the fol
lowing table.

i 1 2 3 4 5
x i 0 28 0 47 1 18 1 66 1 77

1 i n 1 1 34 0 91 0 61 0 35 0 12
i 6 7 8 9 10

x i 2 00 3 33 4 15 6 43 8 17
1 i n 1 0 11 0 34 0 60 0 90 1 33
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The values

x i
1 i n 1

are then plotted in Figure 9.1.6. There is some definite deviation from a straight line
here, but note that it is difficult to tell whether this is unexpected in a sample of this
size from a normal distribution. Again, simulating a few samples of the same size (say,
from an N 0 1 distribution) and looking at their normal probability plots is recom
mended. In this case, we conclude that the plot in Figure 9.1.6 looks reasonable.
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Figure 9.1.6: Normal probability plot of the data in Example 9.1.6.

We will see in Chapter 10 that the use of normal probability plots of standardized
residuals is an important part of model checking for more complicated models. So,
while they are not really needed here, we consider some of the characteristics of such
plots when assessing whether or not a sample is from a location normal or location
scale normal model.

Assume that n is large so that we can consider the standardized residuals, given
by (9.1.3) or (9.1.4) as an approximate sample from the N 0 1 distribution. Then a
normal probability plot of the standardized residuals should be approximately linear,
with yintercept approximately equal to 0 and slope approximately equal to 1. If we
get a substantial deviation from this, then we have evidence that the assumed model is
incorrect.

In Figure 9.1.7, we have plotted a normal probability plot of the standardized resid
uals for a sample of n 25 from an N 0 1 distribution In Figure 9.1.8, we have
plotted a normal probability plot of the standardized residuals for a sample of n 25
from the distribution given by X 3 1 2Z where Z t 3 . Both distributions have
mean 0 and variance 1, so the difference in the normal probability plots is due to other
distributional differences.
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Figure 9.1.7: Normal probability plot of the standardized residuals of a sample of 25 from an
N 0 1 distribution.
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Figure 9.1.8: Normal probability plot of the standardized residuals of a sample of 25 from
X 3 1 2 Z where Z t 3

9.1.2 The ChiSquared Goodness of Fit Test

The chisquared goodness of fit test has an important historical place in any discussion
of assessing model correctness. We use this test to assess whether or not a categorical
random variable W , which takes its values in the finite sample space 1 2 k , has a
specified probability measure P, after having observed a sample 1 n . When
we have a random variable that is discrete and takes infinitely many values, then we
partition the possible values into k categories and let W simply indicate which category
has occurred. If we have a random variable that is quantitative, then we partition R1

into k subintervals and let W indicate in which interval the response occurred. In effect,
we want to check whether or not a specific probability model, as given by P is correct
for W based on an observed sample.
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Let X1 Xk be the observed counts or frequencies of 1 k respectively.
If P is correct, then, from Example 2.8.5,

X1 Xk Multinomial n p1 pk

where pi P i . This implies that E X i npi and Var X i npi 1 pi (recall
that X i Binomial n pi ). From this, we deduce that

Ri
Xi npi

npi 1 pi

D
N 0 1 (9.1.6)

as n (see Example 4.4.9).
For finite n the distribution of Ri when the model is correct, is dependent on

P but the limiting distribution is not. Thus we can think of the Ri as standardized
residuals when n is large. Therefore, it would seem that a reasonable discrepancy
statistic is given by the sum of the squares of the standardized residuals with k

i 1 R2
i

approximately distributed 2 k The restriction x1 xk n holds, however, so
the Ri are not independent and the limiting distribution is not 2 k . We do, however,
have the following result, which provides a similar discrepancy statistic.

Theorem 9.1.1 If X1 Xk Multinomial n p1 pk , then

X2
k

i 1

1 pi R2
i

k

i 1

Xi npi
2

npi

D 2 k 1

as n

The proof of this result is a little too involved for this text, so see, for example, Theorem
17.2 of Asymptotic Statistics by A. W. van der Vaart (Cambridge University Press,
Cambridge, 1998), which we will use here.

We refer to X2 as the chisquared statistic. The process of assessing the correctness
of the model by computing the Pvalue P X2 X2

0 , where X2 2 k 1 and
X2

0 is the observed value of the chisquared statistic, is referred to as the chisquared
goodness of fit test. Small Pvalues near 0 provide evidence of the incorrectness of the
probability model. Small Pvalues indicate that some of the residuals are too large.

Note that the i th term of the chisquared statistic can be written as

Xi npi
2

npi

(number in the i th cell expected number in the i th cell)2

expected number in the i th cell
.

It is recommended, for example, in Statistical Methods, by G. Snedecor and W. Cochran
(Iowa State Press, 6th ed., Ames, 1967) that grouping (combining cells) be employed to
ensure that E Xi npi 1 for every i as simulations have shown that this improves
the accuracy of the approximation to the Pvalue.

We consider an important application.

EXAMPLE 9.1.7 Testing the Accuracy of a Random Number Generator
In effect, every Monte Carlo simulation can be considered to be a set of mathematical
operations applied to a stream of numbers U1 U2 in [0 1] that are supposed to
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be i.i.d. Uniform[0 1] Of course, they cannot satisfy this requirement exactly because
they are generated according to some deterministic function. Typically, a function
f : [0 1]m [0 1] is chosen and is applied iteratively to obtain the sequence. So we
select U1 Um as initial seed values and then Um 1 f U1 Um Um 2
f U2 Um 1 etc. There are many possibilities for f and a great deal of re
search and study have gone into selecting functions that will produce sequences that
adequately mimic the properties of an i.i.d. Uniform[0 1] sequence.

Of course, it is always possible that the underlying f used in a particular statistical
package or other piece of software is very poor. In such a case, the results of the
simulations can be grossly in error How do we assess whether a particular f is good
or not? One approach is to run a battery of statistical tests to see whether the sequence
is behaving as we know an ideal sequence would.

For example, if the sequence U1 U2 is i.i.d. Uniform[0 1], then

10U1 10U2

is i.i.d. Uniform 1 2 10 ( x denotes the smallest integer greater than x e.g.,
3 2 4) So we can test the adequacy of the underlying function f by generating

U1 Un for large n putting xi 10Ui and then carrying out a chisquared
goodness of fit test with the 10 categories 1 10 with each cell probability equal
to 1/10.

Doing this using a popular statistical package (with n 104) gave the following
table of counts xi and standardized residuals ri as specified in (9.1.6).

i xi ri

1 993 0 23333
2 1044 1 46667
3 1061 2 03333
4 1021 0 70000
5 1017 0 56667
6 973 0 90000
7 975 0 83333
8 965 1 16667
9 996 0 13333

10 955 1 50000

All the standardized residuals look reasonable as possible values from an N 0 1 dis
tribution. Furthermore,

X2
0 1 0 1

0 23333 2 1 46667 2 2 03333 2

0 70000 2 0 56667 2 0 90000 2

0 83333 2 1 16667 2 0 13333 2

1 50000 2

11 0560

gives the Pvalue P X2 11 0560 0 27190 when X2 2 9 This indicates that
we have no evidence that the random number generator is defective.
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Of course, the story does not end with a single test like this. Many other features
of the sequence should be tested. For example, we might want to investigate the inde
pendence properties of the sequence and so test if each possible combination of i j
occurs with probability 1/100, etc.

More generally, we will not have a prescribed probability distribution P for X but
rather a statistical model P : where each P is a probability measure on the
finite set 1 2 k Then, based on the sample from the model, we have that

X1 Xk Multinomial n p1 pk

where pi P i
Perhaps a natural way to assess whether or not this model fits the data is to find the

MLE from the likelihood function

L x1 xk p1
x1 pk

xk

and then look at the standardized residuals

ri
xi npi

npi 1 pi

We have the following result, which we state without proof.

Theorem 9.1.2 Under conditions (similar to those discussed in Section 6.5), we

have that Ri
D

N 0 1 and

X2
k

i 1

1 pi R2
i

k

i 1

Xi npi
2

npi

D 2 k 1 dim

as n

By dim we mean the dimension of the set Loosely speaking, this is the mini
mum number of coordinates required to specify a point in the set, e.g., a line requires
one coordinate (positive or negative distance from a fixed point), a circle requires one
coordinate, a plane in R3 requires two coordinates, etc. Of course, this result implies
that the number of cells must satisfy k 1 dim

Consider an example.

EXAMPLE 9.1.8 Testing for Exponentiality
Suppose that a sample of lifelengths of light bulbs (measured in thousands of hours)
is supposed to be from an Exponential distribution, where 0 is
unknown. So here dim 1 and we require at least two cells for the chisquared
test The manufacturer expects that most bulbs will last at least 1000 hours, 50% will
last less than 2000 hours, and most will have failed by 3000 hours. So based on this,
we partition the sample space as

0 0 1] 1 2] 2 3] 3
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Suppose that a sample of n 30 light bulbs was taken and that the counts x1 5
x2 16 x3 8 and x4 1 were obtained for the four intervals, respectively. Then
the likelihood function based on these counts is given by

L x1 x40 1 e 5 e e 2 16 e 2 e 3 8 e 3 1

because, for example, the probability of a value falling in 1 2] is e e 2 and we
have x2 16 observations in this interval. Figure 9.1.9 is a plot of the loglikelihood.
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Figure 9.1.9: Plot of the loglikelihood function in Example 9.1.8.

By successively plotting the likelihood on shorter and shorter intervals, the MLE
was determined to be 0 603535 This value leads to the probabilities

p1 1 e 0 603535 0 453125

p2 e 0 603535 e 2 0 603535 0 247803

p3 e 2 0 603535 e 3 0 603535 0 135517

p4 e 3 0 603535 0 163555

the fitted values

30p1 13 59375

30p2 7 43409

30p3 4 06551

30p4 4 90665
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and the standardized residuals

r1 5 13 59375 30 0 453125 1 0 453125 3 151875

r2 16 7 43409 30 0 247803 1 0 247803 3 622378

r3 8 4 06551 30 0 135517 1 0 135517 2 098711

r4 1 4 90665 30 0 163555 1 0 163555 1 928382

Note that two of the standardized residuals look large. Finally, we compute

X2
0 1 0 453125 3 151875 2 1 0 247803 3 622378 2

1 0 135517 2 098711 2 1 0 163555 1 928382 2

22 221018

and
P X2 22 221018 0 0000

when X2 2 2 Therefore, we have strong evidence that the Exponential model
is not correct for these data and we would not use this model to make inference about

.
Note that we used the MLE of based on the count data and not the original sample!

If instead we were to use the MLE for based on the original sample (in this case, equal
to x and so much easier to compute), then Theorem 9.1.2 would no longer be valid.

The chisquared goodness of fit test is but one of many discrepancy statistics that
have been proposed for model checking in the statistical literature. The general ap
proach is to select a discrepancy statistic D like X2 such that the exact or asymptotic
distribution of D is independent of and known. We then compute a Pvalue based on
D The Kolmogorov–Smirnov test and the Cramer–von Mises test are further examples
of such discrepancy statistics, but we do not discuss these here.

9.1.3 Prediction and CrossValidation

Perhaps the most rigorous test that a scientific model or theory can be subjected to
is assessing how well it predicts new data after it has been fit to an independent data
set. In fact, this is a crucial step in the acceptance of any new empirically developed
scientific theory — to be accepted, it must predict new results beyond the data that led
to its formulation.

If a model does not do a good job at predicting new data, then it is reasonable to say
that we have evidence against the model being correct. If the model is too simple, then
the fitted model will underfit the observed data and also the future data. If the model is
too complicated, then the model will overfit the original data, and this will be detected
when we consider the new data in light of this fitted model.

In statistical applications, we typically cannot wait until new data are generated to
check the model. So statisticians use a technique called crossvalidation. For this, we
split an original data set x1 xn into two parts: the training set T comprising k of
the data values and used to fit the model; and the validation set V , which comprises
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the remaining n k data values. Based on the training data, we construct predictors of
various aspects of the validation data. Using the discrepancies between the predicted
and actual values, we then assess whether or not the validation set V is surprising as a
possible future sample from the model.

Of course, there are
n

k

possible such splits of the data and we would not want to make a decision based on
just one of these. So a crossvalidational analysis will have to take this into account.
Furthermore, we will have to decide how to measure the discrepancies between T and
V and choose a value for k We do not pursue this topic any further in this text.

9.1.4 What Do We Do When a Model Fails?

So far we have been concerned with determining whether or not an assumed model is
appropriate given observed data. Suppose the result of our model checking is that we
decide a particular model is inappropriate. What do we do now?

Perhaps the obvious response is to say that we have to come up with a more appro
priate model — one that will pass our model checking. It is not obvious how we should
go about this, but statisticians have devised some techniques.

One of the simplest techniques is the method of transformations. For example, sup
pose that we observe a sample y1 yn from the distribution given by Y exp X
with X N 2 . A normal probability plot based on the yi , as in Figure 9.1.10,
will detect evidence of the nonnormality of the distribution. Transforming these yi
values to ln yi will, however, yield a reasonable looking normal probability plot, as in
Figure 9.1.11.

So in this case, a simple transformation of the sample yields a data set that passes
this check. In fact, this is something statisticians commonly do. Several transforma
tions from the family of power transformations given by Y p for p 0 or the logarithm
transformation ln Y are tried to see if a distributional assumption can be satisfied by a
transformed sample. We will see some applications of this in Chapter 10. Surprisingly,
this simple technique often works, although there are no guarantees that it always will.

Perhaps the most commonly applied transformation is the logarithm when our data
values are positive (note that this is a necessity for this transformation). Another very
common transformation is the square root transformation, i.e., p 1 2 when we have
count data. Of course, it is not correct to try many, many transformations until we find
one that makes the probability plots or residual plots look acceptable. Rather, we try a
few simple transformations.
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Figure 9.1.10: A normal probability plot of a sample of n 50 from the distribution given by
Y exp X with X N 0 1 .
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Figure 9.1.11: A normal probability plot of a sample of n 50 from the distribution given by
ln Y , where Y exp X and X N 0 1 .

Summary of Section 9.1

Model checking is a key component of the practical application of statistics.

One approach to model checking involves choosing a discrepancy statistic D and
then assessing whether or not the observed value of D is surprising by computing
a Pvalue.
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Computation of the Pvalue requires that the distribution of D be known under
the assumption that the model is correct. There are two approaches to accom
plishing this. One involves choosing D to be ancillary, and the other involves
computing the Pvalue using the conditional distribution of the data given the
minimal sufficient statistic.

The chisquared goodness of fit statistic is a commonly used discrepancy statis
tic. For large samples, with the expected cell counts determined by the MLE
based on the multinomial likelihood, the chisquared goodness of fit statistic is
approximately ancillary.

There are also many informal methods of model checking based on various plots
of residuals.

If a model is rejected, then there are several techniques for modifying the model.
These typically involve transformations of the data. Also, a model that fails a
modelchecking procedure may still be useful, if the deviation from correctness
is small.

EXERCISES

9.1.1 Suppose the following sample is assumed to be from an N 4 distribution with
R1 unknown.

1 8 2 1 3 8 1 7 1 3 1 1 1 0 0 0 3 3 1 0
0 4 0 1 2 3 1 6 1 1 1 3 3 3 4 9 1 1 1 9

Check this model using the discrepancy statistic of Example 9.1.1.
9.1.2 Suppose the following sample is assumed to be from an N 2 distribution with

unknown.

0 4 1 9 0 3 0 2 0 0 0 0 0 1 1 1 2 0 0 4

(a) Plot the standardized residuals.
(b) Construct a normal probability plot of the standardized residuals.
(c) What conclusions do you draw based on the results of parts (a) and (b)?
9.1.3 Suppose the following sample is assumed to be from an N 2 distribution,
where R1 and 2 0 are unknown.

14 0 9 4 12 1 13 4 6 3 8 5 7 1 12 4 13 3 9 1

(a) Plot the standardized residuals.
(b) Construct a normal probability plot of the standardized residuals.
(c) What conclusions do you draw based on the results of parts (a) and (b)?

9.1.4 Suppose the following table was obtained from classifying members of a sample
of n 10 from a student population according to the classification variables A and B,
where A 0 1 indicates male, female and B 0 1 indicates conservative, liberal.

B 0 B 1
A 0 2 1
A 1 3 4
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Check the model that says gender and political orientation are independent, using
Fisher’s exact test.
9.1.5 The following sample of n 20 is supposed to be from a Uniform[0 1] distrib
ution.

0 11 0 56 0 72 0 18 0 26 0 32 0 42 0 22 0 96 0 04
0 45 0 22 0 08 0 65 0 32 0 88 0 76 0 32 0 21 0 80

After grouping the data, using a partition of five equallength intervals, carry out the
chisquared goodness of fit test to assess whether or not we have evidence against this
assumption. Record the standardized residuals.
9.1.6 Suppose a die is tossed 1000 times, and the following frequencies are obtained
for the number of pips up when the die comes to a rest.

x1 x2 x3 x4 x5 x6
163 178 142 150 183 184

Using the chisquared goodness of fit test, assess whether we have evidence that this is
not a symmetrical die. Record the standardized residuals.
9.1.7 Suppose the sample space for a response is given by S 0 1 2 3 .

(a) Suppose that a statistician believes that in fact the response will lie in the set S
10 11 12 13 and so chooses a probability measure P that reects this When

the data are collected, however, the value s 3 is observed. What is an appropriate
Pvalue to quote as a measure of how surprising this value is as a potential value from
P?
(b) Suppose instead P is taken to be a Geometric(0.1) distribution. Determine an ap
propriate Pvalue to quote as a measure of how surprising s 3 is as a potential value
from P .

9.1.8 Suppose we observe s 3 heads in n 10 independent tosses of a purportedly
fair coin. Compute a Pvalue that assesses how surprising this value is as a potential
value from the distribution prescribed. Do not use the chisquared test.
9.1.9 Suppose you check a model by computing a Pvalue based on some discrepancy
statistic and conclude that there is no evidence against the model. Does this mean the
model is correct? Explain your answer.
9.1.10 Suppose you are told that standardized scores on a test are distributed N 0 1
A student’s standardized score is 4. Compute an appropriate Pvalue to assess whether
or not the statement is correct.
9.1.11 It is asserted that a coin is being tossed in independent tosses. You are somewhat
skeptical about the independence of the tosses because you know that some people
practice tossing coins so that they can increase the frequency of getting a head. So you
wish to assess the independence of x1 xn from a Bernoulli distribution.
(a) Show that the conditional distribution of x1 xn given x is uniform on the set
of all sequences of length n with entries from 0 1
(b) Using this conditional distribution, determine the distribution of the number of 1’s
observed in the first n 2 observations. (Hint: The hypergeometric distribution.)
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(c) Suppose you observe 1 1 1 1 1 0 0 0 0 1 Compute an appropriate Pvalue to
assess the independence of these tosses using (b).

COMPUTER EXERCISES

9.1.12 For the data of Exercise 9.1.1, present a normal probability plot of the standard
ized residuals and comment on it.
9.1.13 Generate 25 samples from the N 0 1 distribution with n 10 and look at
their normal probability plots. Draw any general conclusions.
9.1.14 Suppose the following table was obtained from classifying members of a sam
ple on n 100 from a student population according to the classification variables A
and B, where A 0 1 indicates male, female and B 0 1 indicates conservative,
liberal.

B 0 B 1
A 0 20 15
A 1 36 29

Check the model that gender and political orientation are independent using Fisher’s
exact test.
9.1.15 Using software, generate a sample of n 1000 from the Binomial 10 0 2
distribution. Then, using the chisquared goodness of fit test, check that this sample is
indeed from this distribution. Use grouping to ensure E X i npi 1. What would
you conclude if you got a Pvalue close to 0?
9.1.16 Using a statistical package, generate a sample of n 1000 from the Poisson 5
distribution. Then, using the chisquared goodness of fit test based on grouping the
observations into five cells chosen to ensure E Xi npi 1, check that this sample
is indeed from this distribution. What would you conclude if you got a Pvalue close
to 0?
9.1.17 Using a statistical package, generate a sample of n 1000 from the N 0 1
distribution. Then, using the chisquared goodness of fit test based on grouping the
observations into five cells chosen to ensure E Xi npi 1, check that this sample
is indeed from this distribution. What would you conclude if you got a Pvalue close
to 0?

PROBLEMS

9.1.18 (Multivariate normal distribution) A random vector Y Y1 Yk is said to
have a multivariate normal distribution with mean vector Rk and variance matrix

i j Rk k if

a1Y1 akYk N
k

i 1

ai i

k

i 1

k

j 1

ai a j i j

for every choice of a1 ak R1. We write Y Nk . Prove that E Yi i ,
Cov Yi Y j i j and that Yi N i ii . (Hint: Theorem 3.3.4.)
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9.1.19 In Example 9.1.1, prove that the residual R R1 Rn is distributed mul
tivariate normal (see Problem 9.1.18) with mean vector 0 0 and variance
matrix i j Rk k , where i j

2
0 n when i j and i i

2
0 1 1 n

(Hint: Theorem 4.6.1.)
9.1.20 If Y Y1 Yk is distributed multivariate normal with mean vector Rk

and variance matrix i j Rk k and if X X1 Xl is distributed multi
variate normal with mean vector Rl and variance matrix i j Rl l then it
can be shown that Y and X are independent whenever k

i 1 ai Yi and l
i 1 bi X i are

independent for every choice of a1 ak and b1 bl . Use this fact to show
that, in Example 9.1.1, X and R are independent. (Hint: Theorem 4.6.2 and Problem
9.1.19.)
9.1.21 In Example 9.1.4, prove that ( 1 1 x1 n x 1 n is the MLE.

9.1.22 In Example 9.1.4, prove that the number of samples satisfying the constraints
(9.1.2) equals

n

x1

n

x 1
.

(Hint: Using i for the count x11, show that the number of such samples equals

n

x1

min x1 x 1

i max 0 x1 x 1 n

x1

i

n x1

x 1 i

and sum this using the fact that the sum of Hypergeometric n x 1 x1 probabilities
equals 1.)

COMPUTER PROBLEMS

9.1.23 For the data of Exercise 9.1.3, carry out a simulation to estimate the Pvalue for
the discrepancy statistic of Example 9.1.2. Plot a density histogram of the simulated
values. (Hint: See Appendix B for appropriate code.)
9.1.24 When n 10 generate 104 values of the discrepancy statistic in Example 9.1.2
when we have a sample from an N 0 1 distribution. Plot these in a density histogram.
Repeat this, but now generate from a Cauchy distribution. Compare the histograms (do
not forget to make sure both plots have the same scales).
9.1.25 The following data are supposed to have come from an Exponential distrib
ution, where 0 is unknown.

1 5 1 6 1 4 9 7 12 1 2 7 2 2 1 6 6 8 0 1
0 8 1 7 8 0 0 2 12 3 2 2 0 2 0 6 10 1 4 9

Check this model using a chisquared goodness of fit test based on the intervals

2 0] 2 0 4 0] 4 0 6 0] 6 0 8 0] 8 0 10 0] 10 0

(Hint: Calculate the MLE by plotting the loglikelihood over successively smaller in
tervals.)
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9.1.26 The following table, taken from Introduction to the Practice of Statistics, by D.
Moore and G. McCabe (W. H. Freeman, New York, 1999), gives the measurements in
milligrams of daily calcium intake for 38 women between the ages of 18 and 24 years.

808 882 1062 970 909 802 374 416 784 997
651 716 438 1420 1425 948 1050 976 572 403
626 774 1253 549 1325 446 465 1269 671 696

1156 684 1933 748 1203 2433 1255 110

(a) Suppose that the model specifies a location normal model for these data with 2
0

500 2. Carry out a chisquared goodness of fit test on these data using the intervals
600] 600 1200] 1200 1800] 1800 (Hint: Plot the loglikelihood over

successively smaller intervals to determine the MLE to about one decimal place. To
determine the initial range for plotting, use the overall MLE of minus three standard
errors to the overall MLE plus three standard errors.)
(b) Compare the MLE of obtained in part (a) with the ungrouped MLE.
(c) It would be more realistic to assume that the variance 2 is unknown as well. Record
the loglikelihood for the grouped data. (More sophisticated numerical methods are
needed to find the MLE of 2 in this case.)

9.1.27 Generate 104 values of the discrepancy statistics Dskew and Dkurtosis in Example
9.1.2 when we have a sample of n 10 from an N 0 1 distribution. Plot these
in density histograms. Indicate how you would use these histograms to assess the
normality assumption when we had an actual sample of size 10. Repeat this for n 20
and compare the distributions.

CHALLENGES

9.1.28 (MV) Prove that when x1 xn is a sample from the distribution given by
Z , where Z has a known distribution and 2 R1 0 is unknown,

then the statistic

r x1 xn
x1 x

s

xn x

s

is ancillary. (Hint: Write a sample element as xi zi and then show that
r x1 xn can be written as a function of the zi .)

9.2 Checking for Prior–Data Conict
Bayesian methodology adds the prior probability measure to the statistical model
P : for the subsequent statistical analysis. The methods of Section 9.1 are

designed to check that the observed data can realistically be assumed to have come
from a distribution in P : When we add the prior, we are in effect saying
that our knowledge about the true distribution leads us to assign the prior predictive
probability M given by M A E P A for A to describe the process
generating the data. So it would seem, then, that a sensible Bayesian modelchecking
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approach would be to compare the observed data s with the distribution given by M
to see if it is surprising or not.

Suppose that we were to conclude that the Bayesian model was incorrect after
deciding that s is a surprising value from M This only tells us, however, that the
probability measure M is unlikely to have produced the data and not that the model
P : was wrong. Consider the following example.

EXAMPLE 9.2.1 Prior–Data Conict
Suppose we obtain a sample consisting of n 20 values of s 1 from the model with

1 2 and probability functions for the basic response given by the following
table.

s 0 s 1
f1 s 0 9 0 1
f2 s 0 1 0 9

Then the probability of obtaining this sample from f2 is given by 0 9 20 0 12158
which is a reasonable value, so we have no evidence against the model f1 f2 .

Suppose we place a prior on given by 1 0 9999 so that we are virtually
certain that 1 Then the probability of getting these data from the prior predictive
M is

0 9999 0 1 20 0 0001 0 9 20 1 2158 10 5.

The prior probability of observing a sample of 20, whose prior predictive probability is
no greater than 1 2158 10 5 can be calculated (using statistical software to tabulate
the prior predictive) to be approximately 0 04. This tells us that the observed data are
“in the tails” of the prior predictive and thus are surprising, which leads us to conclude
that we have evidence that M is incorrect.

So in this example, checking the model f : leads us to conclude that it is
plausible for the data observed. On the other hand, checking the model given by M
leads us to the conclusion that the Bayesian model is implausible.

The lesson of Example 9.2.1 is that we can have model failure in the Bayesian con
text in two ways. First, the data s may be surprising in light of the model f : .
Second, even when the data are plausibly from this model, the prior and the data may
conict. This conict will occur whenever the prior assigns most of its probability to
distributions in the model for which the data are surprising. In either situation, infer
ences drawn from the Bayesian model may be awed.

If, however, the prior assigns positive probability (or density) to every possible
value of then the consistency results for Bayesian inference mentioned in Chapter 7
indicate that a large amount of data will overcome a prior–data conict (see Example
9.2.4). This is because the effect of the prior decreases with increasing amounts of data.
So the existence of a prior–data conict does not necessarily mean that our inferences
are in error. Still, it is useful to know whether or not this conict exists, as it is often
difficult to detect whether or not we have sufficient data to avoid the problem.

Therefore, we should first use the checks discussed in Section 9.1 to ensure that the
data s is plausibly from the model f : If we accept the model, then we look
for any prior–data conict. We now consider how to go about this.
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The prior predictive distribution of any ancillary statistic is the same as its distrib
ution under the sampling model, i.e., its prior predictive distribution is not affected by
the choice of the prior. So the observed value of any ancillary statistic cannot tell us
anything about the existence of a prior–data conict. We conclude from this that, if we
are going to use some function of the data to assess whether or not there is prior–data
conict, then its marginal distribution has to depend on .

We now show that the prior predictive conditional distribution of the data given a
minimal sufficient statistic T is independent of the prior.

Theorem 9.2.1 Suppose T is a sufficient statistic for the model f : for
data s Then the conditional prior predictive distribution of the data s given T is
independent of the prior .

PROOF We will prove this in the case that each sample distribution f and the prior
are discrete. A similar argument can be developed for the more general case.

By Theorem 6.1.1 (factorization theorem) we have that

f s h s g T s

for some functions g and h Therefore the prior predictive probability function of s is
given by

m s h s g T s

The prior predictive probability function of T at t is given by

m t
s:T s t

h s g t

Therefore, the conditional prior predictive probability function of the data s given
T s t is

m s T t
h s g t

s :T s t h s g t

h s

s :t s t h s

which is independent of

So, from Theorem 9.2.1, we conclude that any aspects of the data, beyond the value
of a minimal sufficient statistic, can tell us nothing about the existence of a prior–
data conict. Therefore, if we want to base our check for a prior–data conict on the
prior predictive, then we must use the prior predictive for a minimal sufficient statistic.
Consider the following examples.

EXAMPLE 9.2.2 Checking a Beta Prior for a Bernoulli Model
Suppose that x1 xn is a sample from a Bernoulli model, where [0 1] is
unknown, and is given a Beta prior distribution. Then we have that the sample
count y n

i 1 xi is a minimal sufficient statistic and is distributed Binomial n
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Therefore, the prior predictive probability function for y is given by

m y
n

y

1

0

y 1 n y 1 1 1 d

n 1

y 1 n y 1

y n y

n
y n y

y 1 n y 1
.

Now observe that when 1 then m y 1 n 1 i.e., the prior predictive
of y is Uniform 0 1 n and no values of y are surprising. This is not unexpected,
as with the uniform prior on we are implicitly saying that any count y is reasonable.

On the other hand, when 2 the prior puts more weight around 1/2. The
prior predictive is then proportional to y 1 n y 1 This prior predictive is
plotted in Figure 9.2.1 when n 20. Note that counts near 0 or 20 lead to evidence
that there is a conict between the data and the prior. For example, if we obtain the
count y 3, we can assess how surprising this value is by computing the probability
of obtaining a value with a lower probability of occurrence. Using the symmetry of the
prior predictive, we have that this probability equals (using statistical software for the
computation) m 0 m 2 m 19 m 20 0 0688876 Therefore, the observation
y 3 is not surprising at the 5% level.
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Figure 9.2.1: Plot of the prior predictive of the sample count y in Example 9.2.2 when
2 and n 20.

Suppose now that n 50 and 2 4 The mean of this prior is 2 2
4 1 3 and the prior is rightskewed. The prior predictive is plotted in Figure 9.2.2.
Clearly, values of y near 50 give evidence against the model in this case. For example,
if we observe y 35 then the probability of getting a count with smaller probability of
occurrence is given by (using statistical software for the computation) m 36
m 50 0 0500457. Only values more extreme than this would provide evidence
against the model at the 5% level.
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Figure 9.2.2: Plot of the prior predictive of the sample count y in Example 9.2.2 when
2 4 and n 50.

EXAMPLE 9.2.3 Checking a Normal Prior for a Location Normal Model
Suppose that x1 xn is a sample from an N 2

0 distribution, where R1

is unknown and 2
0 is known. Suppose we take the prior distribution of to be an

N 0
2
0 for some specified choice of 0 and 2

0 Note that x is a minimal sufficient
statistic for this model, so we need to compare the observed of this statistic to its prior
predictive distribution to assess whether or not there is prior–data conict.

Now we can write x z where N 0
2
0 independent of z

N 0 2
0 n From this, we immediately deduce (see Exercise 9.2.3) that the prior pre

dictive distribution of x is N 0
2
0

2
0 n . From the symmetry of the prior predictive

density about 0 we immediately see that the appropriate Pvalue is

M X 0 x 0 2 1 x 0
2
0

2
0 n 1 2 (9.2.1)

So a small value of (9.2.1) is evidence that there is a conict between the observed data
and the prior, i.e., the prior is putting most of its mass on values of for which the
observed data are surprising.

Another possibility for model checking in this context is to look at the posterior
predictive distribution of the data. Consider, however, the following example.

EXAMPLE 9.2.4 (Example 9.2.1 continued)
Recall that, in Example 9.2.1, we concluded that a prior–data conict existed. Note,
however, that the posterior probability of 2 is

0 0001 0 9 20

0 9999 0 1 20 0 0001 0 9 20
1

Therefore, the posterior predictive probability of the observed sequence of 20 values of
1 is 0 12158 which does not indicate any prior–data conict. We note, however, that
in this example, the amount of data are sufficient to overwhelm the prior; thus we are
led to a sensible inference about
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The problem with using the posterior predictive to assess whether or not a prior–
data conict exists is that we have an instance of the socalled double use of the data.
For we have fit the model, i.e., constructed the posterior predictive, using the observed
data, and then we tried to use this posterior predictive to assess whether or not a prior–
data conict exists. The double use of the data results in overly optimistic assessments
of the validity of the Bayesian model and will often not detect discrepancies. We will
not discuss posterior model checking further in this text.

We have only touched on the basics of checking for prior–data conict here. With
more complicated models, the possibility exists of checking individual components of a
prior, e.g., the components of the prior specified in Example 7.1.4 for the locationscale
normal model, to ascertain more precisely where a prior–data conict is arising. Also,
ancillary statistics play a role in checking for prior–data conict as we must remove any
ancillary variation when computing the Pvalue because this variation does not depend
on the prior. Furthermore, when the prior predictive distribution of a minimal sufficient
statistic is continuous, then issues concerning exactly how Pvalues are to be computed
must be addressed. These are all topics for a further course in statistics.

Summary of Section 9.2

In Bayesian inference, there are two potential sources of model incorrectness.
First, the sampling model for the data may be incorrect. Second, even if the
sampling model is correct, the prior may conict with the data in the sense that
most of the prior probability is assigned to distributions in the model for which
the data are surprising.

We first check for the correctness of the sampling model using the methods of
Section 9.1. If we do not find evidence against the sampling model, we next
check for prior–data conict by seeing if the observed value of a minimal suffi
cient statistic is surprising or not, with respect to the prior predictive distribution
of this quantity.

Even if a prior–data conict exists, posterior inferences may still be valid if we
have enough data.

EXERCISES

9.2.1 Suppose we observe the value s 2 from the model, given by the following
table.

s 1 s 2 s 3
f1 s 1 3 1 3 1 3
f2 s 1 3 0 2 3

(a) Do the observed data lead us to doubt the validity of the model? Explain why or
why not.
(b) Suppose the prior, given by 1 0 3 is placed on the parameter 1 2 .
Is there any evidence of a prior–data conict? (Hint: Compute the prior predictive for
each possible data set and assess whether or not the observed data set is surprising.)
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(c) Repeat part (b) using the prior given by 1 0 01.

9.2.2 Suppose a sample of n 6 is taken from a Bernoulli distribution, where
has a Beta 3 3 prior distribution. If the value nx 2 is obtained, then determine
whether there is any prior–data conict.
9.2.3 In Example 9.2.3, establish that the prior predictive distribution of x is given by
the N 0

2
0

2
0 n distribution.

9.2.4 Suppose we have a sample of n 5 from an N 2 distribution where is
unknown and the value x 7 3 is observed. An N 0 1 prior is placed on Compute
the appropriate Pvalue to check for prior–data conict.
9.2.5 Suppose that x Uniform[0 ] and Uniform[0 1] If the value x 2 2 is
observed, then determine an appropriate Pvalue for checking for prior–data conict.

COMPUTER EXERCISES

9.2.6 Suppose a sample of n 20 is taken from a Bernoulli distribution, where
has a Beta 3 3 prior distribution. If the value nx 6 is obtained, then determine

whether there is any prior–data conict.

PROBLEMS

9.2.7 Suppose that x1 xn is a sample from an N 2
0 distribution, where

N 0
2
0 . Determine the prior predictive distribution of x

9.2.8 Suppose that x1 xn is a sample from an Exponential distribution where
Gamma 0 0 Determine the prior predictive distribution of x

9.2.9 Suppose that s1 sn is a sample from a Multinomial 1 1 k distri
bution, where 1 k 1 Dirichlet 1 k Determine the prior predictive
distribution of x1 xk , where xi is the count in the i th category.
9.2.10 Suppose that x1 xn is a sample from a Uniform[0 ] distribution, where

has prior density given by I[ 1 1 where 1
0 Determine the prior predictive distribution of x n .
9.2.11 Suppose we have the context of Example 9.2.3. Determine the limiting Pvalue
for checking for prior–data conict as n Interpret the meaning of this Pvalue
in terms of the prior and the true value of
9.2.12 Suppose that x Geometric distribution and Uniform[0 1]
(a) Determine the appropriate Pvalue for checking for prior–data conict.
(b) Based on the Pvalue determined in part (a), describe the circumstances under which
evidence of prior–data conict will exist.
(c) If we use a continuous prior that is positive at a point, then this an assertion that
the point is possible. In light of this, discuss whether or not a continuous prior that is
positive at 0 makes sense for the Geometric distribution.

CHALLENGES

9.2.13 Suppose that X1 Xn is a sample from an N 2 distribution where
2 N 0

2
0

2 and 1 2 Gamma 0 0 . Then determine a form for the
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prior predictive density of X S2 that you could evaluate without integrating (Hint:
Use the algebraic manipulations found in Section 7.5.)

9.3 The Problem with Multiple Checks
As we have mentioned throughout this text, model checking is a part of good statistical
practice. In other words, one should always be wary of the value of statistical work
in which the investigators have not engaged in, and reported the results of, reasonably
rigorous model checking. It is really the job of those who report statistical results to
convince us that their models are reasonable for the data collected, bearing in mind the
effects of both underfitting and overfitting.

In this chapter, we have reported some of the possible modelchecking approaches
available. We have focused on the main categories of procedures and perhaps the
most often used methods from within these. There are many others. At this point, we
cannot say that any one approach is the best possible method. Perhaps greater insight
along these lines will come with further research into the topic, and then a clearer
recommendation could be made.

One recommendation that can be made now, however, is that it is not reasonable to
go about model checking by implementing every possible modelchecking procedure
you can. A simple example illustrates the folly of such an approach.

EXAMPLE 9.3.1
Suppose that x1 xn is supposed to be a sample from the N 0 1 distribution.
Suppose we decide to check this model by computing the Pvalues

Pi P X2
i x2

i

for i 1 n where X2
i

2 1 Furthermore, we will decide that the model is
incorrect if the minimum of these Pvalues is less than 0.05.

Now consider the repeated sampling behavior of this method when the model is
correct. We have that

min P1 Pn 0 05

if and only if
max x2

1 x2
n

2
0 95 1

and so

P min P1 Pn 0 05

P max X2
1 X2

n
2
0 95 1 1 P max X2

1 X2
n

2
0 05 1

1
n

i 1

P X2
i

2
0 95 1 1 0 95 n 1

as n This tells us that if n is large enough, we will reject the model with virtual
certainty even though it is correct! Note that n does not have to be very large for there
to be an appreciable probability of making an error. For example, when n 10 the
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probability of making an error is 0.40; when n 20 the probability of making an error
is 0.64; and when n 100 the probability of making an error is 0.99.

We can learn an important lesson from Example 9.3.1, for, if we carry out too many
modelchecking procedures, we are almost certain to find something wrong — even if
the model is correct. The cure for this is that before actually observing the data (so
that our choices are not determined by the actual data obtained), we decide on a few
relevant modelchecking procedures to be carried out and implement only these.

The problem we have been discussing here is sometimes referred to as the problem
of multiple comparisons, which comes up in other situations as well — e.g., see Sec
tion 10.4.1, where multiple means are compared via pairwise tests for differences in
the means. One approach for avoiding the multiplecomparisons problem is to simply
lower the cutoff for the Pvalue so that the probability of making a mistake is appro
priately small. For example, if we decided in Example 9.3.1 that evidence against the
model is only warranted when an individual Pvalue is smaller than 0.0001, then the
probability of making a mistake is 0 01 when n 100 A difficulty with this approach
generally is that our modelchecking procedures will not be independent, and it does
not always seem possible to determine an appropriate cutoff for the individual Pvalues.
More advanced methods are needed to deal with this problem.

Summary of Section 9.3

Carrying out too many model checks is not a good idea, as we will invariably
find something that leads us to conclude that the model is incorrect. Rather than
engaging in a “fishing expedition,” where we just keep on checking the model,
it is better to choose a few procedures before we see the data, and use these, and
only these, for the model checking.



Chapter 10

Relationships Among
Variables

CHAPTER OUTLINE
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Section 2 Categorical Response and Predictors
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Section 5 Categorical Response and Quantitative Predictors
Section 6 Further Proofs (Advanced)

In this chapter, we are concerned with perhaps the most important application of sta
tistical inference: the problem of analyzing whether or not a relationship exists among
variables and what form the relationship takes. As a particular instance of this, recall
the example and discussion in Section 5.1.

Many of the most important problems in science and society are concerned with re
lationships among variables. For example, what is the relationship between the amount
of carbon dioxide placed into the atmosphere and global temperatures? What is the re
lationship between class size and scholastic achievement by students? What is the
relationship between weight and carbohydrate intake in humans? What is the relation
ship between lifelength and the dosage of a certain drug for cancer patients? These are
all examples of questions whose answers involve relationships among variables. We
will see that statistics plays a key role in answering such questions.

In Section 10.1, we provide a precise definition of what it means for variables to
be related, and we distinguish between two broad categories of relationship, namely,
association and cause–effect. Also, we discuss some of the key ideas involved in col
lecting data when we want to determine whether a cause–effect relationship exists. In
the remaining sections, we examine the various statistical methodologies that are used
to analyze data when we are concerned with relationships.

We emphasize the use of frequentist methodologies in this chapter. We give some
examples of the Bayesian approach, but there are some complexities involved with the
distributional problems associated with Bayesian methods that are best avoided at this
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stage. Sampling algorithms for the Bayesian approach have been developed, along the
lines of those discussed in Chapter 7 (see also Chapter 11), but their full discussion
would take us beyond the scope of this text. It is worth noting, however, that Bayesian
analyses with diffuse priors will often yield results very similar to those obtained via
the frequentist approach.

As discussed in Chapter 9, model checking is an important feature of any statistical
analysis. For the models used in this chapter, a full discussion of the more rigorous P
value approach to model checking requires more development than we can accomplish
in this text. As such, we emphasize the informal approach to model checking, via
residual and probability plots. This should not be interpreted as a recommendation that
these are the preferred methods for such models.

10.1 Related Variables
Consider a population with two variables X Y : R1 defined on it. What does
it mean to say that the variables X and Y are related? Perhaps our first inclination is to
say that there must be a formula relating the two variables, such as Y a bX2 for
some choice of constants a and b or Y exp X etc. But consider a population
of humans and suppose X is the weight of in kilograms and Y is the height
of individual in centimeters. From our experience, we know that taller people
tend to be heavier, so we believe that there is some kind of relationship between height
and weight. We know, too, that there cannot be an exact formula that describes this
relationship, because people with the same weight will often have different heights,
and people with the same height will often have different weights.

10.1.1 The Definition of Relationship

If we think of all the people with a given weight x , then there will be a distribution
of heights for all those individuals that have weight x . We call this distribution the
conditional distribution of Y given that X x .

We can now express what we mean by our intuitive idea that X and Y are related,
for, as we change the value of the weight that we condition on, we expect the condi
tional distribution to change. In particular, as x increases, we expect that the location
of the conditional distribution will increase, although other features of the distribution
may change as well. For example, in Figure 10.1.1 we provide a possible plot of two
approximating densities for the conditional distributions of Y given X 70 kg and
the conditional distribution of Y given X 90 kg.

We see that the conditional distribution has shifted up when X goes from 70 to 90
kg but also that the shape of the distribution has changed somewhat as well. So we can
say that a relationship definitely exists between X and Y at least in this population. No
tice that, as defined so far, X and Y are not random variables, but they become so when
we randomly select from the population. In that case, the conditional distributions
referred to become the conditional probability distributions of the random variable Y
given that we observe X 70 and X 90 respectively.
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Figure 10.1.1: Plot of two approximating densities for the conditional distribution of Y given
X 70 kg (dashed line) and the conditional distribution of Y given X 90 kg (solid line).

We will adopt the following definition to precisely specify what we mean when we
say that variables are related.

Definition 10.1.1 Variables X and Y are related variables if there is any change in
the conditional distribution of Y given X x , as x changes.

We could instead define what it means for variables to be unrelated. We say that
variables X and Y are unrelated if they are independent. This is equivalent to Definition
10.1.1, because two variables are independent if and only if the conditional distribution
of one given the other does not depend on the condition (Exercise 10.1.1).

There is an apparent asymmetry in Definition 10.1.1, because the definition consid
ers only the conditional distribution of Y given X and not the conditional distribution
of X given Y But, if there is a change in the conditional distribution of Y given X x
as we change x then by the above comment, X and Y are not independent; thus there
must be a change in the conditional distribution of X given Y y as we change y
(also see Problem 10.1.23).

Notice that the definition is applicable no matter what kind of variables we are
dealing with. So both could be quantitative variables, or both categorical variables, or
one could be a quantitative variable while the other is a categorical variable.

Definition 10.1.1 says that X and Y are related if any change is observed in the
conditional distribution. In reality, this would mean that there is practically always a
relationship between variables X and Y It seems likely that we will always detect some
difference if we carry out a census and calculate all the relevant conditional distribu
tions. This is where the idea of the strength of a relationship among variables becomes
relevant, for if we see large changes in the conditional distributions, then we can say a
strong relationship exists. If we see only very small changes, then we can say a very
weak relationship exists that is perhaps of no practical importance.
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The Role of Statistical Models

If a relationship exists between two variables, then its form is completely described by
the set of conditional distributions of Y given X . Sometimes it may be necessary to
describe the relationship using all these conditional distributions. In many problems,
however, we look for a simpler presentation. In fact, we often assume a statistical
model that prescribes a simple form for how the conditional distributions change as we
change X

Consider the following example.

EXAMPLE 10.1.1 Simple Normal Linear Regression Model
In Section 10.3.2, we will discuss the simple normal linear regression model, where
the conditional distribution of quantitative variable Y given the quantitative variable
X x , is assumed to be distributed

N 1 2x 2

where 1 2 and 2 are unknown. For example, Y could be the blood pressure of an
individual and X the amount of salt the person consumed each day.

In this case, the conditional distributions have constant shape and change, as x
changes, only through the conditional mean. The mean moves along the line given by

1 2x for some intercept 1 and slope 2 If this model is correct, then the variables
are unrelated if and only if 2 0 as this is the only situation in which the conditional
distributions can remain constant as we change x

Statistical models, like that described in Example 10.1.1, can be wrong. There
is nothing requiring that two quantitative variables must be related in that way. For
example, the conditional variance of Y can vary with x , and the very shape of the
conditional distribution can vary with x , too. The model of Example 10.1.1 is an
instance of a simplifying assumption that is appropriate in many practical contexts.
However, methods such as those discussed in Chapter 9 must be employed to check
model assumptions before accepting statistical inferences based on such a model. We
will always consider model checking as part of our discussion of the various models
used to examine the relationship among variables.

Response and Predictor Variables

Often, we think of Y as a dependent variable (depending on X) and of X as an indepen
dent variable (free to vary). Our goal, then, is to predict the value of Y given the value
of X . In this situation, we call Y the response variable and X the predictor variable.

Sometimes, though, there is really nothing to distinguish the roles of X and Y . For
example, suppose that X is the weight of an individual in kilograms and Y is the height
in centimeters. We could then think of predicting weight from height or conversely. It
is then immaterial which we choose to condition on.

In many applications, there is more than one response variable and more than one
predictor variable X We will not consider the situation in which we have more than
one response variable, but we will consider the case in which X X1 Xk is
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kdimensional. Here, the various predictors that make up X could be all categorical,
all quantitative, or some mixture of categorical and quantitative variables.

The definition of a relationship existing between response variable Y and the set of
predictors X1 Xk is exactly as in Definition 10.1.1. In particular, a relationship
exists between Y and X1 Xk if there is any change in the conditional distribution
of Y given X1 Xk x1 xk when x1 xk is varied. If such a relation
ship exists, then the form of the relationship is specified by the full set of conditional
distributions. Again, statistical models are often used where simplifying assumptions
are made about the form of the relationship. Consider the following example.

EXAMPLE 10.1.2 The Normal Linear Model with k Predictors
In Section 10.3.4, we will discuss the normal multiple linear regression model. For
this, the conditional distribution of quantitative variable Y given that the quantitative
predictors X1 Xk x1 xk is assumed to be the

N 1 2x1 k 1xk
2

distribution, where 1 k 1 and 2 are unknown. For example, Y could be blood
pressure, X1 the amount of daily salt intake, X2 the age of the individual, X3 the weight
of the individual, etc.

In this case, the conditional distributions have constant shape and change, as the
values of the predictors x1 xk change only through the conditional mean, which
changes according to the function 1 2x1 k 1xk Notice that, if this model
is correct, then the variables are unrelated if and only if 2 k 1 0 as this
is the only situation in which the conditional distributions can remain constant as we
change x1 xk .

When we split a set of variables Y X1 Xk into response Y and predictors
X1 Xk , we are implicitly saying that we are directly interested only in the con

ditional distributions of Y given X1 Xk There may be relationships among the
predictors X1 Xk however, and these can be of interest.

For example, suppose we have two predictors X1 and X2 and the conditional dis
tribution of X1 given X2 is virtually degenerate at a value a cX2 for some constants
a and c Then it is not a good idea to include both X1 and X2 in a model, such as
that discussed in Example 10.1.2, as this can make the analysis very sensitive to small
changes in the data. This is known as the problem of multicollinearity. The effect of
multicollinearity, and how to avoid it, will not be discussed any further in this text. This
is, however, a topic of considerable practical importance.

Regression Models

Suppose that the response Y is quantitative and we have k predictors X1 Xk
One of the most important simplifying assumptions used in practice is the regression
assumption, namely, we assume that, as we change X1 Xk the only thing that
can possibly change about the conditional distribution of Y given X1 Xk is the
conditional mean E Y X1 Xk The importance of this assumption is that, to an
alyze the relationship between Y and X1 Xk we now need only consider how
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E Y X1 Xk changes as X1 Xk changes. Indeed, if E Y X1 Xk
does not change as X1 Xk changes, then there is no relationship between Y
and the predictors. Of course, this kind of an analysis is dependent on the regression
assumption holding, and the methods of Section 9.1 must be used to check this. Regres
sion models — namely, statistical models where we make the regression assumption
— are among the most important statistical models used in practice. Sections 10.3 and
10.4 discuss several instances of regression models.

Regression models are often presented in the form

Y E Y X1 Xk Z (10.1.1)

where Z Y E Y X1 Xk is known as the error term. We see immedi
ately that, if the regression assumption applies, then the conditional distribution of Z
given X1 Xk is fixed as we change X1 Xk and, conversely, if the con
ditional distribution of Z given X1 Xk is fixed as we change X1 Xk
then the regression assumption holds. So when the regression assumption applies,
(10.1.1) provides a decomposition of Y into two parts: (1) a part possibly dependent on
X1 Xk namely, E Y X1 Xk and (2) a part that is always independent

of X1 Xk namely, the error Z Note that Examples 10.1.1 and 10.1.2 can be
written in the form (10.1.1), where Z N 0 2

10.1.2 Cause–Effect Relationships and Experiments

Suppose now that we have variables X and Y defined on a population and have
concluded that a relationship exists according to Definition 10.1.1. This may be based
on having conducted a full census of or, more typically, we will have drawn a
simple random sample from and then used the methods of the remaining sections of
this chapter to conclude that such a relationship exists. If Y is playing the role of the
response and if X is the predictor, then we often want to be able to assert that changes
in X are causing the observed changes in the conditional distributions of Y Of course,
if there are no changes in the conditional distributions, then there is no relationship
between X and Y and hence no cause–effect relationship, either.

For example, suppose that the amount of carbon dioxide gas being released in the
atmosphere is increasing, and we observe that mean global temperatures are rising. If
we have reason to believe that the amount of carbon dioxide released can have an effect
on temperature, then perhaps it is sensible to believe that the increase in carbon dioxide
emissions is causing the observed increase in mean global temperatures. As another
example, for many years it has been observed that smokers suffer from respiratory
diseases much more frequently than do nonsmokers. It seems reasonable, then, to
conclude that smoking causes an increased risk for respiratory disease. On the other
hand, suppose we consider the relationship between weight and height. It seems clear
that a relationship exists, but it does not make any sense to say that changes in one of
the variables is causing the changes in the conditional distributions of the other.
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Confounding Variables

When can we say that an observed relationship between X and Y is a cause–effect
relationship? If a relationship exists between X and Y then we know that there are at
least two values x1 and x2 such that fY X x1 fY X x2 i.e., these two
conditional distributions are not equal. If we wish to say that this difference is caused
by the change in X , then we have to know categorically that there is no other variable
Z defined on that confounds with X The following example illustrates the idea of
two variables confounding.

EXAMPLE 10.1.3
Suppose that is a population of students such that most females hold a parttime
job and most males do not. A researcher is interested in the distribution of grades, as
measured by grade point average (GPA), and is looking to see if there is a relationship
between GPA and gender. On the basis of the data collected, the researcher observes
a difference in the conditional distribution of GPA given gender and concludes that a
relationship exists between these variables. It seems clear, however, that an assertion
of a cause–effect relationship existing between GPA and gender is not warranted, as
the difference in the conditional distributions could also be attributed to the difference
in parttime work status rather than gender. In this example, parttime work status and
gender are confounded.

A more careful analysis might rescue the situation described in Example 10.1.3, for
if X and Z denote the confounding variables, then we could collect data on Z as well
and examine the conditional distributions fY X x Z z . In Example 10.1.3,
these will be the conditional distributions of GPA, given gender and parttime work
status. If these conditional distributions change as we change x for some fixed value
of z then we could assert that a cause–effect relationship exists between X and Y
provided there are no further confounding variables Of course, there are probably still
more confounding variables, and we really should be conditioning on all of them. This
brings up the point that, in any practical application, we almost certainly will never
even know all the potential confounding variables.

Controlling Predictor Variable Assignments

Fortunately, there is sometimes a way around the difficulties raised by confounding
variables. Suppose we can control the value of the variable X for any i.e.,
we can assign the value x to so that X x for any of the possible values of x
In Example 10.1.3, this would mean that we could assign a parttime work status to
any student in the population. Now consider the following idealized situation. Imagine
assigning every element the value X x1 and then carrying out a census
to obtain the conditional distribution fY X x1 . Now imagine assigning every

the value X x2 and then carrying out a census to obtain the conditional
distribution fY X x2 . If there is any difference in fY X x1 and fY X
x2 , then the only possible reason is that the value of X differs. Therefore, if fY X
x1 fY X x2 we can assert that a cause–effect relationship exists.
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A difficulty with the above argument is that typically we can never exactly deter
mine fY X x1 and fY X x2 But in fact, we may be able to sample from
them; then the methods of statistical inference become available to us to infer whether
or not there is any difference. Suppose we take a random sample 1 n1 n2 from

and randomly assign n1 of these the value X x1 with the remaining ’s assigned
the value x2. We obtain the Y values y11 y1n1 for those ’s assigned the value x1
and obtain the Y values y21 y2n2 for those ’s assigned the value x2. Then it is ap
parent that y11 y1n1 is a sample from fY X x1 and y21 y2n2 is a sample
from fY X x2 . In fact, provided that n1 n2 is small relative to the population
size, then we can consider these as i.i.d. samples from these conditional distributions.

So we see that in certain circumstances, it is possible to collect data in such a way
that we can make inferences about whether or not a cause–effect relationship exists.
We now specify the characteristics of the relevant data collection technique.

Conditions for Cause–Effect Relationships

First, if our inferences are to apply to a population then we must have a random
sample from that population. This is just the characteristic of what we called a sampling
study in Section 5.4, and we must do this to avoid any selection effects. So if the
purpose of a study is to examine the relationship between the duration of migraine
headaches and the dosage of a certain drug, the investigator must have a random sample
from the population of migraine headache sufferers.

Second, we must be able to assign any possible value of the predictor variable X
to any selected . If we cannot do this, or do not do this, then there may be hidden
confounding variables (sometimes called lurking variables) that are inuencing the
conditional distributions of Y . So in a study of the effects of the dosage of a drug
on migraine headaches, the investigator must be able to impose the dosage on each
participant in the study.

Third, after deciding what values of X we will use in our study, we must randomly
allocate these values to members of the sample. This is done to avoid the possibility of
selection effects. So, after deciding what dosages to use in the study of the effects of
the dosage of a drug on migraine headaches, and how many participants will receive
each dosage, the investigator must randomly select the individuals who will receive
each dosage. This will (hopefully) avoid selection effects, such as only the healthiest
individuals getting the lowest dosage, etc.

When these requirements are met, we refer to the data collection process as an
experiment. Statistical inference based on data collected via an experiment has the ca
pability of inferring that cause–effect relationships exist, so this represents an important
and powerful scientific tool.

A Hierarchy of Studies

Combining this discussion with Section 5.4, we see a hierarchy of data collection meth
ods. Observational studies reside at the bottom of the hierarchy. Inferences drawn
from observational studies must be taken with a degree of caution, for selection effects
could mean that the results do not apply to the population intended, and the existence
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of confounding variables means that we cannot make inferences about cause–effect re
lationships. For sampling studies, we know that any inferences drawn will be about
the appropriate population; but the existence of confounding variables again causes
difficulties for any statements about the existence of cause–effect relationships, e.g.,
just taking random samples of males and females from the population of Example
10.1.3 will not avoid the confounding variables. At the top of the hierarchy reside
experiments.

It is probably apparent that it is often impossible to conduct an experiment. In
Example 10.1.3, we cannot assign the value of gender, so nothing can be said about the
existence of a cause–effect relationship between GPA and gender.

There are many notorious examples in which assertions are made about the exis
tence of cause–effect relationships but for which no experiment is possible. For exam
ple, there have been a number of studies conducted where differences have been noted
among the IQ distributions of various racial groups. It is impossible, however, to con
trol the variable racial origin, so it is impossible to assert that the observed differences
in the conditional distributions of IQ, given race, are caused by changes in race.

Another example concerns smoking and lung cancer in humans. It has been pointed
out that it is impossible to conduct an experiment, as we cannot assign values of the
predictor variable (perhaps different amounts of smoking) to humans at birth and then
observe the response, namely, whether someone contracts lung cancer or not. This
raises an important point. We do not simply reject the results of analyses based on
observational studies or sampling studies because the data did not arise from an ex
periment. Rather, we treat these as evidence — potentially awed evidence, but still
evidence.

Think of eyewitness evidence in a court of law suggesting that a crime was com
mitted by a certain individual. Eyewitness evidence may be unreliable, but if two or
three unconnected eyewitnesses give similar reports, then our confidence grows in the
reliability of the evidence. Similarly, if many observational and sampling studies seem
to indicate that smoking leads to an increased risk for contracting lung cancer, then our
confidence grows that a cause–effect relationship does indeed exist. Furthermore, if we
can identify potentially confounding variables, then observational or sampling studies
can be conducted taking these into account, increasing our confidence still more. Ul
timately, we may not be able to definitively settle the issue via an experiment, but it is
still possible to build overwhelming evidence that smoking and lung cancer do have a
cause–effect relationship.

10.1.3 Design of Experiments

Suppose we have a response Y and a predictor X (sometimes called a factor in experi
mental contexts) defined on a population and we want to collect data to determine
whether a cause–effect relationship exists between them. Following the discussion in
Section 10.1.1, we will conduct an experiment. There are now a number of decisions
to be made, and our choices constitute what we call the design of the experiment.

For example, we are going to assign values of X to the sampled elements, now
called experimental units, 1 n from Which of the possible values of X
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should we use? When X can take only a small finite number of values, then it is
natural to use these values. On the other hand, when the number of possible values of
X is very large or even infinite, as with quantitative predictors, then we have to choose
values of X to use in the experiment.

Suppose we have chosen the values x1 xk for X . We refer to x1 xk as
the levels of X ; any particular assignment xi to a j in the sample will be called a
treatment. Typically, we will choose the levels so that they span the possible range of
X fairly uniformly. For example, if X is temperature in degrees Celsius, and we want
to examine the relationship between Y and X for X in the range [0 100] then, using
k 5 levels, we might take x1 0 x2 25 x3 50 x4 75 and x5 100

Having chosen the levels of X , we then have to choose how many treatments of each
level we are going to use in the experiment, i.e., decide how many response values ni
we are going to observe at level xi for i 1 k

In any experiment, we will have a finite amount of resources (money, time, etc.) at
our disposal, which determines the sample size n from The question then is how
should we choose the ni so that n1 nk n? If we know nothing about the
conditional distributions fY X xi then it makes sense to use balance, namely,
choose n1 nk

On the other hand, suppose we know that some of the fY X xi will exhibit
greater variability than others. For example, we might measure variability by the vari
ance of fY X xi . Then it makes sense to allocate more treatments to the levels of
X where the response is more variable. This is because it will take more observations
to make accurate inferences about characteristics of such an fY X xi than for the
less variable conditional distributions.

As discussed in Sections 6.3.4 and 6.3.5, we also want to choose the ni so that any
inferences we make have desired accuracy. Methods for choosing the sample sizes ni
similar to those discussed in Chapter 7, have been developed for these more compli
cated designs, but we will not discuss these any further here.

Suppose, then, that we have determined x1 n1 xk nk We refer to this
set of ordered pairs as the experimental design.

Consider some examples.

EXAMPLE 10.1.4
Suppose that is a population of students at a given university. The administration
is concerned with determining the value of each student being assigned an academic
advisor. The response variable Y will be a rating that a student assigns on a scale of 1 to
10 (completely dissatisfied to completely satisfied with their university experience) at
the end of a given semester. We treat Y as a quantitative variable. A random sample of
n 100 students is selected from , and 50 of these are randomly selected to receive
advisers while the remaining 50 are not assigned advisers.

Here, the predictor X is a categorical variable that indicates whether or not the
student has an advisor. There are only k 2 levels, and both are used in the experiment.
If x1 0 denotes no advisor and x2 1 denotes having an advisor, then n1 n2 50
and we have a balanced experiment. The experimental design is given by

0 50 1 50
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At the end of the experiment, we want to use the data to make inferences about
the conditional distributions fY X 0 and fY X 1 to determine whether a
cause–effect relationship exists. The methods of Section 10.4 will be relevant for this.

EXAMPLE 10.1.5
Suppose that is a population of dairy cows. A feed company is concerned with the
relationship between weight gain, measured in kilograms, over a specific time period
and the amount of a supplement, measured in grams/liter, of an additive put into the
cows’ feed. Here, the response Y is the weight gain — a quantitative variable. The pre
dictor X is the concentration of the additive. Suppose X can plausibly range between
0 and 2 so it is also a quantitative variable.

The experimenter decides to use k 4 levels with x1 0 00 x2 0 66 x3
1 32 and x4 2 00 Further, the sample sizes n1 n2 n3 n4 10 were
determined to be appropriate. So the balanced experimental design is given by

0 00 10 0 66 10 1 32 10 2 00 10 .

At the end of the experiment, we want to make inferences about the conditional distri
butions fY X 0 00 fY X 0 66 fY X 1 32 and fY X 2 00 .
The methods of Section 10.3 are relevant for this.

Control Treatment, the Placebo Effect, and Blinding

Notice that in Example 10.1.5, we included the level X 0, which corresponds to
no application of the additive. This is called a control treatment, as it gives a baseline
against which we can assess the effect of the predictor. In many experiments, it is
important to include a control treatment.

In medical experiments, there is often a placebo effect — that is, a disease sufferer
given any treatment will often record an improvement in symptoms. The placebo effect
is believed to be due to the fact that a sufferer will start to feel better simply because
someone is paying attention to the condition. Accordingly, in any experiment to de
termine the efficacy of a drug in alleviating disease symptoms, it is important that a
control treatment be used as well. For example, if we want to investigate whether or
not a given drug alleviates migraine headaches, then among the dosages we select for
the experiment, we should make sure that we include a pill containing none of the drug
(the socalled sugar pill); that way we can assess the extent of the placebo effect. Of
course, the recipients should not know whether they are receiving the sugar pill or the
drug. This is called a blind experiment. If we also conceal the identity of the treatment
from the experimenters, so as to avoid any biasing of the results on their part, then this
is known as a doubleblind experiment.

In Example 10.1.5, we assumed that it is possible to take a sample from the popula
tion of all dairy cows. Strictly speaking, this is necessary if we want to avoid selection
effects and make sure that our inferences apply to the population of interest. In prac
tice, however, taking a sample of experimental units from the full population of interest
is often not feasible. For example, many medical experiments are conducted on ani
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mals, and these are definitely not random samples from the population of the particular
animal in question, e.g., rats.

In such cases, however, we simply recognize the possibility that selection effects or
lurking variables could render invalid the conclusions drawn from such analyses when
they are to be applied to the population of interest. But we still regard the results as
evidence concerning the phenomenon under study. It is the job of the experimenter to
come as close as possible to the idealized situation specified by a valid experiment; for
example, randomization is still employed when assigning treatments to experimental
units so that selection effects are avoided as much as possible.

Interactions

In the experiments we have discussed so far, there has been one predictor. In many
practical contexts, there is more than one predictor. Suppose, then, that there are two
predictors X and W and that we have decided on the levels x1 xk for X and the
levels 1 l for W One possibility is to look at the conditional distributions
fY X xi for i 1 k and fY W j for j 1 l to determine
whether X and W individually have a relationship with the response Y Such an ap
proach, however, ignores the effect of the two predictors together. In particular, the
way the conditional distributions fY X x W change as we change x may
depend on ; when this is the case, we say that there is an interaction between the
predictors.

To investigate the possibility of an interaction existing between X and W we must
sample from each of the kl distributions fY X xi W j for i 1 k and
j 1 l The experimental design then takes the form

x1 1 n11 x2 1 n21 xk l nkl

where ni j gives the number of applications of the treatment xi j . We say that the
two predictors X and W are completely crossed in such a design because each value
of X used in the experiment occurs with each value of W used in the experiment
Of course, we can extend this discussion to the case where there are more than two
predictors. We will discuss in Section 10.4.3 how to analyze data to determine whether
there are any interactions between predictors.

EXAMPLE 10.1.6
Suppose we have a population of students at a particular university and are investi
gating the relationship between the response Y given by a student’s grade in calculus,
and the predictors W and X . The predictor W is the number of hours of academic
advising given monthly to a student; it can take the values 0 1 or 2. The predictor X
indicates class size, where X 0 indicates small class size and X 1 indicates large
class size. So we have a quantitative response Y a quantitative predictor W taking
three values, and a categorical predictor X taking two values. The crossed values of
the predictors W X are given by the set

0 0 1 0 2 0 0 1 1 1 2 1

so there are six treatments. To conduct the experiment, the university then takes a
random sample of 6n students and randomly assigns n students to each treatment.
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Sometimes we include additional predictors in an experimental design even when
we are not primarily interested in their effects on the response Y We do this because we
know that such a variable has a relationship with Y . Including such predictors allows
us to condition on their values and so investigate more precisely the relationship Y has
with the remaining predictors. We refer to such a variable as a blocking variable.

EXAMPLE 10.1.7
Suppose the response variable Y is yield of wheat in bushels per acre, and the predictor
variable X is an indicator variable for which of three types of wheat is being planted in
an agricultural study. Each type of wheat is going to be planted on a plot of land, where
all the plots are of the same size, but it is known that the plots used in the experiment
will vary considerably with respect to their fertility. Note that such an experiment
is another example of a situation in which it is impossible to randomly sample the
experimental units (the plots) from the full population of experimental units.

Suppose the experimenter can group the available experimental units into plots of
low fertility and high fertility. We call these two classes of fields blocks. Let W indicate
the type of plot. So W is a categorical variable taking two values. It then seems clear
that the conditional distributions fY X x W will be much less variable than
the conditional distributions fY X x

In this case, W is serving as a blocking variable. The experimental units in a par
ticular block, the one of low fertility or the one of high fertility, are more homogeneous
than the full set of plots, so variability will be reduced and inferences will be more
accurate.

Summary of Section 10.1

We say two variables are related if the conditional distribution of one given the
other changes at all, as we change the value of the conditioning variable.

To conclude that a relationship between two variables is a cause–effect relation
ship, we must make sure that (through conditioning) we have taken account of
all confounding variables.

Statistics provides a practical way of avoiding the effects of confounding vari
ables via conducting an experiment. For this, we must be able to assign the val
ues of the predictor variable to experimental units sampled from the population
of interest.

The design of experiments is concerned with determining methods of collecting
the data so that the analysis of the data will lead to accurate inferences concerning
questions of interest.

EXERCISES

10.1.1 Prove that discrete random variables X and Y are unrelated if and only if X and
Y are independent.
10.1.2 Suppose that two variables X and Y defined on a finite population are func
tionally related as Y g X for some unknown nonconstant function g Explain how
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this situation is covered by Definition 10.1.1, i.e., the definition will lead us to conclude
that X and Y are related. What about the situation in which g x c for some value c
for every x? (Hint: Use the relative frequency functions of the variables.)
10.1.3 Suppose that a census is conducted on a population and the joint distribution of
X Y is obtained as in the following table.

Y 1 Y 2 Y 3
X 1 0 15 0 18 0 40
X 2 0 12 0 09 0 06

Determine whether or not a relationship exists between Y and X
10.1.4 Suppose that a census is conducted on a population and the joint distribution of
X Y is obtained as in the following table.

Y 1 Y 2 Y 3
X 1 1 6 1 6 1 3
X 2 1 12 1 12 1 6

Determine whether or not a relationship exists between Y and X

10.1.5 Suppose that X is a random variable and Y X2 Determine whether or not X
and Y are related. What happens when X has a degenerate distribution?
10.1.6 Suppose a researcher wants to investigate the relationship between birth weight
and performance on a standardized test administered to children at two years of age. If
a relationship is found, can this be claimed to be a cause–effect relationship? Explain
why or why not?

10.1.7 Suppose a large study of all doctors in Canada was undertaken to determine
the relationship between various lifestyle choices and lifelength. If the conditional
distribution of lifelength given various smoking habits changes, then discuss what can
be concluded from this study.

10.1.8 Suppose a teacher wanted to determine whether an open or closedbook exam
was a more appropriate way to test students on a particular topic. The response variable
is the grade obtained on the exam out of 100. Discuss how the teacher could go about
answering this question.
10.1.9 Suppose a researcher wanted to determine whether or not there is a cause–
effect relationship between the type of political ad (negative or positive) seen by a
voter from a particular population and the way the voter votes. Discuss your advice to
the researcher about how best to conduct the study.
10.1.10 If two random variables have a nonzero correlation, are they necessarily re
lated? Explain why or why not.
10.1.11 An experimenter wants to determine the relationship between weight change
Y over a specified period and the use of a specially designed diet. The predictor variable
X is a categorical variable indicating whether or not a person is on the diet. A total of
200 volunteers signed on for the study; a random selection of 100 of these were given
the diet and the remaining 100 continued their usual diet.
(a) Record the experimental design.
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(b) If the results of the study are to be applied to the population of all humans, what
concerns do you have about how the study was conducted?
(c) It is felt that the amount of weight lost or gained also is dependent on the initial
weight W of a participant. How would you propose that the experiment be altered to
take this into account?

10.1.12 A study will be conducted, involving the population of people aged 15 to 19 in
a particular country, to determine whether a relationship exists between the response Y
(amount spent in dollars in a week on music downloads) and the predictors W (gender)
and X (age in years).
(a) If observations are to be taken from every possible conditional distribution of Y
given the two factors, then how many such conditional distributions are there?

(b) Identify the types of each variable involved in the study.
(c) Suppose there are enough funds available to monitor 2000 members of the popula
tion. How would you recommend that these resources be allocated among the various
combinations of factors?
(d) If a relationship is found between the response and the predictors, can this be
claimed to be a cause–effect relationship? Explain why or why not.
(e) Suppose that in addition, it was believed that family income would likely have an
effect on Y and that families could be classified into low and high income. Indicate
how you would modify the study to take this into account.

10.1.13 A random sample of 100 households, from the set of all households contain
ing two or more members in a given geographical area, is selected and their television
viewing habits are monitored for six months. A random selection of 50 of the house
holds is sent a brochure each week advertising a certain program. The purpose of
the study is to determine whether there is any relationship between exposure to the
brochure and whether or not this program is watched.
(a) Identify suitable response and predictor variables.
(b) If a relationship is found, can this be claimed to be a cause–effect relationship?
Explain why or why not.
10.1.14 Suppose we have a quantitative response variable Y and two categorical pre
dictor variables W and X , both taking values in 0 1 . Suppose the conditional distri
butions of Y are given by

Y W 0 X 0 N 3 5

Y W 1 X 0 N 3 5

Y W 0 X 1 N 4 5

Y W 1 X 1 N 4 5 .

Does W have a relationship with Y ? Does X have a relationship with Y ? Explain your
answers.
10.1.15 Suppose we have a quantitative response variable Y and two categorical pre
dictor variables W and X both taking values in 0 1 Suppose the conditional distri
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butions of Y are given by

Y W 0 X 0 N 2 5

Y W 1 X 0 N 3 5

Y W 0 X 1 N 4 5

Y W 1 X 1 N 4 5 .

Does W have a relationship with Y ? Does X have a relationship with Y ? Explain your
answers.
10.1.16 Do the predictors interact in Exercise 10.1.14? Do the predictors interact in
Exercise 10.1.15? Explain your answers.

10.1.17 Suppose we have variables X and Y defined on the population 1 2
10 , where X i 1 when i is odd and X i 0 when i is even, Y i 1 when i is
divisible by 3 and Y i 0 otherwise.
(a) Determine the relative frequency function of X
(b) Determine the relative frequency function of Y

(c) Determine the joint relative frequency function of X Y
(d) Determine all the conditional distributions of Y given X
(e) Are X and Y related? Justify your answer.
10.1.18 A mathematical approach to examining the relationship between variables X
and Y is to see whether there is a function g such that Y g X Explain why this
approach does not work for many practical applications where we are examining the
relationship between variables. Explain how statistics treats this problem.
10.1.19 Suppose a variable X takes the values 1 and 2 on a population and the condi
tional distributions of Y given X are N 0 5 when X 1 and N 0 7 when X 2.
Determine whether X and Y are related and if so, describe their relationship.
10.1.20 A variable Y has conditional distribution given X specified by N 1 2x x
when X x Determine if X and Y are related and if so, describe what their relation
ship is.
10.1.21 Suppose that X Uniform[ 1 1] and Y X2 Determine the correlation
between Y and X Are X and Y related?

PROBLEMS

10.1.22 If there is more than one predictor involved in an experiment, do you think
it is preferable for the predictors to interact or not? Explain your answer. Can the
experimenter control whether or not predictors interact?

10.1.23 Prove directly, using Definition 10.1.1, that when X and Y are related variables
defined on a finite population then Y and X are also related
10.1.24 Suppose that X Y Z are independent N 0 1 random variables and that U
X Z V Y Z Determine whether or not the variables U and V are related. (Hint:
Calculate Cov U V )
10.1.25 Suppose that X Y Z Multinomial n 1 3 1 3 1 3 Are X and Y re
lated?
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10.1.26 Suppose that X Y BivariateNormal 1 2 1 2 Show that X and
Y are unrelated if and only if Corr X Y 0
10.1.27 Suppose that X Y Z have probability function pX Y Z If Y is related to X
but not to Z then prove that pX Y Z x y z pY X y x pX Z x z pZ z

10.2 Categorical Response and Predictors
There are two possible situations when we have a single categorical response Y and a
single categorical predictor X The categorical predictor is either random or determin
istic, depending on how we sample. We examine these two situations separately.

10.2.1 Random Predictor

We consider the situation in which X is categorical, taking values in 1 a and
Y is categorical, taking values in 1 b If we take a sample 1 n from the
population, then the values X i xi are random, as are the values Y i y j

Suppose the sample size n is very small relative to the population size (so we can
assume that i.i.d. sampling is applicable). Then, letting i j P X i Y j we
obtain the likelihood function (see Problem 10.2.15)

L 11 ab x1 y1 xn yn

a

i 1

b

j 1

fi j
i j (10.2.1)

where fi j is the number of sample values with X Y i j An easy computation
(see Problem 10.2.16) shows that the MLE of 11 kl is given by i j fi j n
and that the standard error of this estimate (because the incidence of a sample member
falling in the i j th cell is distributed Bernoulli i j and using Example 6.3.2) is
given by

i j 1 i j

n
.

We are interested in whether or not there is a relationship between X and Y . To
answer this, we look at the conditional distributions of Y given X The conditional
distributions of Y given X using i i1 ib P X i , are given in the
following table.

Y 1 Y b
X 1 11 1 1b 1

X a a1 a ab a
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Then estimating i j i by i j i fi j fi , where fi fi1 fib the estimated
conditional distributions are as in the following table.

Y 1 Y b
X 1 f11 f1 f1b f1

X a fa1 fa fab fa

If we conclude that there is a relationship between X and Y then we look at the table of
estimated conditional distributions to determine the form of the relationship, i.e., how
the conditional distributions change as we change the value of X we are conditioning
on

How, then, do we infer whether or not a relationship exists between X and Y?
No relationship exists between Y and X if and only if the conditional distributions of
Y given X x do not change with x This is the case if and only if X and Y are
independent, and this is true if and only if

i j P X i Y j P X i P Y j i j

for every i and j where j 1 j a j P Y j . Therefore, to assess
whether or not there is a relationship between X and Y it is equivalent to assess the
null hypothesis H0 : i j i j for every i and j .

How should we assess whether or not the observed data are surprising when H0
holds? The methods of Section 9.1.2, and in particular Theorem 9.1.2, can be applied
here, as we have that

F11 F12 Fab Multinomial n 1 1 1 2 a b

when H0 holds, where Fi j is the count in the i j th cell.
To apply Theorem 9.1.2, we need the MLE of the parameters of the model under

H0. The likelihood, when H0 holds, is

L 1 a 1 b x1 y1 xn yn

a

i 1

b

j 1
i j

fi j . (10.2.2)

From this, we deduce (see Problem 10.2.17) that the MLE’s of the i and j are given
by i fi n and j f j n Therefore, the relevant chisquared statistic is

X2
a

i 1

b

j 1

fi j n i j
2

n i j

Under H0 the parameter space has dimension a 1 b 1 a b 2 so we
compare the observed value of X2 with the 2 a 1 b 1 distribution because
ab 1 a b 2 a 1 b 1 .

Consider an example.
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EXAMPLE 10.2.1 Piston Ring Data
The following table gives the counts of piston ring failures, where variable Y is the
compressor number and variable X is the leg position based on a sample of n 166.
These data were taken from Statistical Methods in Research and Production, by O. L.
Davies (Hafner Publishers, New York, 1961).

Here, Y takes four values and X takes three values (N = North, C = Central, and S
= South).

Y 1 Y 2 Y 3 Y 4
X N 17 11 11 14
X C 17 9 8 7
X S 12 13 19 28

The question of interest is whether or not there is any relation between compressor and
leg position. Because f1 53 f2 41 and f3 72 the conditional distributions
of Y given X are estimated as in the rows of the following table.

Y 1 Y 2 Y 3 Y 4
X N 17 53 0 321 11 53 0 208 11 53 0 208 14 53 0 264
X C 17 41 0 415 9 41 0 222 8 41 0 195 7 41 0 171
X S 12 72 0 167 13 72 0 181 19 72 0 264 28 72 0 389

Comparing the rows, it certainly looks as if there is a difference in the conditional
distributions, but we must assess whether or not the observed differences can be ex
plained as due to sampling error. To see if the observed differences are real, we carry
out the chisquared test.

Under the null hypothesis of independence, the MLE’s are given by

1
46

166 2
33
166 3

38
166 4

49
166

for the Y probabilities, and by

1
53

166 2
41

166 3
72

166

for the X probabilities. Then the estimated expected counts n i j are given by the
following table.

Y 1 Y 2 Y 3 Y 4
X N 14 6867 10 5361 12 1325 15 6446
X C 11 3614 8 1506 9 3855 12 1024
X S 19 9518 14 3133 16 4819 21 2530

The standardized residuals (using (9.1.6))

fi j n i j

n i j 1 i j

are as in the following table.
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Y 1 Y 2 Y 3 Y 4
X N 0 6322 0 1477 0 3377 0 4369
X C 1 7332 0 3051 0 4656 1 5233
X S 1 8979 0 3631 0 6536 1 5673

All of the standardized residuals seem reasonable, and we have that X2 11 7223
with P 2 6 11 7223 0 0685, which is not unreasonably small.

So, while there may be some indication that the null hypothesis of no relationship
is false, this evidence is not overwhelming. Accordingly, in this case, we may assume
that Y and X are independent and use the estimates of cell probabilities obtained under
this assumption.

We must also be concerned with model checking, i.e., is the model that we have as
sumed for the data x1 y1 xn yn correct? If these observations are i.i.d., then
indeed the model is correct, as that is all that is being effectively assumed. So we need
to check that the observations are a plausible i.i.d. sample. Because the minimal suffi
cient statistic is given by f11 fab such a test could be based on the conditional
distribution of the sample x1 y1 xn yn given f11 fab The distribution
theory for such tests is computationally difficult to implement, however, and we do not
pursue this topic further in this text.

10.2.2 Deterministic Predictor

Consider again the situation in which X is categorical, taking values in 1 a and
Y is categorical, taking values in 1 b But now suppose that we take a sample

1 n from the population, where we have specified that ni sample members have
the value X i etc. This could be by assignment, when we are trying to determine
whether a cause–effect relationship exists; or we might have a populations 1 a
and want to see whether there is any difference in the distribution of Y between popu
lations. Note that n1 na n

In both cases, we again want to make inferences about the conditional distributions
of Y given X as represented by the following table.

Y 1 Y b
X 1 1 X 1 b X 1

X a 1 X a b X a

A difference in the conditional distributions means there is a relationship between Y
and X If we denote the number of observations in the i th sample that have Y j
by fi j then assuming the sample sizes are small relative to the population sizes, the
likelihood function is given by

L 1 X 1 b X a x1 y1 xn yn

a

i 1

b

j 1
j X i

fi j (10.2.3)
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and the MLE is given by j X i fi j ni (Problem 10.2.18).
There is no relationship between Y and X if and only if the conditional distributions

do not vary as we vary X or if and only if

H0 : j X 1 j X a j

for all j 1 b for some probability distribution 1 b Under H0 the likeli
hood function is given by

L 1 b x1 y1 xn yn

b

j 1

f j
j (10.2.4)

and the MLE of j is given by j f j n (see Problem 10.2.19). Then, applying
Theorem 9.1.2, we have that the statistic

X2
a

i 1

b

j 1

fi j ni j
2

ni j

has an approximate 2 a 1 b 1 distribution under H0 because there are a b 1
free parameters in the full model, b 1 parameters in the independence model, and
a b 1 b 1 a 1 b 1

Consider an example.

EXAMPLE 10.2.2
This example is taken from a famous applied statistics book, Statistical Methods, 6th
ed., by G. Snedecor and W. Cochran (Iowa State University Press, Ames, 1967). In
dividuals were classified according to their blood type Y (O, A, B, and AB, although
the AB individuals were eliminated, as they were small in number) and also classified
according to X their disease status (peptic ulcer = P, gastric cancer = G, or control =
C). So we have three populations; namely, those suffering from a peptic ulcer, those
suffering from gastric cancer, and those suffering from neither. We suppose further
that the individuals involved in the study can be considered as random samples from
the respective populations.

The data are given in the following table.

Y O Y A Y B Total
X P 983 679 134 1796
X G 383 416 84 883
X C 2892 2625 570 6087

The estimated conditional distributions of Y given X are then as follows.

Y O Y A Y B
X P 983 1796 0 547 679 1796 0 378 134 1796 0 075
X G 383 883 0 434 416 883 0 471 84 883 0 095
X C 2892 6087 0 475 2625 6087 0 431 570 6087 0 093
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We now want to assess whether or not there is any evidence for concluding that a
difference exists among these conditional distributions. Under the null hypothesis that
no difference exists, the MLE’s of the probabilities 1 P Y O 2 P Y A ,
and 3 P Y B are given by

1
983 383 2892

1796 883 6087
0 4857

2
679 416 2625

1796 883 6087
0 4244

3
134 84 570

1796 883 6087
0 0899

Then the estimated expected counts ni j are given by the following table.

Y O Y A Y B
X P 872 3172 762 2224 161 4604
X G 428 8731 374 7452 79 3817
X C 2956 4559 2583 3228 547 2213

The standardized residuals (using (9.1.6)) fi j ni j ni 1 j
1 2 are given by

the following table.

Y O Y A Y B
X P 5 2219 3 9705 2 2643
X G 3 0910 2 8111 0 5441
X C 1 659 2 1 0861 1 0227

We have that X2 40 5434 and P 2 4 40 5434 0 0000 so we have strong
evidence against the null hypothesis of no relationship existing between Y and X Ob
serve the large residuals when X P and Y O, Y A.

We are left with examining the conditional distributions to ascertain what form
the relationship between Y and X takes. A useful tool in this regard is to plot the
conditional distributions in bar charts, as we have done in Figure 10.2.1. From this, we
see that the peptic ulcer population has a greater proportion of blood type O than the
other populations.

Y = BY = AY = OY = BY = AY = OY = BY = AY = O

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

X = CX = GX = P

Figure 10.2.1: Plot of the conditional distributions of Y given X in Example 10.2.2.
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10.2.3 Bayesian Formulation

We now add a prior density for the unknown values of the parameters of the models
discussed in Sections 10.2.1 and 10.2.2. Depending on how we choose , and de
pending on the particular computation we want to carry out, we could be faced with
some difficult computational problems. Of course, we have the Monte Carlo methods
available in such circumstances, which can often render a computation fairly straight
forward.

The most common choice of prior in these circumstances is to choose a conjugate
prior. Because the likelihoods discussed in this section are as in Example 7.1.3, we see
immediately that Dirichlet priors will be conjugate for the full model in Section 10.2.1
and that products of independent Dirichlet priors will be conjugate for the full model
in Section 10.2.2.

In Section 10.2.1, the general likelihood — i.e., no restrictions on the i j — is of
the form

L 11 ab x1 y1 xn yn

a

i 1

b

j 1

fi j
i j

If we place a Dirichlet 11 ab prior on the parameter, then the posterior density
is proportional to

a

i 1

b

j 1

fi j i j 1
i j

so the posterior is a Dirichlet f11 11 fab ab distribution.
In Section 10.2.2, the general likelihood is of the form

L 1 X 1 b X a x1 y1 xn yn

a

i 1

b

j 1
j X i

fi j

Because b
j 1 j X i 1 for each i 1 a we must place a prior on each

distribution 1 X i b X i If we choose the prior on the i th distribution to be
Dirichlet 1 i a i , then the posterior density is proportional to

a

i 1

b

j 1

fi j j i 1
j i .

We recognize this as the product of independent Dirichlet distributions, with the poste
rior distribution on 1 X i b X i equal to a

Dirichlet fi1 1 i fib b i

distribution.
A special and important case of the Dirichlet priors corresponds to the situation in

which we feel that we have no information about the parameter. In such a situation, it
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makes sense to choose all the parameters of the Dirichlet to be 1, so that the priors are
all uniform.

There are many characteristics of a Dirichlet distribution that can be evaluated in
closed form, e.g., the expectation of any polynomial (see Problem 10.2.20). But still
there will be many quantities for which exact computations will not be available. It
turns out that we can always easily generate samples from Dirichlet distributions, pro
vided we have access to a generator for beta distributions. This is available with most
statistical packages. We now discuss how to do this.

EXAMPLE 10.2.3 Generating from a Dirichlet 1 k Distribution
The technique we discuss here is a commonly used method for generating from multi
variate distributions. If we want to generate a value of the random vector X1 Xk
then we can proceed as follows. First, generate a value x1 from the marginal distrib
ution of X1 Next, generate a value x2 from the conditional distribution of X2 given
X1 x1 Then generate a value x3 from the conditional distribution of X3 given that
X1 x1 and X2 x2 etc.

If the distribution of X is discrete, then we have that the probability of a particular
vector of values x1 x2 xk arising via this scheme is

P X1 x1 P X2 x2 X1 x1 P Xk xk X1 x1 Xk 1 xk 1

Expanding each of these conditional probabilities, we obtain

P X1 x1
P X1 x1 X2 x2

P X1 x1

P X1 x1 Xk 1 xk 1 Xk xk
P X1 x1 Xk 1 xk 1

which equals P X1 x1 Xk 1 xk 1 Xk xk and so x1 x2 xk is
a value from the joint distribution of X1 Xk This approach also works for ab
solutely continuous distributions, and the proof is the same but uses density functions
instead.

In the case of X1 Xk 1 Dirichlet 1 k we have that (see Chal
lenge 10.2.23) X1 Beta 1 2 k and Xi given X1 x1 Xi 1 xi 1
has the same distribution as 1 x1 xi 1 Ui where

Ui Beta i i 1 k

and U2 Uk 1 are independent Note that Xk 1 X1 Xk 1 for any
Dirichlet distribution So we generate X1 Beta 1 2 k , generate U2
Beta 2 3 k and put X2 1 X1 U2 generate U3 Beta 3 4

k and put X3 1 X1 X2 U3 etc.
Below, we present a table of a sample of n 5 values from a Dirichlet 2 3 1 1 5

distribution.

X1 X2 X3 X4

1 0 116159 0 585788 0 229019 0 069034
2 0 166639 0 566369 0 056627 0 210366
3 0 411488 0 183686 0 326451 0 078375
4 0 483124 0 316647 0 115544 0 084684
5 0 117876 0 147869 0 418013 0 316242

Appendix B contains the code used for this. It can be modified to generate from any
Dirichlet distribution.
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Summary of Section 10.2

In this section, we have considered the situation in which we have a categorical
response variable and a categorical predictor variable.

We distinguished two situations. The first arises when the value of the predictor
variable is not assigned, and the second arises when it is.

In both cases, the test of the null hypothesis that no relationship exists involved
the chisquared test.

EXERCISES

10.2.1 The following table gives the counts of accidents for two successive years in a
particular city.

June July August
Year 1 60 100 80
Year 2 80 100 60

Is there any evidence of a difference in the distribution of accidents for these months
between the two years?
10.2.2 The following data are from a study by Linus Pauling (1971) (“The significance
of the evidence about ascorbic acid and the common cold,” Proceedings of the National
Academy of Sciences, Vol. 68, p. 2678), concerned with examining the relationship
between taking vitamin C and the incidence of colds. Of 279 participants in the study,
140 received a placebo (sugar pill) and 139 received vitamin C.

No Cold Cold
Placebo 31 109
Vitamin C 17 122

Assess the null hypothesis that there is no relationship between taking vitamin C and
the incidence of the common cold.
10.2.3 A simulation experiment is carried out to see whether there is any relationship
between the first and second digits of a random variable generated from a Uniform[0 1]
distribution. A total of 1000 uniforms were generated; if the first and second digits were
in 0 1 2 3 4 they were recorded as a 0, and as a 1 otherwise. The crossclassified
data are given in the following table.

Second digit 0 Second digit 1
First digit 0 240 250
First digit 1 255 255

Assess the null hypothesis that there is no relationship between the digits.
10.2.4 Grades in a firstyear calculus course were obtained for randomly selected stu
dents at two universities and classified as pass or fail. The following data were ob
tained.

Fail Pass
University 1 33 143
University 2 22 263
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Is there any evidence of a relationship between calculus grades and university?

10.2.5 The following data are recorded in Statistical Methods for Research Workers,
by R. A. Fisher (Hafner Press, New York, 1922), and show the classifications of 3883
Scottish children by gender (X and hair color (Y ).

Y fair Y red Y medium Y dark Y jet black
X m 592 119 849 504 36
X f 544 97 677 451 14

(a) Is there any evidence for a relationship between hair color and gender?
(b) Plot the appropriate bar chart(s).
(c) Record the residuals and relate these to the results in parts (a) and (b). What do you
conclude about the size of any deviation from independence?
10.2.6 Suppose we have a controllable predictor X that takes four different values, and
we measure a binaryvalued response Y A random sample of 100 was taken from the
population and the value of X was randomly assigned to each individual in such a way
that there are 25 sample members taking each of the possible values of X Suppose that
the following data were obtained.

X 1 X 2 X 3 X 4
Y 0 12 10 16 14
Y 1 13 15 9 11

(a) Assess whether or not there is any evidence against a cause–effect relationship
existing between X and Y
(b) Explain why it is possible in this example to assert that any evidence found that a
relationship exists is evidence that a cause–effect relationship exists.
10.2.7 Write out in full how you would generate a value from a Dirichlet 1 1 1 1
distribution.
10.2.8 Suppose we have two categorical variables defined on a population and we
conduct a census. How would you decide whether or not a relationship exists between
X and Y ? If you decided that a relationship existed, how would you distinguish between
a strong and a weak relationship?
10.2.9 Suppose you simultaneously roll two dice n times and record the outcomes.
Based on these values, how would you assess the null hypothesis that the outcome on
each die is independent of the outcome on the other?

10.2.10 Suppose a professor wants to assess whether or not there is any difference
in the final grade distributions (A, B, C, D, and F) between males and females in a
particular class. To assess the null hypothesis that there is no difference between these
distributions, the professor carries out a chisquared test.
(a) Discuss how the professor carried out this test.
(b) If the professor obtained evidence against the null hypothesis, discuss what con
cerns you have over the use of the chisquared test.
10.2.11 Suppose that a chisquared test is carried out, based on a random sample of
n from a population, to assess whether or not two categorical variables X and Y are
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independent. Suppose the Pvalue equals 0.001 and the investigator concludes that
there is evidence against independence. Discuss how you would check to see if the
deviation from independence was of practical significance.

PROBLEMS

10.2.12 In Example 10.2.1, place a uniform prior on the parameters (a Dirichlet distri
bution with all parameters equal to 1) and then determine the posterior distribution of
the parameters.

10.2.13 In Example 10.2.2, place a uniform prior on the parameters of each population
(a Dirichlet distribution with all parameters equal to 1) and such that the three priors
are independent. Then determine the posterior distribution.
10.2.14 In a 2 2 table with probabilities i j prove that the row and column variables
are independent if and only if

11 22

12 21
1

namely, we have independence if and only if the crossratio equals 1.
10.2.15 Establish that the likelihood in (10.2.1) is correct when the population size is
infinite (or when we are sampling with replacement from the population).
10.2.16 (MV) Prove that the MLE of 11 ab in (10.2.1) is given by i j
fi j n Assume that fi j 0 for every i j (Hint: Use the facts that a continuous
function on this parameter space must achieve its maximum at some point in
and that, if the function is continuously differentiable at such a point, then all its first
order partial derivatives are zero there. This will allow you to conclude that the unique
solution to the score equations must be the point where the loglikelihood is maximized.
Try the case where a 2 b 2 first.)
10.2.17 (MV) Prove that the MLE of 1 a 1 b in (10.2.2) is given
by i fi n and j f j n Assume that fi 0 f j 0 for every i j (Hint:
Use the hint in Problem 10.2.16.)

10.2.18 (MV) Prove that the MLE of 1 X 1 b X a in (10.2.3) is given by

j X i fi j ni Assume that fi j 0 for every i j . (Hint: Use the hint in Problem
10.2.16.)

10.2.19 (MV) Prove that the MLE of 1 b in (10.2.4) is given by j f j n.
Assume that f j 0 for every i j (Hint: Use the hint in Problem 10.2.16.)
10.2.20 Suppose that X X1 Xk 1 Dirichlet 1 k . Determine
E X l1

1 X lk
k in terms of the gamma function, when li 0 for i 1 k.

COMPUTER PROBLEMS

10.2.21 Suppose that 1 2 3 4 Dirichlet 1 1 1 1 as in Exercise 10.2.7.
Generate a sample of size N 104 from this distribution and use this to estimate the
expectations of the i . Compare these estimates with their exact values. (Hint: There
is some relevant code in Appendix B for the generation; see Appendix C for formulas
for the exact values of these expectations.)
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10.2.22 For Problem 10.2.12, generate a sample of size N 104 from the posterior
distribution of the parameters and use this to estimate the posterior expectations of the
cell probabilities. Compare these estimates with their exact values. (Hint: There is
some relevant code in Appendix B for the generation; see Appendix C for formulas for
the exact values of these expectations.)

CHALLENGES

10.2.23 (MV) Establish the validity of the method discussed in Example 10.2.3 for
generating from a Dirichlet 1 k distribution.

10.3 Quantitative Response and Predictors
When the response and predictor variables are all categorical, it can be difficult to for
mulate simple models that adequately describe the relationship between the variables.
We are left with recording the conditional distributions and plotting these in bar charts.
When the response variable is quantitative, however, useful models have been formu
lated that give a precise mathematical expression for the form of the relationship that
may exist. We will study these kinds of models in the next three sections. This section
concentrates on the situation in which all the variables are quantitative.

10.3.1 The Method of Least Squares

The method of least squares is a general method for obtaining an estimate of a distribu
tion mean. It does not require specific distributional assumptions and so can be thought
of as a distributionfree method (see Section 6.4).

Suppose we have a random variable Y and we want to estimate E Y based on a
sample y1 yn The following principle is commonly used to generate estimates.

The leastsquares principle says that we select the point t y1 yn
in the set of possible values for E Y that minimizes the sum of squared
deviations (hence, “least squares”) given by n

i 1 yi t y1 yn
2

Such an estimate is called a leastsquares estimate.

Note that a leastsquares estimate is defined for every sample size, even n 1
To implement least squares, we must find the minimizing point t y1 yn . Per

haps a first guess at this value is the sample average y Because n
i 1 yi y y

t y1 yn y t y1 yn
n
i 1 yi ny 0 we have

n

i 1

yi t y1 yn
2

n

i 1

yi y y t y1 yn
2

n

i 1

yi y 2 2
n

i 1

yi y y t y1 yn

n

i 1

y t y1 yn
2

n

i 1

yi y 2 n y t y1 yn
2 (10.3.1)
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Therefore, the smallest possible value of (10.3.1) is n
i 1 yi y2 and this is assumed

by taking t y1 yn y Note, however, that y might not be a possible value for
E Y and that, in such a case, it will not be the leastsquares estimate In general,
(10.3.1) says that the leastsquares estimate is the value t y1 yn that is closest to
y and is a possible value for E Y .

Consider the following example.

EXAMPLE 10.3.1
Suppose that Y has one of the distributions on S 0 1 given in the following table.

y 0 y 1
p1 y 1 2 1 2
p2 y 1 3 2 3

Then the mean of Y is given by

E1 Y 0
1

2
1

1

2

1

2
or E2 Y 0

1

3
1

2

3

2

3
.

Now suppose we observe the sample 0 0 1 1 1 and so y 3 5 Because the
possible values for E Y are in 1 2 2 3 we see that t 0 0 1 1 1 2 3 because
3 5 2 3 2 0 004 while 3 5 1 2 2 0 01

Whenever the set of possible values for E Y is an interval a b however, and
P Y a b 1 then y a b This implies that y is the leastsquares estimator
of E Y So we see that in quite general circumstances, y is the leastsquares estimate.

There is an equivalence between least squares and the maximum likelihood method
when we are dealing with normal distributions.

EXAMPLE 10.3.2 Least Squares with Normal Distributions
Suppose that y1 yn is a sample from an N 2

0 distribution, where is un
known. Then the MLE of is obtained by finding the value of that maximizes

L y1 yn exp
n

2 2
0

y 2

Equivalently, the MLE maximizes the loglikelihood

l y1 yn
n

2 2
0

y 2

So we need to find the value of that minimizes y 2 just as with least squares
In the case of the normal location model, we see that the leastsquares estimate and

the MLE of agree. This equivalence is true in general for normal models (e.g., the
locationscale normal model), at least when we are considering estimates of location
parameters.

Some of the most important applications of least squares arise when we have that
the response is a random vector Y Y1 Yn Rn (the prime indicates that
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we consider Y as a column), and we observe a single observation y y1 yn
Rn The expected value of Y Rn is defined to be the vector of expectations of its
component random variables, namely,

E Y

E Y1

E Yn

Rn

The leastsquares principle then says that, based on the single observation y y1
yn , we must find

t y t y1 yn t1 y1 yn tn y1 yn

in the set of possible values for E Y (a subset of Rn), that minimizes

n

i 1

yi ti y1 yn
2 (10.3.2)

So t y is the possible value for E Y that is closest to y as the squared distance
between two points x y Rn is given by n

i 1 xi yi
2.

As is common in statistical applications, suppose that there are predictor variables
that may be related to Y and whose values are observed. In this case, we will replace
E Y by its conditional mean, given the observed values of the predictors. The least
squares estimate of the conditional mean is then the value t y1 yn in the set of
possible values for the conditional mean of Y that minimizes (10.3.2). We will use this
definition in the following sections.

Finding the minimizing value of t y in (10.3.2) can be a challenging optimization
problem when the set of possible values for the mean is complicated. We will now
apply least squares to some important problems where the leastsquares solution can
be found in closed form.

10.3.2 The Simple Linear Regression Model

Suppose we have a single quantitative response variable Y and a single quantitative
predictor X e.g., Y could be blood pressure measured in pounds per square inch and
X could be age in years. To study the relationship between these variables, we examine
the conditional distributions of Y given X x to see how these change as we change
x

We might choose to examine a particular characteristic of these distributions to see
how it varies with x Perhaps the most commonly used characteristic is the conditional
mean of Y given X x or E Y X x (see Section 3.5).

In the regression model (see Section 10.1), we assume that the conditional distrib
utions have constant shape and that they change, as we change x at most through the
conditional mean. In the simple linear regression model, we assume that the only way
the conditional mean can change is via the relationship

E Y X x 1 2x
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for some unknown values of 1 R1 (the intercept term) and 2 R1 (the slope
coefficient). We also refer to 1 and 2 as the regression coefficients.

Suppose we observe the independent values x1 y1 xn yn for X Y Then,
using the simple linear regression model, we have that

E

Y1

Yn

X1 x1 Xn xn

1 2x1

1 2xn

. (10.3.3)

Equation (10.3.3) tells us that the conditional expected value of the response
Y1 Yn is in a particular subset of Rn Furthermore, (10.3.2) becomes

n

i 1

yi ti y 2
n

i 1

yi 1 2xi
2 (10.3.4)

and we must find the values of 1 and 2 that minimize (10.3.4). These values are
called the leastsquares estimates of 1 and 2.

Before we show how to do this, consider an example.

EXAMPLE 10.3.3
Suppose we obtained the following n 10 data points xi yi .

3 9 8 9 2 6 7 1 2 4 4 6 4 1 10 7 0 2 1 0
5 4 12 6 0 6 3 3 5 6 10 4 1 1 2 3 2 1 1 6

In Figure 10.3.1, we have plotted these points together with the line y 1 x

505

10

0

10

x

y

Figure 10.3.1: A plot of the data points xi yi (+) and the line y 1 x in Example 10.3.3.

Notice that with 1 1 and 2 1 then

yi 1 2xi
2 yi 1 xi

2
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is the squared vertical distance between the point xi yi and the point on the line with
the same x value. So (10.3.4) is the sum of these squared deviations and in this case
equals

8 9 1 3 9 2 7 1 1 2 6 2 1 6 1 2 1 2 141 15

If 1 1 and 2 1 were the leastsquares estimates, then 141.15 would be equal to
the smallest possible value of (10.3.4). In this case, it turns out (see Example 10.3.4)
that the leastsquares estimates are given by the values 1 1 33 2 2 06, and the
minimized value of (10.3.4) is given by 8 46 which is much smaller than 141 15

So we see that, in finding the leastsquares estimates, we are in essence finding
the line 1 2x that best fits the data, in the sense that the sum of squared vertical
deviations of the observed points to the line is minimized.

Scatter Plots

As part of Example 10.3.3, we plotted the points x1 y1 xn yn in a graph. This
is called a scatter plot, and it is a recommended first step as part of any analysis of the
relationship between quantitative variables X and Y . A scatter plot can give us a very
general idea of whether or not a relationship exists and what form it might take.

It is important to remember, however, that the appearance of such a plot is highly
dependent on the scales we choose for the axes. For example, we can make a scatter
plot look virtually at (and so indicate that no relationship exists) by choosing to place
too wide a range of tick marks on the yaxis. So we must always augment a scatter plot
with a statistical analysis based on numbers.

LeastSquares Estimates, Predictions, and Standard Errors

For the simple linear regression model, we can work out exact formulas for the least
squares estimates of 1and 2

Theorem 10.3.1 Suppose that E Y X x 1 2x and we observe the inde
pendent values x1 y1 xn yn for X Y Then the leastsquares estimates
of 1 and 2 are given by

b1 y b2x and b2

n
i 1 xi x yi y

n
i 1 xi x 2

respectively, whenever n
i 1 xi x 2 0

PROOF The proof of this result can be found in Section 10.6.

We call the line y b1 b2x the leastsquares line, or bestfitting line, and b1 b2x
is the leastsquares estimate of E Y X x . Note that n

i 1 xi x 2 0 if and
only if x1 xn . In such a case we cannot use least squares to estimate 1 and

2 although we can still estimate E Y X x (see Problem 10.3.19).
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Now that we have estimates b1 b2 of the regression coefficients, we want to use
these for inferences about 1 and 2 These estimates have the unbiasedness property.

Theorem 10.3.2 If E Y X x 1 2x and we observe the independent
values x1 y1 xn yn for X Y then

(i) E B1 X1 x1 Xn xn 1

(ii) E B2 X1 x1 Xn xn 2.

PROOF The proof of this result can be found in Section 10.6.

Note that Theorem 10.3.2 and the theorem of total expectation imply that E B1 1
and E B2 2 unconditionally as well.

Adding the assumption that the conditional variances exist, we have the following
theorem.

Theorem 10.3.3 If E Y X x 1 2x Var Y X x 2 for every x
and we observe the independent values x1 y1 xn yn for X Y then

(i) Var B1 X1 x1 Xn xn
2 1 n x2 n

i 1 xi x 2

(ii) Var B2 X1 x1 Xn xn
2 n

i 1 xi x 2

(iii) Cov B1 B2 X1 x1 Xn xn
2x n

i 1 xi x 2

PROOF See Section 10.6 for the proof of this result.

For the leastsquares estimate b1 b2x of the mean E Y X x 1 2x , we
have the following result.

Corollary 10.3.1

Var B1 B2x X1 x1 Xn xn
2 1

n

x x 2

n
i 1 xi x 2

(10.3.5)

PROOF See Section 10.6 for the proof of this result.

A natural predictor of a future value of Y when X x is given by the conditional
mean E Y X x 1 2x Because we do not know the values of 1and 2 we
use the estimated mean b1 b2x as the predictor.

When we are predicting Y at an x value that lies within the range of the observed
values of X , we refer to this as an interpolation. When we want to predict at an x
value that lies outside this range, we refer to this as an extrapolation. Extrapolations
are much less reliable than interpolations. The farther away x is from the observed
range of X values, then, intuitively, the less reliable we feel such a prediction will be.
Such considerations should always be borne in mind. From (10.3.5), we see that the
variance of the prediction at the value X x increases as x moves away from x So to
a certain extent, the standard error does reect this increased uncertainty, but note that
its form is based on the assumption that the simple linear regression model is correct.
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Even if we accept the simple linear regression model based on the observed data (we
will discuss model checking later in this section), this model may fail to apply for very
different values of x and so the predictions would be in error.

We want to use the results of Theorem 10.3.3 and Corollary 10.3.1 to calculate
standard errors of the leastsquares estimates. Because we do not know 2 however,
we need an estimate of this quantity as well. The following result shows that

s2 1

n 2

n

i 1

yi b1 b2xi
2 (10.3.6)

is an unbiased estimate of 2.

Theorem 10.3.4 If E Y X x 1 2x Var Y X x 2 for every x
and we observe the independent values x1 y1 xn yn for X Y , then

E S2 X1 x1 Xn xn
2

PROOF See Section 10.6 for the proof of this result.

Therefore, the standard error of b1 is then given by

s
1

n

x2

n
i 1 xi x 2

1 2

,

and the standard error of b2 is then given by

s
n

i 1

xi x 2
1 2

.

Under further assumptions, these standard errors can be interpreted just as we inter
preted standard errors of estimates of the mean in the location and locationscale nor
mal models.

EXAMPLE 10.3.4 (Example 10.3.3 continued)
Using the data in Example 10.3.3 and the formulas of Theorem 10.3.1, we obtain b1
1 33 b2 2 06 as the leastsquares estimates of the intercept and slope, respectively.
So the leastsquares line is given by 1 33 2 06x Using (10.3.6), we obtain s2 1 06
as the estimate of 2

Using the formulas of Theorem 10.3.3, the standard error of b1 is 0 3408, while the
standard error of b2 is 0 1023

The prediction of Y at X 2 0 is given by 1 33 2 06 2 5 45 Using Corollary
10.3.1, this estimate has standard error 0 341 This prediction is an interpolation.

The ANOVA Decomposition and the FStatistic

The following result gives a decomposition of the total sum of squares n
i 1 yi y 2.
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Lemma 10.3.1 If x1 y1 xn yn are such that n
i 1 xi x 2 0 then

n

i 1

yi y 2 b2
2

n

i 1

xi x 2
n

i 1

yi b1 b2xi
2.

PROOF The proof of this result can be found in Section 10.6.

We refer to

b2
2

n

i 1

xi x 2

as the regression sum of squares (RSS) and refer to

n

i 1

yi b1 b2xi
2

as the error sum of squares (ESS).
If we think of the total sum of squares as measuring the total observed variation in

the response values yi , then Lemma 10.3.1 provides a decomposition of this variation
into the RSS, measuring changes in the response due to changes in the predictor, and
the ESS, measuring changes in the response due to the contribution of random error.

It is common to write this decomposition in an analysis of variance table (ANOVA).

Source Df Sum of Squares Mean Square
X 1 b2

2
n
i 1 xi x 2 b2

2
n
i 1 xi x 2

Error n 2 n
i 1 yi b1 b2xi

2 s2

Total n 1 n
i 1 yi y 2

Here, Df stands for degrees of freedom (we will discuss how the Df entries are cal
culated in Section 10.3.4). The entries in the Mean Square column are calculated by
dividing the corresponding sum of squares by the Df entry.

To see the significance of the ANOVA table, note that, from Theorem 10.3.3,

E B2
2

n

i 1

xi x 2 X1 x1 Xn xn
2 2

2

n

i 1

xi x 2 (10.3.7)

which is equal to 2 if and only if 2 0 (we are always assuming here that the xi
vary). Given that the simple linear regression model is correct, we have that 2 0 if
and only if there is no relationship between the response and the predictor. Therefore,
b2

2
n
i 1 xi x 2 is an unbiased estimator of 2 if and only if 2 0 Because s2

is always an unbiased estimate of 2 (Theorem 10.3.4), a sensible statistic to use in
assessing H0 : 2 0, is given by

F
RSS

ESS n 2

b2
2

n
i 1 xi x 2

s2
, (10.3.8)
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as this is the ratio of two unbiased estimators of 2 when H0 is true. We then conclude
that we have evidence against H0 when F is large, as (10.3.7) also shows that the
numerator will tend to be larger than 2 when H0 is false. We refer to (10.3.8) as the
Fstatistic. We will subsequently discuss the sampling distribution of F to see how to
determine when the value F is so large as to be evidence against H0.

EXAMPLE 10.3.5 (Example 10.3.3 continued)
Using the data of Example 10.3.3, we obtain

n

i 1

yi y 2 437 01

b2
2

n

i 1

xi x 2 428 55

n

i 1

yi b1 b2xi
2 437 01 428 55 8 46

and so

F
b2

2
n
i 1 xi x 2

s2

428 55

1 06
404 29

Note that F is much bigger than 1, and this seems to indicate a linear effect due to X .

The Coefficient of Determination and Correlation

Lemma 10.3.1 implies that

R2 b2
2

n
i 1 xi x 2

n
i 1 yi y 2

satisfies 0 R2 1 Therefore, the closer R2 is to 1, the more of the observed total
variation in the response is accounted for by changes in the predictor. In fact, we
interpret R2 called the coefficient of determination, as the proportion of the observed
variation in the response explained by changes in the predictor via the simple linear
regression.

The coefficient of determination is an important descriptive statistic, for, even if
we conclude that a relationship does exist, it can happen that most of the observed
variation is due to error. If we want to use the model to predict further values of the
response, then the coefficient of determination tells us whether we can expect highly
accurate predictions or not. A value of R2 near 1 means highly accurate predictions,
whereas a value near 0 means that predictions will not be very accurate.

EXAMPLE 10.3.6 (Example 10.3.3 continued)
Using the data of Example 10.3.3, we obtain R2 0 981 Therefore, 98.1% of the ob
served variation in Y can be explained by the changes in X through the linear relation.
This indicates that we can expect fairly accurate predictions when using this model, at
least when we are predicting within the range of the observed X values.
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Recall that in Section 3.3, we defined the correlation coefficient between random
variables X and Y to be

XY Corr X Y
Cov X Y

Sd X Sd Y
.

In Corollary 3.6.1, we proved that 1 XY 1 with XY 1 if and only if
Y a cX for some constants a R1 and c 0 So XY can be taken as a measure
of the extent to which a linear relationship exists between X and Y

If we do not know the joint distribution of X Y then we will have to estimate

XY Based on the observations x1 y1 xn yn the natural estimate to use is
the sample correlation coefficient

rxy
sxy

sx sy

where

sxy
1

n 1

n

i 1

xi x yi y

is the sample covariance estimating Cov X Y , and sx sy are the sample standard
deviations for the X and Y variables, respectively. Then 1 rxy 1 with rxy 1
if and only if yi a cxi for some constants a R1 and c 0 for every i (the proof
is the same as in Corollary 3.6.1 using the joint distribution that puts probability mass
1 n at each point xi yi — see Problem 3.6.16).

The following result shows that the coefficient of determination is the square of the
correlation between the observed X and Y values.

Theorem 10.3.5 If x1 y1 xn yn are such that n
i 1 xi x 2 0

n
i 1 yi y 2 0 then R2 r2

xy .

PROOF We have

r2
xy

n
i 1 xi x yi y 2

n
i 1 xi x 2 n

i 1 yi y 2 b2
2

n
i 1 xi x 2

n
i 1 yi y 2 R2

where we have used the formula for b2 given in Theorem 10.3.1.

Confidence Intervals and Testing Hypotheses

We need to make some further assumptions in order to discuss the sampling distribu
tions of the various statistics that we have introduced. We have the following results.
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Theorem 10.3.6 If Y , given X x , is distributed N 1 2x 2 and we ob
serve the independent values x1 y1 xn yn for X Y , then the conditional
distributions of B1 B2 and S2 given X1 x1 Xn xn are as follows.

(i) B1 N 1
2 1 n x2 n

i 1 xi x 2

(ii) B2 N 2
2 n

i 1 xi x 2

(iii) B1 B2x N 1 2x 2 1 n x x 2 n
i 1 xi x 2

(iv) n 2 S2 2 2 n 2 independent of B1 B2

PROOF The proof of this result can be found in Section 10.6.

Corollary 10.3.2
(i) B1 1 S 1 n x2 n

i 1 xi x 2 1 2 t n 2

(ii) B2 2
n
i 1 xi x 2 1 2 S t n 2

(iii)
B1 B2x 1 2x

S 1 n x x 2 n
i 1 xi x 2 1 2

t n 2

(iv) If F is defined as in (10.3.8), then H0 : 2 0 is true if and only if F
F 1 n 2 .

PROOF The proof of this result can be found in Section 10.6.

Using Corollary 10.3.2(i), we have that

b1 s 1 n x2
n

i 1

xi x 2
1 2

t 1 2 n 2

is an exact confidence interval for 1. Also, from Corollary 10.3.2(ii),

b2 s
n

i 1

xi x 2
1 2

t 1 2 n 2

is an exact confidence interval for 2.
From Corollary 10.3.2(iv), we can test H0 : 2 0 by computing the Pvalue

P F
b2

2
n
i 1 xi x 2

s2 , (10.3.9)

where F F 1 n 2 , to see whether or not the observed value (10.3.8) is surprising.
This is sometimes called the ANOVA test. Note that Corollary 10.3.2(ii) implies that
we can also test H0 : 2 0 by computing the Pvalue

P T
b2

n
i 1 xi x 2 1 2

s
, (10.3.10)
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where T t n 2 . The proof of Corollary 10.3.2(iv) reveals that (10.3.9) and
(10.3.10) are equal.

EXAMPLE 10.3.7 (Example 10.3.3 continued)
Using software or Table D.4, we obtain t0 975 8 2 306 Then, using the data of
Example 10.3.3, we obtain a 0.95confidence interval for 1 as

b1 s 1 n x2
n

i 1

xi x 2
1 2

t 1 2 n 2

1 33 0 3408 2 306 [0 544 2 116]

and a 0.95confidence interval for 2 as

b2 s
n

i 1

xi x 2
1 2

t 1 2 n 2

2 06 0 1023 2 306 [1 824 2 296]

The 0.95confidence interval for 2 does not include 0, so we have evidence against
the null hypothesis H0 : 2 0 and conclude that there is evidence of a relationship
between X and Y This is confirmed by the Ftest of this null hypothesis, as it gives the
Pvalue P F 404 29 0 000 when F F 1 8

Analysis of Residuals

In an application of the simple regression model, we must check to make sure that
the assumptions make sense in light of the data we have collected. Model checking is
based on the residuals yi b1 b2xi (after standardization), as discussed in Section
9.1. Note that the i th residual is just the difference between the observed value yi at xi
and the predicted value b1 b2xi at xi .

From the proof of Theorem 10.3.4, we have the following result.

Corollary 10.3.3
(i) E Yi B1 B2xi X1 x1 Xn xn 0

(ii) Var Yi B1 B2xi X1 x1 Xn xn
2 1 1

n
xi x 2

n
i 1 xi x 2

This leads to the definition of the i th standardized residual as

yi b1 b2xi

s 1 1
n xi x 2 n

j 1 x j x
2 1 2 . (10.3.11)

Corollary 10.3.3 says that (10.3.11), with replacing s is a value from a distri
bution with conditional mean 0 and conditional variance 1. Furthermore, when the
conditional distribution of the response given the predictors is normal, then the con
ditional distribution of this quantity is N 0 1 (see Problem 10.3.21). These results
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are approximately true for (10.3.11) for large n. Furthermore, it can be shown (see
Problem 10.3.20) that

Cov Yi B1 B2xi Y j B1 B2x j X1 x1 Xn xn

2 1

n

xi x x j x
n
k 1 xk x 2

.

Therefore, under the normality assumption, the residuals are approximately indepen
dent when n is large and

xi x

n
k 1 xk x 2

0

as n This will be the case whenever Var X is finite (see Challenge 10.3.27)
or, in the design context, when the values of the predictor are chosen accordingly. So
one approach to model checking here is to see whether the values given by (10.3.11)
look at all like a sample from the N 0 1 distribution. For this, we can use the plots
discussed in Chapter 9.

EXAMPLE 10.3.8 (Example 10.3.3 continued)
Using the data of Example 10.3.3, we obtain the following standardized residuals.

0 49643 0 43212 1 73371 1 00487 0 08358
0 17348 0 75281 0 28430 1 43570 1 51027

These are plotted against the predictor x in Figure 10.3.2.
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Figure 10.3.2: Plot of the standardized residuals in Example 10.3.8.

It is recommended that we plot the standardized residuals against the predictor, as
this may reveal some underlying relationship that has not been captured by the model.
This residual plot looks reasonable. In Figure 10.3.3, we have a normal probability plot
of the standardized residuals. These points lie close to the line through the origin with
slope equal to 1, so we conclude that we have no evidence against the model here.
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Figure 10.3.3: Normal probability plot of the standardized residuals in Example 10.3.8.

What do we do if model checking leads to a failure of the model? As discussed
in Chapter 9, perhaps the most common approach is to consider making various trans
formations of the data to see whether there is a simple modification of the model that
will pass. We can make transformations, not only to the response variable Y but to the
predictor variable X as well.

An Application of Simple Linear Regression Analysis

The following data set is taken from Statistical Methods, 6th ed., by G. Snedecor and
W. Cochran (Iowa State University Press, Ames, 1967) and gives the record speed Y
in miles per hour at the Indianapolis Memorial Day car races in the years 1911–1941,
excepting the years 1917–1918. We have coded the year X starting at 0 in 1911 and
incrementing by 1 for each year. There are n 29 data points xi yi The goal of
the analysis is to obtain the leastsquares line and, if warranted, make inferences about
the regression coefficients. We take the normal simple linear regression model as our
statistical model. Note that this is an observational study.

Year Speed Year Speed Year Speed
0 74.6 12 91.0 22 104.2
1 78.7 13 98.2 23 104.9
2 75.9 14 101.1 24 106.2
3 82.5 15 95.9 25 109.1
4 89.8 16 97.5 26 113.6
5 83.3 17 99.5 27 117.2
8 88.1 18 97.6 28 115.0
9 88.6 19 100.4 29 114.3

10 89.6 20 96.6 30 115.1
11 94.5 21 104.1

Using Theorem 10.3.1, we obtain the leastsquares line as y 77 5681 1 27793x
This line, together with a scatter plot of the values xi yi is plotted in Figure 10.3.4.
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The fit looks quite good, but this is no guarantee of model correctness, and we must
carry out some form of model checking.

Figure 10.3.5 is a plot of the standardized residuals against the predictor. This plot
looks reasonable, with no particularly unusual pattern apparent. Figure 10.3.6 is a nor
mal probability plot of the standardized residuals. The curvature in the center might
give rise to some doubt about the normality assumption. We generated a few samples
of n 29 from an N 0 1 distribution, however, and looking at the normal probabil
ity plots (always recommended) reveals that this is not much cause for concern. Of
course, we should also carry out model checking procedures based upon the standard
ized residuals and using Pvalues, but we do not pursue this topic further here.
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Figure 10.3.4: A scatter plot of the data together with a plot of the leastsquares line.
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Figure 10.3.5: A plot of the standardized residuals against the predictor.
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Figure 10.3.6: A normal probability plot of the standardized residuals.

Based on the results of our model checking, we decide to proceed to inferences
about the regression coefficients. The estimates and their standard errors are given in
the following table, where we have used the estimate of 2 given by s2 2 999 2,
to compute the standard errors. We have also recorded the tstatistics appropriate for
testing each of the hypotheses H0 : 1 0 and H0 : 2 0

Coefficient Estimate Standard Error tstatistic

1 77 568 1 118 69 39

2 1 278 0 062 20 55

From this, we see that the Pvalue for assessing H0 : 2 0 is given by

P T 20 55 0 000

when T t 27 , and so we have strong evidence against H0 It seems clear that there
is a strong positive relationship between Y and X . Since the 0.975 point of the t 27
distribution equals 2 0518 a 0.95confidence interval for 2 is given by

1 278 0 062 2 0518 [1 1508 1 4052] .

The ANOVA decomposition is given in the following table.

Source Df Sum of Squares Mean Square
Regression 1 3797 0 3797 0
Error 27 242 8 9 0
Total 28 4039 8

Accordingly, we have that F 3797 0 9 0 421 888 and, as F F 1 27 when
H0 : 2 0 is true, P F 421 888 0 000 which simply confirms (as it must)
what we got from the preceding ttest.

The coefficient of determination is given by R2 3797 0 4039 8 0 94 There
fore, 94% of the observed variation in the response variable can be explained by the
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changes in the predictor through the simple linear regression. The value of R2 indicates
that the fitted model will be an excellent predictor of future values, provided that the
value of X that we want to predict at is in the range (or close to it) of the values of X
used to fit the model.

10.3.3 Bayesian Simple Linear Model (Advanced)

For the Bayesian formulation of the simple linear regression model with normal error,
we need to add a prior distribution for the unknown parameters of the model, namely,

1 2 and 2 There are many possible choices for this. A relevant prior is dependent
on the application.

To help simplify the calculations, we reparameterize the model as follows. Let
1 1 2x and 2 2 It is then easy to show (see Problem 10.3.24) that

n

i 1

yi 1 2xi
2

n

i 1

yi 1 2 xi x 2

n

i 1

yi y 1 y 2 xi x 2

n

i 1

yi y 2 n 1 y 2 2
2

n

i 1

xi x 2

2 2

n

i 1

xi x yi y (10.3.12)

The likelihood function, using this reparameterization, then equals

2 2
n 2

exp
1

2 2

n

i 1

yi 1 2 xi x 2

From (10.3.12), and setting

c2
x

n

i 1

xi x 2

c2
y

n

i 1

yi y 2

cxy

n

i 1

xi x yi y

we can write this as
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2 2
n 2

exp
c2

y

2 2 exp
n

2 2 1 y 2

exp
1

2 2
2
2c2

x 2 2cxy

2 2
n 2

exp
c2

y c2
xa2

2 2 exp
n

2 2 1 y 2

exp
c2

x

2 2 2 a 2 ,

where the last equality follows from 2
2c2

x 2 2cxy c2
x 2 a 2 c2

x a2 with a
cxy /c2

x
This implies that, whenever the prior distribution on 1 2 is such that 1 and

2 are independent given 2 then the posterior distributions of 1 and 2 are also
independent given 2 Note also that y and a are the leastsquares estimates (as well
as the MLE’s) of 1 and 2 respectively (see Problem 10.3.24).

Now suppose we take the prior to be

1 2
2 N 1

2
1

2

2
2 N 2

2
2

2

1 2 Gamma

Note that 1 and 2 are independent given 2

As it turns out, this prior is conjugate, so we can easily determine an exact form for
the posterior distribution (see Problem 10.3.25). The joint posterior of 1 2 1 2

is given by

1 2
2 N n

1
2
1

1

ny 1
2
1

n
1
2
1

1
2 ,

2
2 N c2

x
1
2
2

1

c2
xa 2

2
2

c2
x

1
2
2

1
2 ,

1
2

Gamma
n

2 xy ,

where

xy
1

2

c2
y c2

x a2 ny2
2
1
2
1

n 1
2
1

1

ny 1
2
1

2

c2
x a2

2
2
2
2

c2
x

1
2
2

1

c2
xa 2

2
2

2 .
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Of course, we must select the values of the hyperparameters 1 1 2 2 and
to fully specify the prior.

Now observe that for a diffuse analysis, i.e., when we have little or no prior infor
mation about the parameters, we let 1 2 and 0 and the posterior
converges to

1 2
2 N y 2 n

2
2 N a 2 c2

x

1 2 Gamma n 2 xy

where xy 1 2 c2
y c2

xa2 . But this still leaves us with the necessity of choosing
the hyperparameter . We will see, however, that this choice has only a small effect on
the analysis when n is not too small.

We can easily work out the marginal posterior distribution of the i For example,
in the diffuse case, the marginal posterior density of 2 is proportional to

0

1
2

1 2

exp
c2

x

2 2 2 a 2 1
2

n 2 1

exp
xy
2 d

1
2

0

1
2

n 2 1 2

exp xy
c2

x

2
2 a 2 1

2 d
1
2 .

Making the change of variable 1 2 where

xy
c2

x

2
2 a 2 1

2

in the preceding integral, shows that the marginal posterior density of 2 is proportional
to

1
c2

x

2 xy
2 a 2

n 1 2

0

n 2 1 2 exp d

which is proportional to

1
c2

x

2 xy
2 a 2

2 n 1 2

.

This establishes (see Problem 4.6.17) that the posterior distribution of 2 is specified
by

2 n 2 a

2 xy c2
x

t 2 n

So a HPD (highest posterior density) interval for 2 is given by

a
1

2 n

2 xy

c2
x

t 1 2 2 n
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Note that these intervals will not change much as we change provided that n is not
too small.

We consider an application of a Bayesian analysis for such a model.

EXAMPLE 10.3.9 Haavelmo’s Data on Income and Investment
The data for this example were taken from An Introduction to Bayesian Inference in
Econometrics, by A. Zellner (Wiley Classics, New York, 1996). The response variable
Y is income in U.S. dollars per capita (deated), and the predictor variable X is invest
ment in dollars per capita (deated) for the United States for the years 1922–1941. The
data are provided in the following table.

Year Income Investment Year Income Investment
1922 433 39 1932 372 22
1923 483 60 1933 381 17
1924 479 42 1934 419 27
1925 486 52 1935 449 33
1926 494 47 1936 511 48
1927 498 51 1937 520 51
1928 511 45 1938 477 33
1929 534 60 1939 517 46
1930 478 39 1940 548 54
1931 440 41 1941 629 100

In Figure 10.3.7, we present a normal probability plot of the standardized residuals,
obtained via a leastsquares fit. In Figure 10.3.8, we present a plot of the standardized
residuals against the predictor. Both plots indicate that the model assumptions are
reasonable.

Suppose now that we analyze these data using the limiting diffuse prior with 2
Here, we have that y 483 c2

y 64993 c2
x 5710 55 and cxy 17408 3 so that

a 17408 3 5710 55 3 05 and xy 64993 17408 3 2 23792 35 The
posterior is then given by

1 2
2 N 483 2 20

2
2 N 3 05 2 5710 55

1 2 Gamma 12 23792 35

The primary interest here is in the investment multiplier 2 By the above results, a
0.95HPD interval for 2, using t0 975 24 2 0639 is given by

a
1

2 n

2 xy

r2
x

t 1 2 2 n 1

3 05
1

24

2 23792 35

5710 55
t0 975 24 3 05 0 589 2 0639

1 834 4 266
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Figure 10.3.7: Normal probability plot of the standardized residuals in Example 10.3.9.
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Figure 10.3.8: Plot of the standardized residuals against the predictor in Example 10.3.9.

10.3.4 The Multiple Linear Regression Model (Advanced)

We now consider the situation in which we have a quantitative response Y and quanti
tative predictors X1 Xk For the regression model, we assume that the conditional
distributions of Y given the predictors, have constant shape and that they change, as the
predictors change, at most through the conditional mean E Y X1 x1 Xk xk .
For the linear regression model, we assume that this conditional mean is of the form

E Y X1 x1 Xk xk 1x1 k xk (10.3.13)

This is linear in the unknown i R1 for i 1 k
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We will develop only the broad outline of the analysis of the multiple linear regres
sion model here. All results will be stated without proofs provided. The proofs can be
found in more advanced texts. It is important to note, however, that all of these results
are just analogs of the results we developed by elementary methods in Section 10.3.2,
for the simple linear regression model.

Matrix Formulation of the LeastSquares Problem

For the analysis of the multiple linear regression model, we need some matrix concepts.
We will briey discuss some of these here, but also see Appendix A.4.

Let A Rm n denote a rectangular array of numbers with m rows and n columns,
and let ai j denote the entry in the i th row and j th column (referred to as the i j th
entry of A). For example,

A
1 2 1 0 0 0
3 2 0 2 6 3

R2 3

denotes a 2 3 matrix and, for example, a22 0 2
We can add two matrices of the same dimensions m and n by simply adding their

elements componentwise. So if A B Rm n and C A B, then ci j ai j
bi j . Furthermore, we can multiply a matrix by a real number c by simply multiplying
every entry in the matrix by c So if A Rm n , then B cA Rm n and bi j
cai j . We will sometimes write a matrix A Rm n in terms of its columns as A

a1 an so that here ai Rm Finally, if A Rm n and b Rn then we
define the product of A times b as Ab b1a1 bnan Rm

Suppose now that Y Rn and that E Y is constrained to lie in a set of the form

S 1 1 k k : i R1 i 1 k

where 1 k are fixed vectors in Rn A set such as S is called a linear subspace of
Rn . When 1 k has the linear independence property, namely,

1 1 k k 0

if and only if 1 k 0 then we say that S has dimension k and 1 k
is a basis for S

If we set

V 1 k

11 12 1k

21 22 2k

n1 n2 nk

Rn k

then we can write

E Y 1 1 k k

1 11 2 12 k 1k

1 21 2 22 k 2k

1 n1 2 n2 k nk

V
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for some unknown point 1 2 k . When we observe y Rn, then the
leastsquares estimate of E Y is obtained by finding the value of that minimizes

n

i 1

yi 1 i1 2 i2 k ik
2 .

It can be proved that a unique minimizing value for Rk exists whenever
1 k is a basis. The minimizing value of will be denoted by b and is called

the leastsquares estimate of . The point b1 1 bk k V b is the leastsquares
estimate of E Y and is sometimes called the vector of fitted values. The point y V b
is called the vector of residuals.

We now consider how to calculate b. For this, we need to understand what it means
to multiply the matrix A Rm k on the right by the matrix B Rk n The matrix
product AB is defined to be the m n matrix whose i j th entry is given by

k

l 1

ailbl j

Notice that the array A must have the same number of columns as the number of rows
of B for this product to be defined. The transpose of a matrix A Rm k is defined to
be

A

a11 am1

a1k amk

Rk m

namely, the i th column of A becomes the i th row of A . For a matrix A Rk k , the
matrix inverse of A is defined to be the matrix A 1 such that

AA 1 A 1 A I

where I Rk k has 1’s along its diagonal and 0’s everywhere else; it is called the k k
identity matrix. It is not always the case that A Rk k has an inverse, but when it does
it can be shown that the inverse is unique. Note that there are many mathematical and
statistical software packages that include the facility for computing matrix products,
transposes, and inverses.

We have the following fundamental result.

Theorem 10.3.7 If E Y S 1 1 k k : i R1 i 1 k
and the columns of V 1 k have the linear independence property, then
V V 1 exists, the leastsquares estimate of is unique, and it is given by

b

b1

bk

V V 1 V y (10.3.14)
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LeastSquares Estimates, Predictions, and Standard Errors

For the linear regression model (10.3.13), we have that (writing X i j for the j th value
of Xi )

E

Y1

Yn

Xi j xi j for all i j
1x11 k x1k

1xn1 k xnk

1 1 k k V

where 1 k and

V 1 2 k

x11 x1k

xn1 xnk

Rn k

We will assume, hereafter, that the columns 1 k of V have the linear indepen
dence property. Then (replacing expectation by conditional expectation) it is immediate
that the leastsquares estimate of is given by (10.3.14).

As with the simple linear regression model, we have a number of results concerning
the leastsquares estimates. We state these here without proof.

Theorem 10.3.8 If the xi1 xik yi are independent observations for i 1
n and the linear regression model applies, then

E Bi X i j xi j for all i j i

for i 1 k

So Theorem 10.3.8 states that the leastsquares estimates are unbiased estimates of the
linear regression coefficients.

If we want to assess the accuracy of these estimates, then we need to be able to
compute their standard errors.

Theorem 10.3.9 If the xi1 xik yi are independent observations for i 1
n from the linear regression model, and if Var Y X1 x1 Xk xk

2

for every x1 xk then

Cov Bi B j Xi j xi j for all i j 2ci j (10.3.15)

where ci j is the i j th entry in the matrix V V 1.

We have the following result concerning the estimation of the mean

E Y X1 x1 Xk xk 1x1 k xk

by the estimate b1x1 bk xk
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Corollary 10.3.4

Var B1x1 Bk xk Xi j xi j for all i j

2
k

i 1

x2
i ci i 2

i j

xi x j ci j
2x V V 1x (10.3.16)

where x x1 xk .

We also use b1x1 bk xk b x as a prediction of a new response value when
X1 x1 Xk xk

We see, from Theorem 10.3.9 and Corollary 10.3.4, that we need an estimate of 2

to compute standard errors The estimate is given by

s2 1

n k

n

i 1

yi b1xi1 bk xik
2 1

n k
y Xb y Xb (10.3.17)

and we have the following result.

Theorem 10.3.10 If the xi1 xik yi are independent observations for i
1 n from the linear regression model, and if Var Y X1 x1 Xk xk

2 then
E S2 X i j xi j for all i j 2.

Combining (10.3.15) and (10.3.17), we deduce that the standard error of bi is s ci i .
Combining (10.3.16) and (10.3.17), we deduce that the standard error of b1x1
bk xk is

s
k

i 1

x2
i ci i 2

i j

xi x j ci j

1 2

s x V V 1x 1 2.

The ANOVA Decomposition and FStatistics

When one of the predictors X1 Xk is constant, then we say that the model has an
intercept term. By convention, we will always take this to be the first predictor. So
when we want the model to have an intercept term, we take X1 1 and 1 is the
intercept, e.g., the simple linear regression model. Note that it is common to denote the
intercept term by 0 so that X0 1 and X1 Xk denote the predictors that actually
change. We will also adopt this convention when it seems appropriate.

Basically, inclusion of an intercept term is very common, as this says that, when
the predictors that actually change have no relationship with the response Y , then the
intercept is the unknown mean of the response. When we do not include an intercept,
then this says we know that the mean response is 0 when there is no relationship be
tween Y and the nonconstant predictors. Unless there is substantive, applicationbased
evidence to support this, we will generally not want to make this assumption.

Denoting the intercept term by 1 so that X1 1 we have the following ANOVA
decomposition for this model that shows how to isolate the observed variation in Y that
can be explained by changes in the nonconstant predictors.
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Lemma 10.3.2 If, for i 1 n the values xi1 xik yi are such that the
matrix V has linearly independent columns, with 1 equal to a column of ones, then
b1 y b2x2 bk xk and

n

i 1

yi y 2
n

i 1

b2 xi2 x2 bk xik xk
2

n

i 1

yi b1xi1 bk xik
2

We call

RSS X2 Xk

n

i 1

b2 xi2 x2 bk xik xk
2

the regression sum of squares and

ESS
n

i 1

yi b1xi1 bk xik
2

the error sum of squares. This leads to the following ANOVA table.

Source Df Sum of Squares Mean Square
X2 Xk k 1 RSS X2 Xk RSS X2 Xk k 1
Error n k ESS s2

Total n 1 n
i 1 yi y 2

When there is an intercept term, the null hypothesis of no relationship between the
response and the predictors is equivalent to H0 : 2 k 0 As with the
simple linear regression model, the mean square for regression can be shown to be an
unbiased estimator of 2 if and only if the null hypothesis is true. Therefore, a sensible
statistic to use for assessing the null hypothesis is the Fstatistic

F
RSS X2 Xk k 1

s2

with large values being evidence against the null.
Often, we want to assess the null hypothesis H0 : l 1 k 0 or,

equivalently, the hypothesis that the model is given by

E Y X1 x1 Xk xk 1x1 l xl

where l k This hypothesis says that the last k l predictors Xl 1 Xk have no
relationship with the response.

If we denote the leastsquares estimates of 1 l obtained by fitting the smaller
model, by b1 bl then we have the following result.
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Lemma 10.3.3 If the xi1 xik yi for i 1 n are values for which the
matrix V has linearly independent columns, with 1 equal to a column of ones, then

RSS X2 Xk

n

i 1

b2 xi2 x2 bk xik xk
2

n

i 1

b2 xi2 x2 bl xil xl
2

RSS X2 Xl (10.3.18)

On the right of the inequality in (10.3.18), we have the regression sum of squares
obtained by fitting the model based on the first l predictors. Therefore, we can interpret
the difference of the left and right sides of (10.3.18), namely,

RSS Xl 1 Xk X2 Xl RSS X2 Xk RSS X2 Xl

as the contribution of the predictors Xl 1 Xk to the regression sum of squares
when the predictors X1 Xl are in the model. We get the following ANOVA ta
ble (actually only the first three columns of the ANOVA table) corresponding to this
decomposition of the total sum of squares.

Source Df Sum of Squares
X2 Xl l 1 RSS X2 Xl
Xl 1 Xk X2 Xl k l RSS Xl 1 Xk X2 Xl
Error n k ESS
Total n 1 n

i 1 yi y 2

It can be shown that the null hypothesis H0 : l 1 k 0 holds if and
only if

RSS Xl 1 Xk X2 Xl k l

is an unbiased estimator of 2. Therefore, a sensible statistic to use for assessing this
null hypothesis is the Fstatistic

F
RSS Xl 1 Xk X2 Xl k l

s2

with large values being evidence against the null.

The Coefficient of Determination

The coefficient of determination for this model is given by

R2 RSS X2 Xk
n
i 1 yi y 2

which, by Lemma 10.3.2, is always between 0 and 1. The value of R2 gives the propor
tion of the observed variation in Y that is explained by the inclusion of the nonconstant
predictors in the model.
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It can be shown that R2 is the square of the multiple correlation coefficient between
Y and X1 Xk However, we do not discuss the multiple correlation coefficient in
this text.

Confidence Intervals and Testing Hypotheses

For inference, we have the following result.

Theorem 10.3.11 If the conditional distribution of Y given X1 Xk x1
xk is N 1x1 k xk

2 and if we observe the independent values xi1
xik yi for i 1 n, then the conditional distributions of the Bi and S2 given
Xi j xi j for all i j are as follows.

(i) Bi N i
2cii

(ii) B1x1 Bk xk is distributed

N 1x1 k xk
2

k

i 1

x2
i cii 2

i j

xi x j ci j

(iii) n k S2 2 2 n k independent of B1 Bk

Corollary 10.3.5
(i) Bi i sc1 2

ii t n k

(ii)
B1x1 Bk xk 1x1 k xk

S k
i 1 x2

i ci i 2 i j xi x j ci j
1 2 t n k

(iii) H0 : l 1 k 0 is true if and only if

F
RSS X2 Xk RSS X2 Xl k l

S2
F k l n k

Analysis of Residuals

In an application of the multiple regression model, we must check to make sure that
the assumptions make sense. Model checking is based on the residuals yi b1xi1

bk xik (after standardization), just as discussed in Section 9.1. Note that the i th
residual is simply the difference between the observed value yi at xi1 xik and
the predicted value b1xi1 bk xik at xi1 xik

We also have the following result (this can be proved as a Corollary of Theorem
10.3.10).
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Corollary 10.3.6
(i) E Yi B1xi1 Bk xik V 0

(ii) Cov Yi B1xi1 Bk xik Y j B1x j1 Bk x jk V 2di j , where
di j is the i j th entry of the matrix I V V V 1V .

Therefore, the standardized residuals are given by

y j b1x j1 bk x jk

sd1 2
ii

. (10.3.19)

When s is replaced by in (10.3.19), Corollary 10.3.6 implies that this quantity has
conditional mean 0 and conditional variance 1. Furthermore, when the conditional
distribution of the response given the predictors is normal, then it can be shown that
the conditional distribution of this quantity is N 0 1 . These results are also approxi
mately true for (10.3.19) for large n. Furthermore, it can be shown that the covariances
between the standardized residuals go to 0 as n under certain reasonable con
ditions on distribution of the predictor variables. So one approach to model checking
here is to see whether the values given by (10.3.19) look at all like a sample from the
N 0 1 distribution.

What do we do if model checking leads to a failure of the model? As in Chapter 9,
we can consider making various transformations of the data to see if there is a simple
modification of the model that will pass. We can make transformations not only to the
response variable Y but to the predictor variables X1 Xk as well.

An Application of Multiple Linear Regression Analysis

The computations needed to implement a multiple linear regression analysis cannot
be carried out by hand. These are much too timeconsuming and errorprone. It is
therefore important that a statistician have a computer with suitable software available
when doing a multiple linear regression analysis.

The data in Table 10.1 are taken from Statistical Theory and Methodology in Sci
ence and Engineering, 2nd ed., by K. A. Brownlee (John Wiley & Sons, New York,
1965). The response variable Y is stack loss (Loss), which represents 10 times the per
centage of ammonia lost as unabsorbed nitric oxide. The predictor variables are X1
air ow (Air), X2 temperature of inlet water (Temp), and X3 the concentration of
nitric acid (Acid). Also recorded is the day (Day) on which the observation was taken.

We consider the model Y x1 x2 x3 N 0 1x1 2x2 3x3
2 . Note that

we have included an intercept term. Figure 10.3.9 is a normal probability plot of the
standardized residuals. This looks reasonable, except for one residual, 2 63822 that
diverges quite distinctively from the rest of the values, which lie close to the 45degree
line. Printing out the standardized residuals shows that this residual is associated with
the observation on the twentyfirst day. Possibly there was something unique about this
day’s operations, and so it is reasonable to discard this data value and refit the model.
Figure 10.3.10 is a normal probability plot obtained by fitting the model to the first
20 observations. This looks somewhat better, but still we might be concerned about at
least one of the residuals that deviates substantially from the 45degree line.
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Day Air Temp Acid Loss Day Air Temp Acid Loss
1 80 27 89 42 12 58 17 88 13
2 80 27 88 37 13 58 18 82 11
3 75 25 90 37 14 58 19 93 12
4 62 24 87 28 15 50 18 89 8
5 62 22 87 18 16 50 18 86 7
6 62 23 87 18 17 50 19 72 8
7 62 24 93 19 18 50 19 79 8
8 62 24 93 20 19 50 20 80 9
9 58 23 87 15 20 56 20 82 15

10 58 18 80 14 21 70 20 91 15
11 58 18 89 14

Table 10.1: Data for Application of Multiple Linear Regression Analysis
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Figure 10.3.9: Normal probability plot of the standardized residuals based on all the data.

32101

2

1

0

1

2

N
or

m
a

l S
co

re

Standardized Residual

Normal Probability Plot of the Residuals
(response is Loss)

Figure 10.3.10: Normal probability plot of the standardized residuals based on the first 20 data
values.
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Following the analysis of these data in Fitting Equations to Data, by C. Daniel and
F. S. Wood (WileyInterscience, New York, 1971), we consider instead the model

ln Y x1 x2 x3 N 0 1x1 2x2 3x3
2 , (10.3.20)

i.e., we transform the response variable by taking its logarithm and use all of the data.
Often, when models do not fit, simple transformations like this can lead to major im
provements. In this case, we see a much improved normal probability plot, as provided
in Figure 10.3.11.
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Figure 10.3.11: Normal probability plot of the standardized residuals for all the data using ln Y
as the response.

We also looked at plots of the standardized residuals against the various predic
tors, and these looked reasonable. Figure 10.3.12 is a plot of the standardized residuals
against the values of Air.
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Figure 10.3.12: A plot of the standardized residuals for all the data, using ln Y as the response,
against the values of the predictor Air.
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Now that we have accepted the model (10.3.20), we can proceed to inferences about
the unknowns of the model. The leastsquares estimates of the i their standard errors
(Se), the corresponding tstatistics for testing the i 0, and the Pvalues for this are
given in the following table.

Coefficient Estimate Se tstatistic Pvalue

0 0 948700 0 647700 1 46 0 161

1 0 034565 0 007343 4 71 0 000

2 0 063460 0 020040 3 17 0 006

3 0 002864 0 008510 0 34 0 742

The estimate of 2 is given by s2 0 0312.
To test the null hypothesis that there is no relationship between the response and

the predictors, or that, equivalently, H0 : 1 2 3 0, we have the following
ANOVA table.

Source Df Sum of Squares Mean Square
X1 X2 X3 3 4 9515 1 6505
Error 17 0 5302 0 0312
Total 20 5 4817

The value of the Fstatistic is given by 1 6505 0 0312 52 900 and when F
F 3 17 we have that P F 52 900 0 000 So there is substantial evidence
against the null hypothesis. To see how well the model explains the variation in the
response, we computed the value of R2 86 9% Therefore, approximately 87% of
the observed variation in Y can be explained by changes in the predictors in the model.

While we have concluded that a relationship exists between the response and the
predictors, it may be that some of the predictors have no relationship with the response.
For example, the table of tstatistics above would seem to indicate that perhaps X3
(acid) is not affecting Y . We can assess this via the following ANOVA table, obtained
by fitting the model ln Y x1 x2 x3 N 0 1x1 2x2

2

Source Df Sum of Squares Mean Square
X1 X2 2 4 9480 2 4740
X3 X1 X2 1 0 0035 0 0035
Error 17 0 5302 0 0312
Total 20 5 4817

Note that RSS X3 X1 X2 4 9515 4 9480 0 0035 The value of the Fstatistic
for testing H0 : 3 0 is 0 0035 0 0312 0 112 and when F F 1 17 we
have that P F 0 112 0 742 So we have no evidence against the null hypothesis
and can drop X3 from the model. Actually, this is the same Pvalue as obtained via the
ttest of this null hypothesis, as, in general, the ttest that a single regression coefficient
is 0 is equivalent to the Ftest. Similar tests of the need to include X1 and X2 do not
lead us to drop these variables from the model.

So based on the above results, we decide to drop X3 from the model and use the
equation

E Y X1 x1 X2 x2 0 7522 0 035402X1 0 06346X2 (10.3.21)
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to describe the relationship between Y and the predictors. Note that the leastsquares
estimates of 0 1 and 2 in (10.3.21) are obtained by refitting the model without
X3

Summary of Section 10.3

In this section, we examined the situation in which the response variable and the
predictor variables are quantitative.

In this situation, the linear regression model provides a possible description of
the form of any relationship that may exist between the response and the predic
tors.

Least squares is a standard method for fitting linear regression models to data.

The ANOVA is a decomposition of the total variation observed in the response
variable into a part attributable to changes in the predictor variables and a part
attributable to random error.

If we assume a normal linear regression model, then we have inference methods
available such as confidence intervals and tests of significance. In particular, we
have available the Ftest to assess whether or not a relationship exists between
the response and the predictors.

A normal linear regression model is checked by examining the standardized
residuals.

EXERCISES

10.3.1 Suppose that x1 xn is a sample from a Bernoulli distribution, where
[0 1] is unknown. What is the leastsquares estimate of the mean of this distribu

tion?

10.3.2 Suppose that x1 xn is a sample from the Uniform[0 ], where 0 is
unknown. What is the leastsquares estimate of the mean of this distribution?
10.3.3 Suppose that x1 xn is a sample from the Exponential , where 0 is
unknown. What is the leastsquares estimate of the mean of this distribution?
10.3.4 Consider the n 11 data values in the following table.

Observation X Y Observation X Y
1 5 00 10 00 7 1 00 3 52
2 4 00 8 83 8 2 00 5 64
3 3 00 9 15 9 3 00 7 28
4 2 00 4 26 10 4 00 7 62
5 1 00 0 30 11 5 00 8 51
6 0 00 0 04

Suppose we consider the simple normal linear regression to describe the relationship
between the response Y and the predictor X
(a) Plot the data in a scatter plot.
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(b) Calculate the leastsquares line and plot this on the scatter plot in part (a).

(c) Plot the standardized residuals against X
(d) Produce a normal probability plot of the standardized residuals.
(e) What are your conclusions based on the plots produced in parts (c) and (d)?
(f) If appropriate, calculate 0.95confidence intervals for the intercept and slope.
(g) Construct the ANOVA table to test whether or not there is a relationship between
the response and the predictors. What is your conclusion?
(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictor?
(i) Predict a future Y at X 0 0 Is this prediction an extrapolation or an interpolation?
Determine the standard error of this prediction.
(j) Predict a future Y at X 6 0 Is this prediction an extrapolation or an interpolation?
Determine the standard error of this prediction.
(k) Predict a future Y at X 20 0 Is this prediction an extrapolation or an interpola
tion? Determine the standard error of this prediction. Compare this with the standard
errors obtained in parts (i) and (j) and explain the differences.
10.3.5 Consider the n 11 data values in the following table.

Observation X Y Observation X Y
1 5 00 65 00 7 1 00 6 52
2 4 00 39 17 8 2 00 17 64
3 3 00 17 85 9 3 00 34 28
4 2 00 7 74 10 4 00 55 62
5 1 00 2 70 11 5 00 83 51
6 0 00 0 04

Suppose we consider the simple normal linear regression to describe the relationship
between the response Y and the predictor X

(a) Plot the data in a scatter plot.
(b) Calculate the leastsquares line and plot this on the scatter plot in part (a).
(c) Plot the standardized residuals against X
(d) Produce a normal probability plot of the standardized residuals.
(e) What are your conclusions based on the plots produced in parts (c) and (d)?

(f) If appropriate, calculate 0.95confidence intervals for the intercept and slope.
(g) Do the results of your analysis allow you to conclude that there is a relationship
between Y and X? Explain why or why not.
(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictor?

10.3.6 Suppose the following data record the densities of an organism in a containment
vessel for 10 days. Suppose we consider the simple normal linear regression to describe
the relationship between the response Y (density) and the predictor X (day)
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Day Number/Liter Day Number/Liter
1 1 6 6 1341 6
2 16 7 7 2042 9
3 65 2 8 7427 0
4 23 6 9 15571 8
5 345 3 10 33128 5

(a) Plot the data in a scatter plot.

(b) Calculate the leastsquares line and plot this on the scatter plot in part (a).
(c) Plot the standardized residuals against X
(d) Produce a normal probability plot of the standardized residuals.
(e) What are your conclusions based on the plots produced in parts (c) and (d)?

(f) Can you think of a transformation of the response that might address any problems
found? If so, repeat parts (a) through (e) after performing this transformation. (Hint:
The scatter plot looks like exponential growth. What transformation is the inverse of
exponentiation?)

(g) Calculate 0.95confidence intervals for the appropriate intercept and slope.
(h) Construct the appropriate ANOVA table to test whether or not there is a relationship
between the response and the predictors. What is your conclusion?
(i) Do the results of your analysis allow you to conclude that there is a relationship
between Y and X? Explain why or why not.

(j) Compute the proportion of variation explained by the predictor for the two models
you have considered. Compare the results.
(k) Predict a future Y at X 12 Is this prediction an extrapolation or an interpolation?

10.3.7 A student takes weekly quizzes in a course and receives the following grades
over 12 weeks.

Week Grade Week Grade
1 65 7 74
2 55 8 76
3 62 9 48
4 73 10 80
5 68 11 85
6 76 12 90

(a) Plot the data in a scatter plot with X week and Y grade.
(b) Calculate the leastsquares line and plot this on the scatter plot in part (a).
(c) Plot the standardized residuals against X .

(d) What are your conclusions based on the plot produced in (c)?
(e) Calculate 0.95confidence intervals for the intercept and slope.
(f) Construct the ANOVA table to test whether or not there is a relationship between
the response and the predictors. What is your conclusion?
(g) What proportion of the observed variation in the response is explained by changes
in the predictor?
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10.3.8 Suppose that Y E Y X Z , where X Y and Z are random variables.

(a) Show that E Z X 0
(b) Show that Cov E Y X Z 0 (Hint: Write Z Y E Y X and use Theo
rems 3.5.2 and 3.5.4.)

(c) Suppose that Z is independent of X Show that this implies that the conditional
distribution of Y given X depends on X only through its conditional mean. (Hint:
Evaluate the conditional distribution function of Y given X x
10.3.9 Suppose that X and Y are random variables such that a regression model de
scribes the relationship between Y and X If E Y X exp 1 2 X , then discuss
whether or not this is a simple linear regression model (perhaps involving a predictor
other than X).
10.3.10 Suppose that X and Y are random variables and Corr(X Y 1 Does a
simple linear regression model hold to describe the relationship between Y and X? If
so, what is it?

10.3.11 Suppose that X and Y are random variables such that a regression model de
scribes the relationship between Y and X If E Y X 1 2 X2, then discuss
whether or not this is a simple linear regression model (perhaps involving a predictor
other than X).
10.3.12 Suppose that X N 2 3 independently of Z N 0 1 and Y X Z .
Does this structure imply that the relationship between Y and X can be summarized by
a simple linear regression model? If so, what are 1 2, and 2?
10.3.13 Suppose that a simple linear model is fit to data. An analysis of the residuals
indicates that there is no reason to doubt that the model is correct; the ANOVA test
indicates that there is substantial evidence against the null hypothesis of no relationship
between the response and predictor. The value of R2 is found to be 0.05. What is the
interpretation of this number and what are the practical consequences?

COMPUTER EXERCISES

10.3.14 Suppose we consider the simple normal linear regression to describe the re
lationship between the response Y (income) and the predictor X (investment) for the
data in Example 10.3.9.

(a) Plot the data in a scatter plot.
(b) Calculate the leastsquares line and plot this on the scatter plot in part (a).
(c) Plot the standardized residuals against X
(d) Produce a normal probability plot of the standardized residuals.

(e) What are your conclusions based on the plots produced in parts (c) and (d)?
(f) If appropriate, calculate 0.95confidence intervals for the intercept and slope.
(g) Do the results of your analysis allow you to conclude that there is a relationship
between Y and X? Explain why or why not.
(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictor?
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10.3.15 The following data are measurements of tensile strength (100 lb/in2) and hard
ness (Rockwell E) on 20 pieces of diecast aluminum.

Sample Strength Hardness Sample Strength Hardness
1 293 53 11 298 60
2 349 70 12 292 51
3 340 78 13 380 95
4 340 55 14 345 88
5 340 64 15 257 51
6 354 71 16 265 54
7 322 82 17 246 52
8 334 67 18 286 64
9 247 56 19 324 83
10 348 86 20 282 56

Suppose we consider the simple normal linear regression to describe the relationship
between the response Y (strength) and the predictor X (hardness).
(a) Plot the data in a scatter plot.
(b) Calculate the leastsquares line and plot this on the scatter plot in part (a).
(c) Plot the standardized residuals against X

(d) Produce a normal probability plot of the standardized residuals.
(e) What are your conclusions based on the plots produced in parts (c) and (d)?
(f) If appropriate, calculate 0.95confidence intervals for the intercept and slope.
(g) Do the results of your analysis allow you to conclude that there is a relationship
between Y and X? Explain why or why not.
(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictor?
10.3.16 Tests were carried out to determine the effect of gas inlet temperature (degrees
Fahrenheit) and rotor speed (rpm) on the tar content (grains/cu ft) of a gas stream,
producing the following data.

Observation Tar Speed Temperature
1 60 0 2400 54 5
2 65 0 2450 58 5
3 63 5 2500 58 0
4 44 0 2700 62 5
5 54 5 2700 68 0
6 26 0 2775 45 5
7 54 0 2800 63 0
8 53 5 2900 64 5
9 33 5 3075 57 0

10 44 0 3150 64 0

Suppose we consider the normal linear regression model

Y W X x N 1 2 3x 2
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to describe the relationship between Y (tar content) and the predictors W (rotor speed)
and X (temperature).
(a) Plot the response in scatter plots against each predictor.
(b) Calculate the leastsquares equation.

(c) Plot the standardized residuals against W and X
(d) Produce a normal probability plot of the standardized residuals.
(e) What are your conclusions based on the plots produced in parts (c) and (d)?
(f) If appropriate, calculate 0.95confidence intervals for the regression coefficients.

(g) Construct the ANOVA table to test whether or not there is a relationship between
the response and the predictors. What is your conclusion?
(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictors?
(i) In an ANOVA table, assess the null hypothesis that there is no effect due to W given
that X is in the model.
(j) Estimate the mean of Y when W 2750 and X 50 0 If we consider this value
as a prediction of a future Y at these settings, is this an extrapolation or interpolation?
10.3.17 Suppose we consider the normal linear regression model

Y X x N 1 2x 3x2 2

for the data of Exercise 10.3.5.
(a) Plot the response Y in a scatter plot against X .
(b) Calculate the leastsquares equation.
(c) Plot the standardized residuals against X

(d) Produce a normal probability plot of the standardized residuals.
(e) What are your conclusions based on the plots produced in parts (c) and (d)?
(f) If appropriate, calculate 0.95confidence intervals for the regression coefficients.
(g) Construct the ANOVA table to test whether or not there is a relationship between
the response and the predictor. What is your conclusion?
(h) If the model is correct, what proportion of the observed variation in the response is
explained by changes in the predictors?
(i) In an ANOVA table, assess the null hypothesis that there is no effect due to X2

given that X is in the model.
(j) Compare the predictions of Y at X 6 using the simple linear regression model
and using the linear model with a linear and quadratic term.

PROBLEMS

10.3.18 Suppose that x1 xn is a sample from the mixture distribution

0 5Uniform[0 1] 0 5Uniform[2 ]

where 2 is unknown. What is the leastsquares estimate of the mean of this
distribution?
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10.3.19 Consider the simple linear regression model and suppose that for the data col
lected, we have n

i 1 xi x 2 0 Explain how, and for which value of x , you
would estimate E Y X x
10.3.20 For the simple linear regression model, under the assumptions of Theorem
10.3.3, establish that

Cov Yi B1 B2xi Y j B1 B2x j X1 x1 Xn xn

2
i j

2 1

n

xi x x j x
n
k 1 xk x 2

where i j 1 when i j and is 0 otherwise. (Hint: Use Theorems 3.3.2 and 10.3.3.)
10.3.21 Establish that (10.3.11) is distributed N 0 1 when S is replaced by in the
denominator. (Hint: Use Theorem 4.6.1 and Problem 10.3.20.)
10.3.22 (Prediction intervals) Under the assumptions of Theorem 10.3.6, prove that
the interval

b1 b2x s 1
1

n

xi x 2

n
k 1 xk x 2

1 2

t 1 2 n 2

based on independent x1 y1 xn yn will contain Y with probability equal to
for a future independent X Y with X x (Hint: Theorems 4.6.1 and 3.3.2 and

Corollary 10.3.1.)
10.3.23 Consider the regression model with no intercept, given by E Y X x

x ,where R1 is unknown. Suppose we observe the independent values x1 y1
xn yn

(a) Determine the leastsquares estimate of
(b) Prove that the leastsquares estimate b of is unbiased and, when Var Y X x

2 prove that

Var B X1 x1 Xn xn

2

n
i 1 x2

i

(c) Under the assumptions given in part (b), prove that

s2 1

n 1

n

i 1

yi bxi
2

is an unbiased estimator of 2

(d) Record an appropriate ANOVA decomposition for this model and a formula for R2

measuring the proportion of the variation observed in Y due to changes in X
(e) When Y X x N x 2 and we observe the independent values x1 y1

xn yn prove that b N 2 n
i 1 x2

i

(f) Under the assumptions of part (e), and assuming that n 1 S2 2 2 n 1
independent of B (this can be proved), indicate how you would test the null hypothesis
of no relationship between Y and X
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(g) How would you define standardized residuals for this model and use them to check
model validity?
10.3.24 For data x1 y1 xn yn prove that if 1 1 2x and 2 2
then n

i 1 yi 1 2xi
2 equals

n

i 1

yi y 2 n 1 y 2 2
2

n

i 1

xi x 2 2 2

n

i 1

xi x yi y .

From this, deduce that y and a n
i 1 xi x yi y n

i 1 xi x 2 are the least
squares of 1 and 2 respectively.
10.3.25 For the model discussed in Section 10.3.3, prove that the prior given by 1 2

2 N 1
2
1

2
2

2 N 2
2
2

2 and 1 2 Gamma leads to the
posterior distribution stated there. Conclude that this prior is conjugate with the poste
rior distribution, as specified. (Hint: The development is similar to Example 7.1.4, as
detailed in Section 7.5.)
10.3.26 For the model specified in Section 10.3.3, prove that when 1 2

, and 0 the posterior distribution of 1 is given by the distribution of y
2 xy n 2 n

1 2
Z , where Z t 2 n and xy c2

y a2c2
x 2

CHALLENGES

10.3.27 If X1 Xn is a sample from a distribution with finite variance, then prove
that

Xi X

n
k 1 Xk X

2

a s
0

10.4 Quantitative Response and Categorical
Predictors
In this section, we consider the situation in which the response is quantitative and the
predictors are categorical. There can be many categorical predictors, but we restrict
our discussion to at most two, as this gives the most important features of the general
case. The general case is left to a further course.

10.4.1 One Categorical Predictor (OneWay ANOVA)

Suppose now that the response Y is quantitative and the predictor X is categorical,
taking a values or levels denoted 1 a. With the regression model, we assume that
the only aspect of the conditional distribution of Y , given X x that changes as x
changes, is the mean. We let

i E Y X i

denote the mean response when the predictor X is at level i . Note that this is immedi
ately a linear regression model.
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We introduce the dummy variables

X i
1 X i
0 X i

for i 1 a. Notice that, whatever the value is of the response Y , only one of the
dummy variables takes the value 1, and the rest take the value 0. Accordingly, we can
write

E Y X1 x1 Xa xa 1x1 axa

because one and only one of the xi 1 whereas the rest are 0. This has exactly
the same form as the model discussed in Section 10.3.4, as the X i are quantitative.
As such, all the results of Section 10.3.4 immediately apply (we will restate relevant
results here).

Inferences About Individual Means

Now suppose that we observe ni values yi1 yini when X i and all the re
sponse values are independent. Note that we have a independent samples. The least
squares estimates of the i are obtained by minimizing

a

i 1

ni

j 1

yi j i
2

The leastsquares estimates are then equal to (see Problem 10.4.14)

bi yi
1

ni

ni

j 1

yi j

These can be shown to be unbiased estimators of the i .
Assuming that the conditional distributions of Y given X x all have variance

equal to 2 we have that the conditional variance of Yi is given by 2 ni and the
conditional covariance between Yi and Y j when i j is 0. Furthermore, under these
conditions, an unbiased estimator of 2 is given by

s2 1

N a

a

i 1

ni

j 1

yi j yi
2

where N n1 nk
If, in addition, we assume the normal linear regression model, namely,

Y X i N i
2 ,

then Yi N i
2 ni independent of N a S2 2 2 N a Therefore, by

Definition 4.6.2,

T
Yi i

S ni
t N a ,
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which leads to a confidence interval of the form

yi
s

ni
t 1 2 N a

for i Also, we can test the null hypothesis H0 : i i0 by computing the Pvalue

P T
yi i0

s ni
2 1 G

yi i0

s ni
N a

where G N a is the cdf of the t N a distribution. Note that these inferences
are just like those derived in Section 6.3 for the locationscale normal model, except
we now use a different estimator of 2 (with more degrees of freedom).

Inferences about Differences of Means and Two Sample
Inferences

Often we want to make inferences about a difference of means i j . Note that
E Yi Y j i j and

Var Yi Y j Var Yi Var Y j
2 1 ni 1 n j

because Yi and Y j are independent. By Theorem 4.6.1,

Yi Y j N i j
2 1 ni 1 n j .

Furthermore,
Yi Y j i j

1 ni 1 n j
1 2 N 0 1

independent of N a S2 2 2 N a . Therefore, by Definition 4.6.2,

T
Yi Y j i j

1 ni 1 n j
1 2

N a S2

N a 2

Yi Y j i j

S 1 ni 1 n j
1 2

t N a . (10.4.1)

This leads to the confidence interval

yi y j s
1

ni

1

n j
t 1 2 N a

for the difference of means i j . We can test the null hypothesis H0 : i j , i.e.,
that the difference in the means equals 0, by computing the Pvalue

P T
yi y j

s 1
ni

1
n j

2 1 G
yi y j

s 1
ni

1
n j

N a .
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When a 2 i.e., there are just two values for X we refer to (10.4.1) as the
twosample tstatistic, and the corresponding inference procedures are called the two
sample tconfidence interval and the twosample ttest for the difference of means. In
this case, if we conclude that 1 2, then we are saying that a relationship exists
between Y and X

The ANOVA for Assessing a Relationship with the Predictor

Suppose, in the general case when a 2 we are interested in assessing whether or not
there is a relationship between the response and the predictor. There is no relationship
if and only if all the conditional distributions are the same; this is true, under our
assumptions, if and only if 1 a i.e., if and only if all the means are equal.
So testing the null hypothesis that there is no relationship between the response and the
predictor is equivalent to testing the null hypothesis H0 : 1 a for some
unknown

If the null hypothesis is true, the leastsquares estimate of is given by y the
overall average response value. In this case, we have that the total variation decomposes
as (see Problem 10.4.15)

a

i 1

ni

j 1

yi j y 2
a

i 1

ni yi y 2
a

i 1

ni

j 1

yi j yi
2

and so the relevant ANOVA table for testing H0 is given below.

Source Df Sum of Squares Mean Square
X a 1 a

i 1 ni yi y 2 a
i 1 ni yi y 2 a 1

Error N a a
i

ni
j 1 yi j yi

2
s2

Total N 1 a
i

ni
j 1 yi j y 2

To assess H0 we use the Fstatistic

F
a
i 1 ni yi y 2 a 1

s2

because, under the null hypothesis, both the numerator and the denominator are un
biased estimators of 2 When the null hypothesis is false, the numerator tends to be
larger than 2. When we add the normality assumption, we have that F F a 1 N

a , and so we compute the Pvalue

P F
a
i 1 ni yi y 2 a 1

s2

to assess whether the observed value of F is so large as to be surprising. Note that
when a 2, this Pvalue equals the Pvalue obtained via the twosample ttest.
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Multiple Comparisons

If we reject the null hypothesis of no differences among the means, then we want to
see where the differences exist. For this, we use inference methods based on (10.4.1).
Of course, we have to worry about the problem of multiple comparisons, as discussed
in Section 9.3. Recall that this problem arises whenever we are testing many null
hypotheses using a specific critical value, such as 5%, as a cutoff for a Pvalue, to
decide whether or not a difference exists. The cutoff value for an individual Pvalue
is referred to as the individual error rate. In effect, even if no differences exist, the
probability of concluding that at least one difference exists, the family error rate, can
be quite high.

There are a number of procedures designed to control the family error rate when
making multiple comparisons. The simplest is to lower the individual error rate, as
the family error rate is typically an increasing function of this quantity. This is the
approach we adopt here, and we rely on statistical software to compute and report the
family error rate for us. We refer to this procedure as Fisher’s multiple comparison
test.

Model Checking

To check the model, we look at the standardized residuals (see Problem 10.4.17) given
by

yi j yi

s 1 1
ni

(10.4.2)

We will restrict our attention to various plots of the standardized residuals for model
checking.

We now consider an example.

EXAMPLE 10.4.1
A study was undertaken to determine whether or not eight different types of fat are
absorbed in different amounts during the cooking of donuts. Results were collected
based on cooking six different donuts and then measuring the amount of fat in grams
absorbed. We take the variable X to be the type of fat and use the model of this section.

The collected data are presented in the following table.

Fat 1 164 177 168 156 172 195
Fat 2 172 197 167 161 180 190
Fat 3 177 184 187 169 179 197
Fat 4 178 196 177 181 184 191
Fat 5 163 177 144 165 166 178
Fat 6 163 193 176 172 176 178
Fat 7 150 179 146 141 169 183
Fat 8 164 169 155 149 170 167

A normal probability plot of the standardized residuals is provided in Figure 10.4.1.
A plot of the standardized residuals against type of fat is provided in Figure 10.4.2.
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Neither plot gives us significant grounds for concern over the validity of the model,
although there is some indication of a difference in the variability of the response as
the type of fat changes. Another useful plot in this situation is a sidebyside boxplot,
as it shows graphically where potential differences may lie. Such a plot is provided in
Figure 10.4.3.

The following table gives the mean amounts of each fat absorbed.

Fat 1 Fat 2 Fat 3 Fat 4 Fat 5 Fat 6 Fat 7 Fat 8
172 00 177 83 182 17 184 50 165 50 176 33 161 33 162 33

The grand mean response is given by 172.8.
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Figure 10.4.1: Normal probability plot of the standardized residuals in Example 10.4.1.
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Figure 10.4.2: Standardized residuals versus type of fat in Example 10.4.1.
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Figure 10.4.3: Sidebyside boxplots of the response versus type of fat in Example 10.4.1.

To assess the null hypothesis of no differences among the types of fat, we calculate
the following ANOVA table.

Source Df Sum of Squares Mean Square
X 7 3344 478

Error 40 5799 145
Total 47 9143

Then we use the Fstatistic given by F 478 145 3 3 Because F F 7 40
under H0 we obtain the Pvalue P F 3 3 0 007 Therefore, we conclude that
there is a difference among the fat types at the 0.05 level.

To ascertain where the differences exist, we look at all pairwise differences. There
are 8 7 2 28 such comparisons. If we use the 0.05 level to determine whether
or not a difference among means exists, then software computes the family error rate
as 0.481, which seems uncomfortably high. When we use the 0.01 level, the family
error rate falls to 0.151. With the individual error rate at 0.003, the family error rate is
0.0546. Using the individual error rate of 0.003, the only differences detected among
the means are those between Fat 4 and Fat 7, and Fat 4 and Fat 8. Note that Fat 4 has
the highest absorption whereas Fats 7 and 8 have the lowest absorptions.

Overall, the results are somewhat inconclusive, as we see some evidence of dif
ferences existing, but we are left with some anomalies as well. For example, Fats 4
and 5 are not different and neither are Fats 7 and 5, but Fats 4 and 7 are deemed to be
different. To resolve such conicts requires either larger sample sizes or a more refined
experiment so that the comparisons are more accurate.
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10.4.2 Repeated Measures (Paired Comparisons)

Consider k quantitative variables Y1 Yk defined on a population Suppose that
our purpose is to compare the distributions of these variables. Typically, these will be
similar variables, all measured in the same units.

EXAMPLE 10.4.2
Suppose that is a set of students enrolled in a firstyear program requiring students
to take both calculus and physics, and we want to compare the marks achieved in these
subjects. If we let Y1 denote the calculus grade and Y2 denote the physics grade, then
we want to compare the distributions of these variables.

EXAMPLE 10.4.3
Suppose we want to compare the distributions of the duration of headaches for two
treatments A and B) in a population of migraine headache sufferers. We let Y1 denote
the duration of a headache after being administered treatment A and let Y2 denote the
duration of a headache after being administered treatment B.

The repeatedmeasures approach to the problem of comparing the distributions of
Y1 Yk involves taking a random sample 1 n from and, for each i ,
obtaining the kdimensional value Y1 i Yk i yi1 yik . This gives
a sample of n from a kdimensional distribution. Obviously, this is called repeated
measures because we are taking the measurements Y1 i Yk i on the same

i .
An alternative to repeated measures is to take k independent samples from

and, for each of these samples, to obtain the values of one and only one of the vari
ables Yi . There is an important reason why the repeatedmeasures approach is pre
ferred: We expect less variation in the values of differences, like Yi Y j under
repeatedmeasures sampling, than we do under independent sampling because the val
ues Y1 Yk are being taken on the same member of the population in re
peated measures.

To see this more clearly, suppose all of the variances and covariances exist for the
joint distribution of Y1 Yk . This implies that

Var Yi Y j Var Yi Var Y j 2 Cov Yi Y j . (10.4.3)

Because Yi and Y j are similar variables, being measured on the same individual, we
expect them to be positively correlated. Now with independent sampling, we have that
Var Yi Y j Var Yi Var Yi , so the variances of differences should be smaller
with repeated measures than with independent sampling.

When we assume that the distributions of the Yi differ at most in their means, then it
makes sense to make inferences about the differences of the population means i j
using the differences of the sample means yi y j In the repeatedmeasures context,
we can write

yi y j
1

n

n

l 1

yli yl j .
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Because the individual components of this sum are independent and so,

Var Yi Y j
Var Yi Var Y j 2 Cov Yi Y j

n

We can consider the differences d1 y1i y1 j dn yni ynj to be a sample
of n from a onedimensional distribution with mean i j and variance 2 given by
(10.4.3). Accordingly, we estimate i j by d yi y j and estimate 2 by

s2 1

n 1

n

i 1

di d
2

. (10.4.4)

If we assume that the joint distribution of Y1 Yk is multivariate normal (this
means that any linear combination of these variables is normally distributed — see
Problem 9.1.18), then this forces the distribution of Yi Y j to be N i j

2 .
Accordingly, we have all the univariate techniques discussed in Chapter 6 for inferences
about i j

The discussion so far has been about whether the distributions of variables differed.
Assuming these distributions differ at most in their means, this leads to a comparison of
the means. We can, however, record an observation as X Y where X takes values
in 1 k and X i means that Y Yi Then the conditional distribution of Y
given X i is the same as the distribution of Yi . Therefore, if we conclude that the
distributions of the Yi are different, we can conclude that a relationship exists between
Y and X In Example 10.4.2, this means that a relationship exists between a student’s
grade and whether or not the grade was in calculus or physics. In Example 10.4.3, this
means that a relationship exists between length of a headache and the treatment.

When can we assert that such a relationship is in fact a cause–effect relationship?
Applying the discussion in Section 10.1.2, we know that we have to be able to assign
the value of X to a randomly selected element of the population. In Example 10.4.2,
we see this is impossible, so we cannot assert that such a relationship is a cause–effect
relationship. In Example 10.4.3, however, we can indeed do this — namely, for a
randomly selected individual, we randomly assign a treatment to the first headache
experienced during the study period and then apply the other treatment to the second
headache experienced during the study period.

A full discussion of repeated measures requires more advanced concepts in statis
tics. We restrict our attention now to the presentation of an example when k 2
which is commonly referred to as paired comparisons.

EXAMPLE 10.4.4 Blood Pressure Study
The following table came from a study of the effect of the drug captopril on blood
pressure, as reported in Applied Statistics, Principles and Examples by D. R. Cox and
E. J. Snell (Chapman and Hall, London, 1981). Each measurement is the difference in
the systolic blood pressure before and after having been administered the drug.

9 4 21 3 20
31 17 26 26 10
23 33 19 19 23
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Figure 10.4.4 is a normal probability plot for these data and, because this looks rea
sonable, we conclude that the inference methods based on the assumption of normality
are acceptable. Note that here we have not standardized the variable first, so we are
only looking to see if the plot is reasonably straight.
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Figure 10.4.4: Normal probability plot for the data in Example 10.4.4.

The mean difference is given by d 18 93 with standard deviation s 9 03
Accordingly, the standard error of the estimate of the difference in the means, using
(10.4.4), is given by s 15 2 33 A 0 95confidence interval for the difference in
the mean systolic blood pressure, before and after being administered captopril, is then

d
s

n
t0 975 n 1 18 93 2 33 t0 975 14 23 93 13 93

Because this does not include 0, we reject the null hypothesis of no difference in the
means at the 0.05 level. The actual Pvalue for the twosided test is given by

P T 18 93 2 33 0 000

because T t 14 under the null hypothesis H0 that the means are equal. Therefore,
we have strong evidence against H0. It seems that we have strong evidence that the
drug is leading to a drop in blood pressure.

10.4.3 Two Categorical Predictors (TwoWay ANOVA)

Now suppose that we have a single quantitative response Y and two categorical pre
dictors A and B where A takes a levels and B takes b levels. One possibility is to
consider running two onefactor studies. One study will examine the relationship be
tween Y and A, and the second study will examine the relationship between Y and B
There are several disadvantages to such an approach, however.

First, and perhaps foremost, doing two separate analyses will not allow us to de
termine the joint relationship A and B have with Y This relates directly to the concept
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of interaction between predictors. We will soon define this concept more precisely,
but basically, if A and B interact, then the conditional relationship between Y and A
given B j , changes in some substantive way as we change j . If the predictors A
and B do not interact, then indeed we will be able to examine the relationship between
the response and each of the predictors separately. But we almost never know that this
is the case beforehand and must assess whether or not an interaction exists based on
collected data.

A second reason for including both predictors in the analysis is that this will often
lead to a reduction in the contribution of random error to the results. By this, we mean
that we will be able to explain some of the observed variation in Y by the inclusion
of the second variable in the model. This depends, however, on the additional variable
having a relationship with the response. Furthermore, for the inclusion of a second
variable to be worthwhile, this relationship must be strong enough to justify the loss in
degrees of freedom available for the estimation of the contribution of random error to
the experimental results. As we will see, including the second variable in the analysis
results in a reduction in the degrees of freedom in the Error row of the ANOVA table.
Degrees of freedom are playing the role of sample size here. The fewer the degrees of
freedom in the Error row, the less accurate our estimate of 2 will be.

When we include both predictors in our analysis, and we have the opportunity to
determine the sampling process, it is important that we cross the predictors. By this,
we mean that we observe Y at each combination

A B i j 1 a 1 b .

Suppose, then, that we have ni j response values at the A B i j setting of the
predictors. Then, letting

E Y A B i j i j

be the mean response when A i and B j , and introducing the dummy variables

Xi j
1 A i B j
0 A i or B j

we can write

E Y X i j xi j for all i j 11x11 21x21 abxab

a

i 1

b

j 1
i j xi j

The relationship between Y and the predictors is completely encompassed in the changes
in the i j as i and j change. From this, we can see that a regression model for this sit
uation is immediately a linear regression model.
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Inferences About Individual Means and Differences of Means

Now let yi jk denote the kth response value when Xi j 1 Then, as in Section 10.4.1,
the leastsquares estimate of i j is given by

bi j yi j
1

ni j

ni j

k 1

yi jk

the mean of the observations when X i j 1 If in addition we assume that the condi
tional distributions of Y given the predictors all have variance equal to 2, then with
N n11 n21 nab we have that

s2 1

N ab

a

i 1

b

j 1

ni j

k 1

yi jk yi j
2 (10.4.5)

is an unbiased estimator of 2 Therefore, using (10.4.5), the standard error of yi j is
given by s ni j

With the normality assumption, we have that Yi j N i j
2 ni j independent

of
N ab S2

2
2 N ab

This leads to the confidence intervals

yi j
s

ni j
t 1 2 N ab

for i j and

yi j ykl s
1

ni j

1

nkl
t 1 2 N ab

for the difference of means i j kl

The ANOVA for Assessing Interaction and Relationships with
the Predictors

We are interested in whether or not there is any relationship between Y and the pre
dictors. There is no relationship between the response and the predictors if and only
if all the i j are equal. Before testing this, however, it is customary to test the null
hypothesis that there is no interaction between the predictors. The precise definition of
no interaction here is that

i j i j

for all i and j for some constants i and j i.e., the means can be expressed additively.
Note that if we fix B j and let A vary, then these response curves (a response curve
is a plot of the means of one variable while holding the value of the second variable
fixed) are all parallel. This is an equivalent way of saying that there is no interaction
between the predictors.
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In Figure 10.4.5, we have depicted response curves in which the factors do not in
teract, and in Figure 10.4.6 we have depicted response curves in which they do. Note
that the solid lines, for example, joining 11 and 21 are there just to make it easier to
display the parallelism (or lack thereof) and have no other significance.
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Figure 10.4.5: Response curves for expected response with two predictors, with A taking three
levels and B taking two levels. Because they are parallel, the predictors do not interact.
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Figure 10.4.6: Response curves for expected response with two predictors, with A taking three
levels and B taking two levels. They are not parallel, so the predictors interact.

To test the null hypothesis of no interaction, we must first fit the model where

i j i j i.e., find the leastsquares estimates of the i j under these constraints.
We will not pursue the mathematics of obtaining these estimates here, but rely on
software to do this for us and to compute the sum of squares relevant for testing the
null hypothesis of no interaction (from the results of Section 10.3.4, we know that this
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is obtained by differencing the regression sum of squares obtained from the full model
and the regression sums of squares obtained from the model with no interaction).

If we decide that an interaction exists, then it is immediate that both A and B have
an effect on Y (if A does not have an effect, then A and B cannot interact — see
Problem 10.4.16); we must look at differences among the yi j to determine the form
of the relationship. If we decide that no interaction exists, then A has an effect if and
only if the i vary, and B has an effect if and only if the j vary. We can test the
null hypothesis H0 : 1 a of no effect due to A and the null hypothesis
H0 : 1 b of no effect due to V separately, once we have decided that no
interaction exists.

The details for deriving the relevant sums of squares for all these hypotheses are
not covered here, but many statistical packages will produce an ANOVA table, as given
below.

Source Df Sum of Squares
A a 1 RSS A
B b 1 RSS B
A B a 1 b 1 RSS A B

Error N ab a
i 1

b
j 1

ni j
k 1 yi jk yi j

2

Total N 1 a
i 1

b
j 1

ni j
k 1 yi jk y

2

Note that if we had included only A in the model, then there would be N a degrees
of freedom for the estimation of 2 By including B, we lose N a N ab
a b 1 degrees of freedom for the estimation of 2

Using this table, we first assess the null hypothesis H0 : no interaction between A
and B using F F a 1 b 1 N ab under H0 via the Pvalue

P F
RSS A B a 1 b 1

s2

where s2 is given by (10.4.5). If we decide that no interaction exists, then we assess
the null hypothesis H0 : no effect due to A using F F a 1 N ab under H0,
via the Pvalue

P F
RSS A a 1

s2

and assess H0 : no effect due to B using F F b 1 N ab under H0 via the
Pvalue

P F
RSS B b 1

s2
.

Model Checking

To check the model, we look at the standardized residuals given by (see Problem
10.4.18)

yi jk yi j

s 1 1 ni j
(10.4.6)
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We will restrict our attention to various plots of the standardized residuals for model
checking.

We consider an example of a twofactor analysis.

EXAMPLE 10.4.5
The data in the following table come from G. E. P. Box and D. R. Cox, “An analysis of
transformations” (Journal of the Royal Statistical Society, 1964, Series B, p. 211) and
represent survival times, in hours, of animals exposed to one of three different types of
poisons and allocated four different types of treatments. We let A denote the treatments
and B denote the type of poison, so we have 3 4 12 different A B combinations.
Each combination was administered to four different animals; i.e., ni j 4 for every i
and j

A1 A2 A3 A4
B1 3 1 4 5 4 6 4 3 8 2 11 0 8 8 7 2 4 3 4 5 6 3 7 5 4 5 7 1 6 6 6 2
B2 3 6 2 9 4 0 2 3 9 2 6 1 4 9 12 4 4 4 3 5 3 1 4 0 5 6 10 2 7 1 3 8
B3 2 2 2 1 1 8 2 3 3 0 3 7 3 8 2 9 2 3 2 5 2 4 2 2 3 0 3 6 3 1 3 3

A normal probability plot for these data, using the standardized residuals after fit
ting the twofactor model, reveals a definite problem. In the above reference, a trans
formation of the response to the reciprocal 1 Y is suggested, based on a more sophis
ticated analysis, and this indeed leads to much more appropriate standardized residual
plots. Figure 10.4.7 is a normal probability plot for the standardized residuals based on
the reciprocal response. This normal probability plot looks reasonable.
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Figure 10.4.7: Normal probability plot of the standardized residuals in Example 10.4.5 using
the reciprocal of the response.

Figure 10.4.8 is a plot of the standardized residuals against the various A B
combinations, where we have coded the combination i j as b i 1 j with
b 3 i 1 2 3 4 and j 1 2 3 This coding assigns a unique integer to each
combination i j and is convenient when comparing scatter plots of the response for
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each treatment. Again, this residual plot looks reasonable.
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Figure 10.4.8: Scatter plot for the data in Example 10.4.5 of the standardized residuals against
each value of A B using the reciprocal of the response.

Below we provide the leastsquares estimates of the i j for the transformed model.

A1 A2 A3 A4
B1 0 24869 0 11635 0 18627 0 16897
B2 0 32685 0 13934 0 27139 0 17015
B3 0 48027 0 30290 0 42650 0 30918

The ANOVA table for the data, as obtained from a standard statistical package, is given
below.

Source Df Sum of Squares Mean Square
A 3 0 20414 0 06805
B 2 0 34877 0 17439
A B 6 0 01571 0 00262
Error 36 0 08643 0 00240
Total 47 0 65505

From this, we determine that s 0 00240 4 89898 10 2, and so the standard
errors of the leastsquares estimates are all equal to s 2 0 0244949

To test the null hypothesis of no interaction between A and B, we have, using
F F 6 36 under H0 the Pvalue

P F
0 00262

0 00240
P F 1 09 0 387

We have no evidence against the null hypothesis.
So we can go on to test the null hypothesis of no effect due to A and we have, using

F F 2 36 under H0 the Pvalue

P F
0 06805

0 00240
P F 28 35 0 000
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We reject this null hypothesis.
Similarly, testing the null hypothesis of no effect due to B, we have, using F

F 2 36 under H0 the Pvalue

P F
0 17439

0 00240
P F 72 66 0 000

We reject this null hypothesis as well.
Accordingly, we have decided that the appropriate model is the additive model

given by E 1 Y A B i j i j (we are still using the transformed
response 1 Y ) We can also write this as E 1 Y A B i j i

j for any choice of Therefore, there is no unique estimate of the additive
effects due to A or B However, we still have unique leastsquares estimates of the
means, which are obtained (using software) by fitting the model with constraints on the

i j corresponding to no interaction existing. These are recorded in the following table.

A1 A2 A3 A4
B1 0 26977 0 10403 0 21255 0 13393
B2 0 31663 0 15089 0 25942 0 18080
B3 0 46941 0 30367 0 41219 0 33357

As we have decided that there is no interaction between A and B we can assess
singlefactor effects by examining the response means for each factor separately. For
example, the means for investigating the effect of A are given in the following table.

A1 A2 A3 A4
0 352 0 186 0 295 0 216

We can compare these means using procedures based on the tdistribution. For exam
ple, a 0.95confidence interval for the difference in the means at levels A1 and A2 is
given by

y1 y2
s

12
t0 975 36 0 352 0 186

0 00240

12
2 0281

0 13732 0 19468 (10.4.7)

This indicates that we would reject the null hypothesis of no difference between these
means at the 0 05 level.

Notice that we have used the estimate of 2 based on the full model in (10.4.7).
Logically, it would seem to make more sense to use the estimate based on fitting the
additive model because we have decided that it is appropriate. When we do so, this is
referred to as pooling, as it can be shown that the new error estimate is calculated by
adding RSS A B to the original ESS and dividing by the sum of the A B degrees
of freedom and the error degrees of freedom. Not to pool is regarded as a somewhat
more conservative procedure.



594 Section 10.4: Quantitative Response and Categorical Predictors

10.4.4 Randomized Blocks

With twofactor models, we generally want to investigate whether or not both of these
factors have a relationship with the response Y Suppose, however, that we know that a
factor B has a relationship with Y , and we are interested in investigating whether or not
another factor A has a relationship with Y . Should we run a singlefactor experiment
using the predictor A or run a twofactor experiment including the factor B?

The answer is as we have stated at the start of Section 10.4.2. Including the factor
B will allow us, if B accounts for a lot of the observed variation, to make more accurate
comparisons. Notice, however, that if B does not have a substantial effect on Y then
its inclusion will be a waste, as we sacrificed a b 1 degrees of freedom that would
otherwise go toward the estimation of 2.

So it is important that we do indeed know that B has a substantial effect. In such
a case, we refer to B as a blocking variable. It is important again that the blocking
variable B be crossed with A Then we can test for any effect due to A by first testing
for an interaction between A and B; if no such interaction is found, then we test for an
effect due to A alone, just as we have discussed in Section 10.4.3.

A special case of using a blocking variable arises when we have ni j 1 for all i and
j In this case, N ab so there are no degrees of freedom available for the estimation
of error. In fact, we have that (see Problem 10.4.19) s2 0 Still, such a design has
practical value, provided we are willing to assume that there is no interaction between
A and B This is called a randomized block design.

For a randomized block design, we have that

s2 RSS A B

a 1 b 1
(10.4.8)

is an unbiased estimate of 2, and so we have a 1 b 1 degrees of freedom for
the estimation of error. Of course, this will not be correct if A and B do interact,
but when they do not, this can be a highly efficient design, as we have removed the
effect of the variation due to B and require only ab observations for this. When the
randomized block design is appropriate, we test for an effect due to A, using F
F a 1 a 1 b 1 under H0 via the Pvalue

P F
RSS A a 1

s2
.

10.4.5 One Categorical and One Quantitative Predictor

It is also possible that the response is quantitative while some of the predictors are
categorical and some are quantitative. We now consider the situation where we have
one categorical predictor A taking a values, and one quantitative predictor W . We
assume that the regression model applies. Furthermore, we restrict our attention to the
situation where we suppose that, within each level of A the mean response varies as

E Y A W i i1 i2
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so that we have a simple linear regression model within each level of A.
If we introduce the dummy variables

Xi j
W j 1 A i

0 A i

for i 1 a and j 1 2 then we can write the linear regression model as

E Y X i j xi j 11x11 12x12 a1xa1 a2xa2

Here, i1 is the intercept and i2 is the slope specifying the relationship between Y and
W when A i The methods of Section 10.3.4 are then available for inference about
this model.

We also have a notion of interaction in this context, as we say that the two pre
dictors interact if the slopes of the lines vary across the levels of A So saying that
no interaction exists is the same as saying that the response curves are parallel when
graphed for each level of A If an interaction exists, then it is definite that both A and
W have an effect on Y Thus the null hypothesis that no interaction exists is equivalent
to H0 : 12 a2

If we decide that no interaction exists, then we can test for no effect due to W by
testing the null hypothesis that the common slope is equal to 0, or we can test the null
hypothesis that there is no effect due to A by testing H0 : 11 a1 i.e., that
the intercept terms are the same across the levels of A

We do not pursue the analysis of this model further here. Statistical software is
available, however, that will calculate the relevant ANOVA table for assessing the var
ious null hypotheses.

Analysis of Covariance

Suppose we are running an experimental design and for each experimental unit we can
measure, but not control, a quantitative variable W that we believe has an effect on the
response Y If the effect of this variable is appreciable, then good statistical practice
suggests we should include this variable in the model, as we will reduce the contri
bution of error to our experimental results and thus make more accurate comparisons.
Of course, we pay a price when we do this, as we lose degrees of freedom that would
otherwise be available for the estimation of error. So we must be sure that W does have
a significant effect in such a case. Also, we do not test for an effect of such a variable,
as we presumably know it has an effect. This technique is referred to as the analysis of
covariance and is obviously similar in nature to the use of blocking variables.

Summary of Section 10.4

We considered the situation involving a quantitative response and categorical
predictor variables.

By the introduction of dummy variables for the predictor variables, we can con
sider this situation as a particular application of the multiple regression model of
Section 10.3.4.
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If we decide that a relationship exists, then we typically try to explain what
form this relationship takes by comparing means. To prevent finding too many
statistically significant differences, we lower the individual error rate to ensure a
sensible family error rate.

When we have two predictors, we first check to see if the factors interact. If the
two predictors interact, then both have an effect on the response.

A special case of a twoway analysis arises when one of the predictors serves as
a blocking variable. It is generally important to know that the blocking variable
has an effect on the response, so that we do not waste degrees of freedom by
including it.

Sometimes we can measure variables on individual experimental units that we
know have an effect on the response. In such a case, we include these variables
in our model, as they will reduce the contribution of random error to the analysis
and make our inferences more accurate.

EXERCISES

10.4.1 The following values of a response Y were obtained for three settings of a
categorical predictor A

A 1 2 9976 0 3606 4 7716 1 5652
A 2 0 7468 1 3308 2 2167 0 3184
A 3 2 1192 2 3739 0 3335 3 3015

Suppose we assume the normal regression model for these data with one categorical
predictor.
(a) Produce a sidebyside boxplot for the data.
(b) Plot the standardized residuals against A (if you are using a computer for your cal
culations, also produce a normal probability plot of the standardized residuals) Does
this give you grounds for concern that the model assumptions are incorrect?
(c) Carry out a oneway ANOVA to test for any difference among the conditional means
of Y given A
(d) If warranted, construct 0.95confidence intervals for the differences between the
means and summarize your findings.

10.4.2 The following values of a response Y were obtained for three settings of a
categorical predictor A

A 1 0 090 0 800 33 070 1 890
A 2 5 120 1 580 1 760 1 740
A 3 5 080 3 510 4 420 1 190

Suppose we assume the normal regression model for these data with one categorical
predictor.
(a) Produce a sidebyside boxplot for the data.
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(b) Plot the standardized residuals against A (if you are using a computer for your cal
culations, also produce a normal probability plot of the standardized residuals) Does
this give you grounds for concern that the model assumptions are incorrect?
(c) If concerns arise about the validity of the model, can you “fix” the problem?
(d) If you have been able to fix any problems encountered with the model, carry out a
oneway ANOVA to test for any differences among the conditional means of Y given
A
(e) If warranted, construct 0.95confidence intervals for the differences between the
means and summarize your findings.
10.4.3 The following table gives the percentage moisture content of two different types
of cheeses determined by randomly sampling batches of cheese from the production
process.

Cheese 1 39 02 38 79 35 74 35 41 37 02 36 00
Cheese 2 38 96 39 01 35 58 35 52 35 70 36 04

Suppose we assume the normal regression model for these data with one categorical
predictor.
(a) Produce a sidebyside boxplot for the data.
(b) Plot the standardized residuals against Cheese (if you are using a computer for
your calculations, also produce a normal probability plot of the standardized residuals).
Does this give you grounds for concern that the model assumptions are incorrect?

(c) Carry out a oneway ANOVA to test for any differences among the conditional
means of Y given Cheese Note that this is the same as a ttest for the difference in the
means.
10.4.4 In an experiment, rats were fed a stock ration for 100 days with various amounts
of gossypol added. The following weight gains in grams were recorded.

0.00% Gossypol
228 229 218 216 224 208 235 229
233 219 224 220 232 200 208 232

0.04% Gossypol
186 229 220 208 228 198 222 273
216 198 213

0.07% Gossypol
179 193 183 180 143 204 114 188
178 134 208 196

0.10% Gossypol
130 87 135 116 118 165 151 59
126 64 78 94 150 160 122 110 178

0.13% Gossypol
154 130 118 118 118 104 112 134
98 100 104

Suppose we assume the normal regression model for these data and treat gossypol as a
categorical predictor taking five levels.
(a) Create a sidebyside boxplot graph for the data. Does this give you any reason
to be concerned about the assumptions that underlie an analysis based on the normal
regression model?
(b) Produce a plot of the standardized residuals against the factor gossypol (if you are
using a computer for your calculations, also produce a normal probability plot of the
standardized residuals). What are your conclusions?
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(c) Carry out a oneway ANOVA to test for any differences among the mean responses
for the different amounts of gossypol.
(d) Compute 0.95confidence intervals for all the pairwise differences of means and
summarize your conclusions.
10.4.5 In an investigation into the effect of deficiencies of trace elements on a variable
Y measured on sheep, the data in the following table were obtained.

Control 13 2 13 6 11 9 13 0 14 5 13 4
Cobalt 11 9 12 2 13 9 12 8 12 7 12 9
Copper 14 2 14 0 15 1 14 9 13 7 15 8
Cobalt + Copper 15 0 15 6 14 5 15 8 13 9 14 4

Suppose we assume the normal regression model for these data with one categorical
predictor.

(a) Produce a sidebyside boxplot for the data.
(b) Plot the standardized residuals against the predictor (if you are using a computer for
your calculations, also produce a normal probability plot of the standardized residuals).
Does this give you grounds for concern that the model assumptions are incorrect?
(c) Carry out a oneway ANOVA to test for any differences among the conditional
means of Y given the predictor
(d) If warranted, construct 0.95confidence intervals for all the pairwise differences
between the means and summarize your findings.
10.4.6 Two diets were given to samples of pigs over a period of time, and the following
weight gains (in lbs) were recorded.

Diet A 8 4 14 15 11 10 6 12 13 7
Diet B 7 13 22 15 12 14 18 8 21 23 10 17

Suppose we assume the normal regression model for these data.

(a) Produce a sidebyside boxplot for the data.
(b) Plot the standardized residuals against Diet. Also produce a normal probability plot
of the standardized residuals. Does this give you grounds for concern that the model
assumptions are incorrect?
(c) Carry out a oneway ANOVA to test for a difference between the conditional means
of Y given Diet
(d) Construct 0.95confidence intervals for differences between the means.
10.4.7 Ten students were randomly selected from the students in a university who took
firstyear calculus and firstyear statistics. Their grades in these courses are recorded
in the following table.

Student 1 2 3 4 5 6 7 8 9 10
Calculus 66 61 77 62 66 68 64 75 59 71
Statistics 66 63 79 63 67 70 71 80 63 74

Suppose we assume the normal regression model for these data.
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(a) Produce a sidebyside boxplot for the data.

(b) Treating the calculus and statistics marks as separate samples, carry out a oneway
ANOVA to test for any difference between the mean mark in calculus and the mean
mark in statistics. Produce the appropriate plots to check for model assumptions.
(c) Now take into account that each student has a calculus mark and a statistics mark
and test for any difference between the mean mark in calculus and the mean mark in
statistics. Produce the appropriate plots to check for model assumptions. Compare
your results with those obtained in part (b).
(d) Estimate the correlation between the calculus and statistics marks.
10.4.8 The following data were recorded in Statistical Methods, 6th ed., by G. Snedecor
and W. Cochran (Iowa State University Press, Ames, 1967) and represent the average
number of orets observed on plants in seven plots. Each of the plants was planted
with either high corms or low corms (a type of underground stem).

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5 Plot 6 Plot 7
Corm High 11 2 13 3 12 8 13 7 12 2 11 9 12 1
Corm Low 14 6 12 6 15 0 15 6 12 7 12 0 13 1

Suppose we assume the normal regression model for these data.
(a) Produce a sidebyside boxplot for the data.
(b) Treating the Corm High and Corm Low measurements as separate samples, carry
out a oneway ANOVA to test for any difference between the population means. Pro
duce the appropriate plots to check for model assumptions.
(c) Now take into account that each plot has a Corm High and Corm Low measurement.
Compare your results with those obtained in part (b). Produce the appropriate plots to
check for model assumptions.
(d) Estimate the correlation between the calculus and statistics marks.

10.4.9 Suppose two measurements, Y1 and Y2, corresponding to different treatments,
are taken on the same individual who has been randomly sampled from a population

. Suppose that Y1 and Y2 have the same variance and are negatively correlated. Our
goal is to compare the treatment means. Explain why it would have been better to
have randomly sampled two individuals from and applied the treatments to these
individuals separately. (Hint: Consider Var Y1 Y2 in these two sampling situations.)
10.4.10 List the assumptions that underlie the validity of the oneway ANOVA test
discussed in Section 10.4.1.
10.4.11 List the assumptions that underlie the validity of the paired comparison test
discussed in Section 10.4.2.

10.4.12 List the assumptions that underlie the validity of the twoway ANOVA test
discussed in Section 10.4.3.

10.4.13 List the assumptions that underlie the validity of the test used with the ran
domized block design, discussed in Section 10.4.4, when ni j 1 for all i and j .
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PROBLEMS

10.4.14 Prove that a
i 1

ni
j 1 yi j i

2
is minimized as a function of the i by

i yi yi1 yini ni for i 1 a
10.4.15 Prove that

a

i 1

ni

j 1

yi j y 2
a

i 1

ni yi y 2
a

i 1

ni

j 1

yi j yi
2

where yi yi1 yini ni and y is the grand mean.

10.4.16 Argue that if the relationship between a quantitative response Y and two cat
egorical predictors A and B is given by a linear regression model, then A and B both
have an effect on Y whenever A and B interact. (Hint: What does it mean in terms of
response curves for an interaction to exist, for an effect due to A to exist?)

10.4.17 Establish that (10.4.2) is the appropriate expression for the standardized resid
ual for the linear regression model with one categorical predictor.

10.4.18 Establish that (10.4.6) is the appropriate expression for the standardized resid
ual for the linear regression model with two categorical predictors.
10.4.19 Establish that s2 0 for the linear regression model with two categorical
predictors when ni j 1 for all i and j
10.4.20 How would you assess whether or not the randomized block design was ap
propriate after collecting the data?

COMPUTER PROBLEMS

10.4.21 Use appropriate software to carry out Fisher’s multiple comparison test on the
data in Exercise 10.4.5 so that the family error rate is between 0.04 and 0.05. What
individual error rate is required?
10.4.22 Consider the data in Exercise 10.4.3, but now suppose we also take into ac
count that the cheeses were made in lots where each lot corresponded to a production
run. Recording the data this way, we obtain the following table.

Lot 1 Lot 2 Lot 3
Cheese 1 39 02 38 79 35 74 35 41 37 02 36 00
Cheese 2 38 96 39 01 35 58 35 52 35 70 36 04

Suppose we assume the normal regression model for these data with two categorical
predictors.
(a) Produce a sidebyside boxplot for the data for each treatment.
(b) Produce a table of cell means.

(c) Produce a normal probability plot of the standardized residuals and a plot of the
standardized residuals against each treatment combination (code the treatment combi
nations so there is a unique integer corresponding to each). Comment on the validity
of the model.
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(d) Construct the ANOVA table testing first for no interaction between A and B and, if
necessary, an effect due to A and an effect due to B
(e) Based on the results of part (d), construct the appropriate table of means, plot the
corresponding response curve, and make all pairwise comparisons among the means.
(f) Compare your results with those obtained in Exercise 10.4.4 and comment on the
differences.
10.4.23 A twofactor experimental design was carried out, with factors A and B both
categorical variables taking three values. Each treatment was applied four times and
the following response values were obtained.

A 1 A 2 A 3

B 1
19 86 20 88
20 15 25 44

26 37 24 38
24 87 30 93

29 72 29 64
30 06 35 49

B 2
15 35 15 86
21 86 26 92

22 82 20 98
29 38 34 13

27 12 24 27
34 78 40 72

B 3
4 01 4 48

21 66 25 93
10 34 9 38
30 59 40 04

15 64 14 03
36 80 42 55

Suppose we assume the normal regression model for these data with two categorical
predictors.
(a) Produce a sidebyside boxplot for the data for each treatment.
(b) Produce a table of cell means.
(c) Produce a normal probability plot of the standardized residuals and a plot of the
standardized residuals against each treatment combination (code the treatment combi
nations so there is a unique integer corresponding to each). Comment on the validity
of the model.
(d) Construct the ANOVA table testing first for no interaction between A and B and, if
necessary, an effect due to A and an effect due to B
(e) Based on the results of part (d), construct the appropriate table of means, plot the
corresponding response curves, and make all pairwise comparisons among the means.
10.4.24 A chemical paste is made in batches and put into casks. Ten delivery batches
were randomly selected for testing; then three casks were randomly selected from each
delivery and the paste strength was measured twice, based on samples drawn from each
sampled cask. The response was expressed as a percentage of fill strength. The col
lected data are given in the following table. Suppose we assume the normal regression
model for these data with two categorical predictors.

Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
Cask 1 62 8 62 6 60 0 61 4 58 7 57 5 57 1 56 4 55 1 55 1
Cask 2 60 1 62 3 57 5 56 9 63 9 63 1 56 9 58 6 54 7 54 2
Cask 3 62 7 63 1 61 1 58 9 65 4 63 7 64 7 64 5 58 5 57 5

Batch 6 Batch 7 Batch 8 Batch 9 Batch 10
Cask 1 63 4 64 9 62 5 62 6 59 2 59 4 54 8 54 8 58 3 59 3
Cask 2 59 3 58 1 61 0 58 7 65 2 66 0 64 0 64 0 59 2 59 2
Cask 3 60 5 60 0 56 9 57 7 64 8 64 1 57 7 56 8 58 9 56 8
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(a) Produce a sidebyside boxplot for the data for each treatment.

(b) Produce a table of cell means.
(c) Produce a normal probability plot of the standardized residuals and a plot of the
standardized residuals against each treatment combination (code the treatment combi
nations so there is a unique integer corresponding to each). Comment on the validity
of the model.
(d) Construct the ANOVA table testing first for no interaction between Batch and Cask
and, if necessary, no effect due to Batch and no effect due to Cask

(e) Based on the results of part (d), construct the appropriate table of means and plot
the corresponding response curves.

10.4.25 The following data arose from a randomized block design, where factor B is
the blocking variable and corresponds to plots of land on which cotton is planted. Each
plot was divided into five subplots, and different concentrations of fertilizer were ap
plied to each, with the response being a strength measurement of the cotton harvested.
There were three blocks and five different concentrations of fertilizer. Note that there is
only one observation for each block and concentration combination. Further discussion
of these data can be found in Experimental Design, 2nd ed., by W. G. Cochran and
G. M. Cox (John Wiley & Sons, New York, 1957, pp. 107–108). Suppose we assume
the normal regression model with two categorical predictors.

B 1 B 2 B 3
A 36 7 62 8 00 7 93
A 54 8 14 8 15 7 87
A 72 7 70 7 73 7 74
A 108 7 17 7 57 7 80
A 144 7 46 7 68 7 21

(a) Construct the ANOVA table for testing for no effect due to fertilizer and which also
removes the variation due to the blocking variable.
(b) Beyond the usual assumptions that we are concerned about, what additional as
sumption is necessary for this analysis?
(c) Actually, the factor A is a quantitative variable. If we were to take this into ac
count by fitting a model that had the same slope for each block but possibly different
intercepts, then what benefit would be gained?

(d) Carry out the analysis suggested in part (c) and assess whether or not this model
makes sense for these data.

10.5 Categorical Response and Quantitative
Predictors
We now consider the situation in which the response is categorical but at least some
of the predictors are quantitative. The essential difficulty in this context lies with the
quantitative predictors, so we will focus on the situation in which all the predictors
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are quantitative. When there are also some categorical predictors, these can be han
dled in the same way, as we can replace each categorical predictor by a set of dummy
quantitative variables, as discussed in Section 10.4.5.

For reasons of simplicity, we will restrict our attention to the situation in which
the response variable Y is binary valued, and we will take these values to be 0 and 1
Suppose, then, that there are k quantitative predictors X1 Xk Because Y 0 1 ,
we have

E Y X1 x1 Xk xk P Y 1 X1 x1 Xk xk [0 1] .

Therefore, we cannot write E Y x1 xk 1x1 k xk without placing
some unnatural restrictions on the i to ensure that 1x1 k xk [0 1].

Perhaps the simplest way around this is to use a 1–1 function l : [0 1] R1 and
write

l P Y 1 X1 x1 Xk xk 1x1 k xk

so that
P Y 1 X1 x1 Xk xk l 1

1x1 k xk .

We refer to l as a link function. There are many possible choices for l. For example, it
is immediate that we can take l to be any inverse cdf for a continuous distribution.

If we take l 1 i.e., the inverse cdf of the N 0 1 distribution, then this is
called the probit link. A more commonly used link, due to some inherent mathematical
simplicities, is the logistic link given by

l p ln
p

1 p
. (10.5.1)

The righthand side of (10.5.1) is referred to as the logit or log odds. The logistic link
is the inverse cdf of the logistic distribution (see Exercise 10.5.1). We will restrict our
discussion to the logistic link hereafter.

The logistic link implies that (see Exercise 10.5.2)

P Y 1 X1 x1 Xk xk
exp 1x1 k xk

1 exp 1x1 k xk
(10.5.2)

which is a relatively simple relationship. We see immediately, however, that

Var Y X1 x1 Xk xk

P Y 1 X1 x1 Xk xk 1 P Y 1 X1 x1 Xk xk

so the variance of the conditional distribution of Y , given the predictors, depends on the
values of the predictors. Therefore, these models are not, strictly speaking, regression
models as we have defined them. Still when we use the link function given by (10.5.1),
we refer to this as the logistic regression model.

Now suppose we observe n independent observations xi1 xik yi for i
1 n We then have that, given xi1 xik the response yi is an observation
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from the Bernoulli P Y 1 X1 x1 Xk xk distribution. Then (10.5.2)
implies that the conditional likelihood, given the values of the predictors, is

n

i 1

exp 1x1 k xk

1 exp 1x1 k xk

yi 1

1 exp 1x1 k xk

1 yi

Inference about the i then proceeds via the likelihood methods discussed in Chap
ter 6. In fact, we need to use software to obtain the MLE’s, and, because the exact
sampling distributions of these quantities are not available, the large sample methods
discussed in Section 6.5 are used for approximate confidence intervals and Pvalues.
Note that assessing the null hypothesis H0 : i 0 is equivalent to assessing the null
hypothesis that the predictor Xi does not have a relationship with the response.

We illustrate the use of logistic regression via an example.

EXAMPLE 10.5.1
The following table of data represent the

(number of failures, number of successes)

for ingots prepared for rolling under different settings of the predictor variables, U
soaking time and V heating time, as reported in Analysis of Binary Data, by D. R.
Cox (Methuen, London, 1970). A failure indicates that an ingot is not ready for rolling
after the treatment. There were observations at 19 different settings of these variables.

V 7 V 14 V 27 V 51
U 1 0 0 10 0 31 1 55 3 10
U 1 7 0 17 0 43 4 40 0 1
U 2 2 0 7 2 31 0 21 0 1
U 2 8 0 12 0 31 1 21 0 0
U 4 0 0 9 0 19 1 15 0 1

Including an intercept in the model and linear terms for U and V leads to three
predictor variables X1 1 X2 U X3 V and the model takes the form

P Y 1 X2 x2 X3 x3
exp 1 2x2 3x3

1 exp 1 2x2 3x3

Fitting the model via the method of maximum likelihood leads to the estimates given
in the following table. Here, z is the value of estimate divided by its standard error.
Because this is approximately distributed N 0 1 when the corresponding i equals
0, the Pvalue for assessing the null hypothesis that i 0 is P Z z with
Z N 0 1 .

Coefficient Estimate Std. Error z Pvalue

1 5 55900 1 12000 4 96 0 000

2 0 05680 0 33120 0 17 0 864

3 0 08203 0 02373 3 46 0 001

Of course, we have to feel confident that the model is appropriate before we can
proceed to make formal inferences about the i In this case, we note that the number
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of successes s x2 x3 in the cell of the table, corresponding to the setting X2 X3
x2 x3 , is an observation from a

Binomial m x2 x3 P Y 1 X2 x2 X3 x3

distribution, where m x2 x3 is the sum of the number of successes and failures in that
cell. So, for example, if X2 U 1 0 and X3 V 7 then m 1 0 7 10 and
s 1 0 7 10 Denoting the estimate of P Y 1 X2 x2 X3 x3 by p x2 x3
obtained by plugging in the MLE, we have that (see Problem 10.5.8)

X2

x2 x3

s x2 x3 m x2 x3 p x2 x3
2

m x2 x3 p x2 x3
(10.5.3)

is asymptotically distributed as a 2 19 3 2 16 distribution when the model is
correct. We determine the degrees of freedom by counting the number of cells where
there were observations (19 in this case, as no observations were obtained when U
2 8 V 51) and subtracting the number of parameters estimated. For these data,
X2 13 543 and the Pvalue is P 2 16 13 543 0 633 Therefore, we have no
evidence that the model is incorrect and can proceed to make inferences about the i
based on the logistic regression model.

From the preceding table, we see that the null hypothesis H0 : 2 0 is not
rejected. Accordingly, we drop X2 and fit the smaller model given by

P Y 1 X3 x3
exp 1 3x3

1 exp 1 3x3

This leads to the estimates 1 5 4152 and 3 0 08070 Note that these are only
marginally different from the previous estimates. In Figure 10.5.1, we present a graph
of the fitted function over the range where we have observed X3.
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Figure 10.5.1: The fitted probability of obtaining an ingot ready to be rolled as a function of
heating time in Example 10.5.1.
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Summary of Section 10.5

We have examined the situation in which we have a single binaryvalued re
sponse variable and a number of quantitative predictors.

One method of expressing a relationship between the response and predictors is
via the use of a link function.

If we use the logistic link function, then we can carry out a logistic regression
analysis using likelihood methods of inference.

EXERCISES

10.5.1 Prove that the function f : R1 R1, defined by f x e x 1 e x 2 for
x R1 is a density function with distribution function given by F x 1 e x 1

and inverse cdf given by F 1 p ln p ln 1 p for p [0 1] This is called the
logistic distribution.
10.5.2 Establish (10.5.2).
10.5.3 Suppose that a logistic regression model for a binaryvalued response Y is given
by

P Y 1 x
exp 1 2x

1 exp 1 2x

Prove that the log odds at X x is given by 1 2x
10.5.4 Suppose that instead of the inverse logistic cdf as the link function, we use
the inverse cdf of a Laplace distribution (see Problem 2.4.22). Determine the form of
P Y 1 X1 x1 Xk xk .

10.5.5 Suppose that instead of the inverse logistic cdf as the link function, we use
the inverse cdf of a Cauchy distribution (see Problem 2.4.21). Determine the form of
P Y 1 X1 x1 Xk xk .

COMPUTER EXERCISES

10.5.6 Use software to replicate the results of Example 10.5.1.

10.5.7 Suppose that the following data were obtained for the quantitative predictor X
and the binaryvalued response variable Y

X 5 4 3 2 1 0 1 2 3 4 5
Y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 1 1 1 1

(a) Using these data, fit the logistic regression model given by

P Y 1 x
exp 1 2x 3x2

1 exp 1 2x 3x2

(b) Does the model fit the data?
(c) Test the null hypothesis H0 : 3 0
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(d) If you decide there is no quadratic effect, refit the model and test for any linear
effect.
(e) Plot P Y 1 x as a function of x

PROBLEMS

10.5.8 Prove that (10.5.3) is the correct form for the chisquared goodnessoffit test
statistic.

10.6 Further Proofs (Advanced)
Proof of Theorem 10.3.1

We want to prove that, when E Y X x 1 2x and we observe the independent
values x1 y1 xn yn for X Y then the leastsquares estimates of 1 and 2
are given by b1 y b2x and

b2

n
i 1 xi x yi y

n
i 1 xi x 2

whenever n
i 1 xi x 2 0

We need an algebraic result that will simplify our calculations.

Lemma 10.6.1 If x1 y1 xn yn are such that n
i 1 xi x 2 0 and

q r R1, then n
i 1 yi b1 b2xi q rxi 0

PROOF We have

n

i 1

yi b1 b2xi ny nb1 nb2x n y y b2x b2x 0

which establishes that n
i 1 yi b1 b2xi q 0 for any q Now using this, and the

formulas in Theorem 10.3.1, we obtain

n

i 1

yi b1 b2xi xi

n

i 1

yi b1 b2xi xi x

n

i 1

yi y b2 xi x xi x
n

i 1

yi y xi x
n

i 1

yi y xi x 0

This establishes the lemma.
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Returning to the proof of Theorem 10.3.1, we have

n

i 1

yi 1 2xi
2

n

i 1

yi b1 b2xi 1 b1 2 b2 xi
2

n

i 1

yi b1 b2xi
2 2

n

i 1

yi b1 b2xi 1 b1 2 b2 xi

n

i 1
1 b1 2 b2 xi

2

n

i 1

yi b1 b2xi
2

n

i 1
1 b1 2 b2xi

2

as the middle term is 0 by Lemma 10.6.1. Therefore,

n

i 1

yi 1 2xi
2

n

i 1

yi b1 b2xi
2

and n
i 1 yi 1 2xi

2 takes its minimum value if and only if

n

i 1
1 b1 2 b2 xi

2 0.

This occurs if and only if 1 b1 2 b2 xi 0 for every i Because the xi are
not all the same value, this is true if and only if 1 b1 and 2 b2, which completes
the proof.

Proof of Theorem 10.3.2

We want to prove that, if E Y X x 1 2x and we observe the independent
values x1 y1 xn yn for X Y then
(i) E B1 X1 x1 Xn xn 1

(ii) E B2 X1 x1 Xn xn 2.

From Theorem 10.3.1 and E Y X1 x1 Xn xn 1 2x we have
that

E B2 X1 x1 Xn xn

n
i 1 xi x 1 2xi 1 2x

n
i 1 xi x 2

2

n
i 1 xi x 2

n
i 1 xi x 2 2

Also, from Theorem 10.3.1 and what we have just proved,

E B1 X1 x1 Xn xn 1 2x 2x 1
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Proof of Theorem 10.3.3

We want to prove that, if E Y X x 1 2x Var(Y X x 2 for every
x and we observe the independent values x1 y1 xn yn for X Y then

(i) Var B1 X1 x1 Xn xn
2 1 n x2 n

i 1 xi x 2

(ii) Var B2 X1 x1 Xn xn
2 n

i 1 xi x 2

(iii) Cov B1 B2 X1 x1 Xn xn
2x n

i 1 xi x 2

We first prove (ii). Observe that b2 is a linear combination of the yi y values,
so we can evaluate the conditional variance once we have obtained the conditional
variances and covariances of the Yi Y values. We have that

Yi Y 1
1

n
Yi

1

n j i

Y j

so the conditional variance of Yi Y is given by

2 1
1

n

2
2 n 1

n2
2 1

1

n

When i j we can write

Yi Y 1
1

n
Yi

1

n
Y j

1

n
k i j

Yk

and the conditional covariance between Yi Y and Y j Y is then given by

2 2 1
1

n

1

n
2 n 2

n2

2

n

(note that you can assume that the means of the expectations of the Y ’s are 0 for this
calculation). Therefore, the conditional variance of B2 is given by

Var B2 x1 xn

2 1
1

n

n
i 1 xi x 2

n
i 1 xi x 2 2

2

n
i j xi x x j x

n
i 1 xi x 2 2

2

n
i 1 xi x 2 ,

because

i j

xi x x j x
n

i 1

xi x

2 n

i 1

xi x 2

n

i 1

xi x 2.
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For (iii), we have that

Cov B1 B2 X1 x1 Xn xn

Cov Y B2 X B2 X1 x1 Xn xn

Cov Y B2 X1 x1 Xn xn x Var B2 X1 x1 Xn xn

and

Cov Y B2 X1 x1 Xn xn

i 1 xi x Cov Yi Y Y X1 x1 Xn xn
n
i 1 xi x 2

2 1 1 n i 1 xi x
n
i 1 xi x 2

0.

Therefore, Cov B1 B2 X1 x1 Xn xn
2x n

i 1 xi x 2.

Finally, for (i), we have,

Var B1 X1 x1 Xn xn Var Y B2x X1 x1 Xn xn

Var Y X1 x1 Xn xn x2 Var B2 X1 x1 Xn xn

2 Cov Y B2 X1 x1 Xn xn

where Var Y X1 x1 Xn xn
2 n Substituting the results for (ii) and

(iii) completes the proof of the theorem.

Proof of Corollary 10.3.1

We need to show that

Var B1 B2x X1 x1 Xn xn
2 1

n

x x 2

n
i 1 xi x 2

For this, we have that

Var B1 B2x X1 x1 Xn xn

Var B1 X1 x1 Xn xn x2 Var B2 X1 x1 Xn xn

2x Cov B1 B2 X1 x1 Xn xn

2 1

n

x2 x2 2xx
n
i 1 xi x 2

2 1

n

x x 2

n
i 1 xi x 2

Proof of Theorem 10.3.4

We want to show that, if E Y X x 1 2x Var Y X x 2 for every
x and we observe the independent values x1 y1 xn yn for X Y then

E S2 X1 x1 Xn xn
2
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We have that

E n 2 S2 X1 x1 Xn xn

E
n

i 1

Yi B1 B2xi
2 X1 x1 Xn xn

n

i 1

E Yi Y B2 xi x 2 X1 x1 Xn xn

n

i 1

Var Yi Y B2 xi x X1 x1 Xn xn

because

E Yi Y B2 xi x X1 x1 Xn xn

1 2xi 1 2x 2 xi x 0

Now,

Var Yi Y B2 xi x X1 x1 Xn xn

Var Yi Y X1 x1 Xn xn

2 xi x Cov Yi Y B2 X1 x1 Xn xn

xi x 2 Var B2 X1 x1 Xn xn

and, using the results established about the covariances of the Yi Y in the proof of
Theorem 10.3.3, we have that

Var Yi Y X1 x1 Xn xn
2 1 1 n

and

Cov Yi Y B2 X1 x1 Xn xn

1
n
i 1 xi x 2

n

j 1

x j x Cov Yi Y Y j Y X1 x1 Xn xn

2

n
i 1 xi x 2 1

1

n
xi x

1

n j i

x j x
2 xi x

n
i 1 xi x 2

because j i x j x xi x Therefore,

Var Yi Y B2 xi x X1 x1 Xn xn

2 1
1

n
2

2 xi x 2

n
i 1 xi x 2

2 xi x 2

n
i 1 xi x 2

2 1
1

n

xi x 2

n
i 1 xi x 2
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and

E S2 X1 x1 Xn xn

2

n 2

n

i 1

1
1

n

xi x 2

n
i 1 xi x 2

2

as was stated.

Proof of Lemma 10.3.1

We need to show that, if x1 y1 xn yn are such that n
i 1 xi x 2 0 then

n

i 1

yi y 2 b2
2

n

i 1

xi x 2
n

i 1

yi b1 b2xi
2

We have that
n

i 1

yi y 2
n

i 1

y2
i ny2

n

i 1

yi b1 b2xi b1 b2xi
2 ny2

n

i 1

yi b1 b2xi
2

n

i 1

b1 b2xi
2 ny2

because n
i 1 yi b1 b2xi b1 b2xi 0 by Lemma 10.6.1. Then, using Theorem

10.3.1, we have
n

i 1

b1 b2xi
2 ny2

n

i 1

y b2 xi x 2 ny2 b2
2

n

i 1

xi x 2

and this completes the proof.

Proof of Theorem 10.3.6

We want to show that, if Y given X x is distributed N 1 2x 2 and we
observe the independent values x1 y1 xn yn for X Y , then the conditional
distributions of B1 B2 and S2 given X1 x1 Xn xn are as follows.

(i) B1 N 1
2 1 n x2 n

i 1 xi x 2

(ii) B2 N 2
2 n

i 1 xi x 2

(iii)

B1 B2x N 1 2x 2 1

n

x x 2

n
i 1 xi x 2

(iv) n 2 S2 2 2 n 2 independent of B1 B2

We first prove (i). Because B1 can be written as a linear combination of the Yi ,
Theorem 4.6.1 implies that the distribution of B1 must be normal. The result then
follows from Theorems 10.3.2 and 10.3.3. A similar proof establishes (ii) and (iii).
The proof of (iv) is similar to the proof of Theorem 4.6.6, and we leave this to a further
course in statistics.
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Proof of Corollary 10.3.2

We want to show
(i) B1 1 S 1 n x2 n

i 1 xi x 2 1 2
t n 2

(ii) B2 2
n
i 1 xi x 2 1 2

S t n 2

(iii)
B1 B2x 1 2x

S 1 n x x 2 n
i 1 xi x 2 1 2 t n 2

(iv) If F is defined as in (10.3.8), then H0 : 2 0 is true if and only if F
F 1 n 2 .

We first prove (i). Because B1 and S2 are independent

B1 1

1 n x2 n
i 1 xi x 2 1 2

N 0 1

independent of n 2 S2 2 2 n 2 Therefore, applying Definition 4.6.2, we
have

B1 1

1 n x2 n
i 1 xi x 2 1 2

n 2 S2 n 2 2 1 2

B1 1

S 1 n x2 n
i 1 xi x 2 1 2 t n 2 .

For (ii), the proof proceeds just as in the proof of (i).
For (iii), the proof proceeds just as in the proof of (i) and also using Corollary

10.3.1.

We now prove (iv). Taking the square of the ratio in (ii) and applying Theorem
4.6.11 implies

G
B2 2

2

S2 n
i 1 xi x 2 1

B2 2
2 n

i 1 xi x 2

S2
F 1 n 2 .

Now observe that F defined by (10.3.8) equals G when 2 0 The converse that
F F 1 n 2 only if 2 0 is somewhat harder to prove and we leave this to a
further course.
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Advanced Topic —
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CHAPTER OUTLINE

Section 1 Simple Random Walk
Section 2 Markov Chains
Section 3 Markov Chain Monte Carlo
Section 4 Martingales
Section 5 Brownian Motion
Section 6 Poisson Processes
Section 7 Further Proofs

In this chapter, we consider stochastic processes, which are processes that proceed
randomly in time. That is, rather than consider fixed random variables X , Y , etc., or
even sequences of independent and identically distributed (i.i.d.) random variables, we
shall instead consider sequences X0 X1 X2 where Xn represents some random
quantity at time n. In general, the value Xn at time n might depend on the quantity
Xn 1 at time n 1, or even the values Xm for other times m n. Stochastic processes
have a different “avor” from ordinary random variables — because they proceed in
time, they seem more “alive.”

We begin with a simple but very interesting case, namely, simple random walk.

11.1 Simple Random Walk
Simple random walk can be thought of as a model for repeated gambling. Specifically,
suppose you start with $a, and repeatedly make $1 bets. At each bet, you have proba
bility p of winning $1 and probability q of losing $1, where p q 1. If Xn is the
amount of money you have at time n (henceforth, your fortune at time n), then X0 a,
while X1 could be a 1 or a 1 depending on whether you win or lose your first
bet. Then X2 could be a 2 (if you win your first two bets), or a (if you win once and
lose once), or a 2 (if you lose your first two bets). Continuing in this way, we obtain

615
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a whole sequence X0 X1 X2 of random values, corresponding to your fortune at
times 0 1 2 .

We shall refer to the stochastic process Xn as simple random walk. Another way
to define this model is to start with random variables Zi that are i.i.d. with P Zi
1 p and P Zi 1 1 p q, where 0 p 1. (Here, Zi 1 if you win
the i th bet, while Zi 1 if you lose the i th bet.) We then set X0 a, and for n 1
we set

Xn a Z1 Z2 Zn .

The following is a specific example of this.

EXAMPLE 11.1.1
Consider simple random walk with a 8 and p 1 3, so you start with $8 and have
probability 1 3 of winning each bet. Then the probability that you have $9 after one
bet is given by

P X1 9 P 8 Z1 9 P Z1 1 1 3,

as it should be. Also, the probability that you have $7 after one bet is given by

P X1 7 P 8 Z1 7 P Z1 1 2 3.

On the other hand, the probability that you have $10 after two bets is given by

P X2 10 P 8 Z1 Z2 10 P Z1 Z2 1 1 3 1 3 1 9.

EXAMPLE 11.1.2
Consider again simple random walk with a 8 and p 1 3. Then the probability
that you have $7 after three bets is given by

P X3 7 P 8 Z1 Z2 Z3 7 P Z1 Z2 Z3 1 .

Now, there are three different ways we could have Z1 Z2 Z3 1, namely: (a)
Z1 1, while Z2 Z3 1; (b) Z2 1, while Z1 Z3 1; or (c) Z3 1,
while Z1 Z2 1. Each of these three options has probability 1 3 2 3 2 3 .
Hence,

P X3 7 1 3 2 3 2 3 1 3 2 3 2 3 1 3 2 3 2 3 4 9.

If the number of bets is much larger than three, then it becomes less and less con
venient to compute probabilities in the above manner. A more systematic approach is
required. We turn to that next.

11.1.1 The Distribution of the Fortune

We first compute the distribution of Xn , i.e., the probability that your fortune Xn after
n bets takes on various values.



Chapter 11: Advanced Topic — Stochastic Processes 617

Theorem 11.1.1 Let Xn be simple random walk as before, and let n be a positive
integer. If k is an integer such that n k n and n k is even, then

P Xn a k
n

n k
2

p n k 2q n k 2.

For all other values of k, we have P Xn a k 0. Furthermore, E Xn
a n 2p 1

PROOF See Section 11.7.

This theorem tells us the entire distribution, and expected value, of the fortune Xn
at time n.

EXAMPLE 11.1.3
Suppose p 1 3 n 8 and a 1. Then P Xn 6 0 because 6 1 5, and
n 5 13 is not even. Also, P Xn 13 0 because 13 1 12 and 12 n. On
the other hand,

P Xn 5 P Xn 1 4
n

n 4
2

p n 4 2q n 4 2 8

6
1 3 6 2 3

8 7

2
1 3 6 2 3 1 0 0256.

Also, E Xn a n 2p 1 1 8 2 3 1 5 3.

Regarding E Xn , we immediately obtain the following corollary.

Corollary 11.1.1 If p 1 2, then E Xn a for all n 0. If p 1 2, then
E Xn a for all n 1. If p 1 2, then E Xn a for all n 1.

This corollary has the following interpretation. If p 1 2, then the game is fair,
i.e., both you and your opponent have equal chance of winning each bet. Thus, the
corollary says that for fair games, your expected fortune E Xn will never change
from its initial value, a.

On the other hand, if p 1 2, then the game is subfair, i.e., your opponent’s
chances are better than yours. In this case, the corollary says your expected fortune
will decrease, i.e., be less than its initial value of a. Similarly, if p 1 2 then the
game is superfair, and the corollary says your expected fortune will increase, i.e., be
more than its initial value of a.

Of course, in a real gambling casino, the game is always subfair (which is how the
casino makes its profit). Hence, in a real casino, the average amount of money with
which you leave will always be less than the amount with which you entered!

EXAMPLE 11.1.4
Suppose a 10 and p 1 4. Then E Xn 10 n 2p 1 10 3n 4 Hence,
we always have E Xn 10, and indeed E Xn 0 if n 14. That is, your expected
fortune is never more than your initial value of $10 and in fact is negative after 14 or
more bets.
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Finally, we note as an aside that it is possible to change your probabilities by chang
ing your gambling strategy, as in the following example. Hence, the preceding analysis
applies only to the strategy of betting just $1 each time.

EXAMPLE 11.1.5
Consider the “double ’til you win” gambling strategy, defined as follows. We first bet
$1. Each time we lose, we double our bet on the succeeding turn. As soon as we win
once, we stop playing (i.e., bet zero from then on).

It is easily seen that, with this gambling strategy, we will be up $1 as soon as we
win a bet (which must happen eventually because p 0). Hence, with probability 1
we will gain $1 with this gambling strategy for any positive value of p.

This is rather surprising, because if 0 p 1 2 then the odds in this game are
against us. So it seems that we have “cheated fate,” and indeed we have. On the other
hand, we may need to lose an arbitrarily large amount of money before we win our $1,
so “infinite capital” is required to follow this gambling strategy. If only finite capital
is available, then it is impossible to cheat fate in this manner. For a proof of this, see
more advanced probability books, e.g., page 64 of A First Look at Rigorous Probability
Theory, 2nd ed., by J. S. Rosenthal (World Scientific Publishing, Singapore, 2006).

11.1.2 The Gambler’s Ruin Problem

The previous subsection considered the distribution and expected value of the fortune
Xn at a fixed time n. Here, we consider the gambler’s ruin problem, which requires
the consideration of many different n at once, i.e., considers the time evolution of the
process.

Let Xn be simple random walk as before, for some initial fortune a and some
probability p of winning each bet. Assume a is a positive integer. Furthermore, let
c a be some other integer. The gambler’s ruin question is: If you repeatedly bet $1,
then what is the probability that you will reach a fortune of $c before you lose all your
money by reaching a fortune $0? In other words, will the random walk hit c before
hitting 0? Informally, what is the probability that the gambler gets rich (i.e., has $c)
before going broke?

More formally, let

0 min n 0 : Xn 0 ,

c min n 0 : Xn c

be the first hitting times of 0 and c, respectively. That is, 0 is the first time your fortune
reaches 0, while c is the first time your fortune reaches c.

The gambler’s ruin question is: What is

P c 0 ,

the probability of hitting c before hitting 0? This question is not so easy to answer,
because there is no limit to how long it might take until either c or 0 is hit. Hence, it is
not sufficient to just compute the probabilities after 10 bets, or 20 bets, or 100 bets, or
even 1,000,000 bets. Fortunately, it is possible to answer this question, as follows.



Chapter 11: Advanced Topic — Stochastic Processes 619

Theorem 11.1.2 Let Xn be simple random walk, with some initial fortune a
and probability p of winning each bet. Assume 0 a c. Then the probability
P c 0 of hitting c before 0 is given by

P c 0

a c p 1 2
1 q

p

a

1 q
p

c p 1 2.

PROOF See Section 11.7 for the proof.

Consider some applications of this result.

EXAMPLE 11.1.6
Suppose you start with $5 (i.e., a 5) and your goal is to win $10 before going broke
(i.e., c 10). If p 0 500, then your probability of success is a c 0 500. If
p 0 499, then your probability of success is given by

1
0 501

0 499

5

1
0 501

0 499

10 1

,

which is approximately 0 495. If p 0 501, then your probability of success is given
by

1
0 499

0 501

5

1
0 499

0 501

10 1

,

which is approximately 0 505. We thus see that in this case, small changes in p lead to
small changes in the probability of winning at gambler’s ruin.

EXAMPLE 11.1.7
Suppose now that you start with $5000 (i.e., a 5000) and your goal is to win $10,000
before going broke (i.e., c 10 000). If p 0 500, then your probability of success
is a c 0 500, same as before. On the other hand, if p 0 499, then your probability
of success is given by

1
0 501

0 499

5000

1
0 501

0 499

10,000 1

,

which is approximately 2 10 9, i.e., two parts in a billion! Finally, if p 0 501,
then your probability of success is given by

1
0 499

0 501

5000

1
0 499

0 501

10,000 1

,

which is extremely close to 1. We thus see that in this case, small changes in p lead to
extremely large changes in the probability of winning at gambler’s ruin. For example,
even a tiny disadvantage on each bet can lead to a very large disadvantage in the long
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run! The reason for this is that, to get from 5000 to 10,000, many bets must be made,
so small changes in p have a huge effect overall.

Finally, we note that it is also possible to use the gambler’s ruin result to compute
P 0 , the probability that the walk will ever hit 0 (equivalently, that you will
ever lose all your money), as follows.

Theorem 11.1.3 Let Xn be simple random walk, with initial fortune a 0 and
probability p of winning each bet. Then the probability P 0 that the walk
will ever hit 0 is given by

P 0
1 p 1 2
q p a p 1 2.

PROOF See Section 11.7 for the proof.

EXAMPLE 11.1.8
Suppose a 2 and p 2 3. Then the probability that you will eventually lose all
your money is given by q p a 1 3 2 3 2 1 4. Thus, starting with just $2,
we see that 3/4 of the time, you will be able to bet forever without ever losing all your
money.

On the other hand, if p 1 2, then no matter how large a is, it is certain that you
will eventually lose all your money.

Summary of Section 11.1

A simple random walk is a sequence Xn of random variables, with X0 1 and
P Xn 1 Xn 1 p 1 P Xn 1 Xn 1 .

It follows that P Xn a k n
n k

2
p n k 2q n k 2 for k n n

2 n 4 n, and E Xn a n 2p 1 .

If 0 a c, then the gambler’s ruin probability of reaching c before 0 is equal
to a c if p 1 2, otherwise to 1 1 p p a 1 1 p p c .

EXERCISES

11.1.1 Let Xn be simple random walk, with initial fortune a 12 and probability
p 1 3 of winning each bet. Compute P Xn x for the following values of n and
x .
(a) n 0 x 13
(b) n 1 x 12
(c) n 1 x 13
(d) n 1 x 11
(e) n 1 x 14
(f) n 2 x 12
(g) n 2 x 13
(h) n 2 x 14
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(i) n 2 x 15
(j) n 20 x 15
(k) n 20 x 16
(l) n 20 x 18
(m) n 20 x 10
11.1.2 Let Xn be simple random walk, with initial fortune a 5 and probability
p 2 5 of winning each bet.
(a) Compute P X1 6 X2 5 .
(b) Compute P X1 4 X2 5 .
(c) Compute P X2 5 .
(d) What is the relationship between the quantities in parts (a), (b), and (c)? Why is
this so?
11.1.3 Let Xn be simple random walk, with initial fortune a 7 and probability
p 1 6 of winning each bet.
(a) Compute P X1 X3 8 .
(b) Compute P X1 6 X3 8 .
(c) Compute P X3 8 .
(d) What is the relationship between the quantities in parts (a), (b), and (c)? Why is
this so?
11.1.4 Suppose a 1000 and p 0 49.
(a) Compute E Xn for n 0 1 2 10 20 100, and 1000.
(b) How large does n need to be before E Xn 0?
11.1.5 Let Xn be simple random walk, with initial fortune a and probability p
0 499 of winning each bet. Compute the gambler’s ruin probability P c 0 for the
following values of a and c. Interpret your results in words.
(a) a 9 c 10
(b) a 90 c 100
(c) a 900 c 1000
(d) a 9000 c 10,000
(e) a 90,000, c 100,000
(f) a 900,000, c 1,000,000
11.1.6 Let Xn be simple random walk, with initial fortune a 10 and probability p
of winning each bet. Compute P 0 , where p 0 4 and also where p 0 6.
Interpret your results in words.
11.1.7 Let Xn be simple random walk, with initial fortune a 5, and probability
p 1 4 of winning each bet.
(a) Compute P X1 6 .
(b) Compute P X1 4 .
(c) Compute P X2 7 .
(d) Compute P X2 7 X1 6 .
(e) Compute P X2 7 X1 4 .
(f) Compute P X1 6 X2 7 .
(g) Explain why the answer to part (f) equals what it equals.
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11.1.8 Let Xn be simple random walk, with initial fortune a 1000 and probability
p 2 5 of winning each bet.
(a) Compute E X1 .
(b) Compute E X10 .
(c) Compute E X100 .
(d) Compute E X1000 .
(e) Find the smallest value of n such that E Xn 0.
11.1.9 Let Xn be simple random walk, with initial fortune a 100 and probability
p 18 38 of winning each bet (as when betting on Red in roulette).
(a) Compute P X1 a .
(b) Compute P X2 a .
(c) Compute P X3 a .
(d) Guess the value of limn P Xn a .
(e) Interpret part (d) in plain English.

PROBLEMS

11.1.10 Suppose you start with $10 and repeatedly bet $2 (instead of $1), having prob
ability p of winning each time. Suppose your goal is $100, i.e., you keep on betting
until you either lose all your money, or reach $100.
(a) As a function of p, what is the probability that you will reach $100 before losing all
your money? Be sure to justify your solution. (Hint: You may find yourself dividing
both 10 and 100 by 2.)
(b) Suppose p 0 4. Compute a numerical value for the solution in part (a).
(c) Compare the probabilities in part (b) with the corresponding probabilities if you bet
just $1 each time. Which is larger?
(d) Repeat part (b) for the case where you bet $10 each time. Does the probability of
success increase or decrease?

CHALLENGES

11.1.11 Prove that the formula for the gambler’s ruin probability P c 0 is a
continuous function of p, by proving that it is continuous at p 1 2. That is, prove
that

lim
p 1 2

1 1 p p a

1 1 p p c

a

c

DISCUSSION TOPICS

11.1.12 Suppose you repeatedly play roulette in a real casino, betting the same amount
each time, continuing forever as long as you have money to bet. Is it certain that you
will eventually lose all your money? Why or why not?
11.1.13 In Problem 11.1.10, parts (c) and (d), can you explain intuitively why the
probabilities change as they do, as we increase the amount we bet each time?
11.1.14 Suppose you start at a and need to reach c, where c a 0. You must keep
gambling until you reach either c or 0. Suppose you are playing a subfair game (i.e.,
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p 1 2), but you can choose how much to bet each time (i.e., you can bet $1, or $2,
or more, though of course you cannot bet more than you have). What betting amounts
do you think1 will maximize your probability of success, i.e., maximize P c 0 ?
(Hint: The results of Problem 11.1.10 may provide a clue.)

11.2 Markov Chains
Intuitively, a Markov chain represents the random motion of some object. We shall
write Xn for the position (or value) of the object at time n. There are then rules that
give the probabilities for where the object will jump next.

A Markov chain requires a state space S, which is the set of all places the object
can go. (For example, perhaps S 1 2 3 , or S top, bottom , or S is the set of all
positive integers.)

A Markov chain also requires transition probabilities, which give the probabilities
for where the object will jump next. Specifically, for i j S, the number pi j is
the probability that, if the object is at i , it will next jump to j . Thus, the collection
pi j : i j S of transition probabilities satisfies pi j 0 for all i j S, and

j S

pi j 1

for each i S.
We also need to consider where the Markov chain starts. Often, we will simply

set X0 s for some particular state s S. More generally, we could have an initial
distribution i : i S where i P X0 i . In this case, we need i 0 for
each i S, and

i S
i 1.

To summarize, here S is the state space of all places the object can go; i represents
the probability that the object starts at the point i ; and pi j represents the probability
that, if the object is at the point i , it will then jump to the point j on the next step. In
terms of the sequence of random values X0 X1 X2 , we then have that

P Xn 1 j Xn i pi j

for any positive integer n and any i j S. Note that we also require that this jump
probability does not depend on the chain’s previous history. That is, we require

P Xn 1 j Xn i Xn 1 xn 1 X0 x0 pi j

for all n and all i j x0 xn 1 S.

1For more advanced results about this, see, e.g., Theorem 7.3 of Probability and Measure, 3rd ed., by
P. Billingsley (John Wiley & Sons, New York, 1995).
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11.2.1 Examples of Markov Chains

We present some examples of Markov chains here.

EXAMPLE 11.2.1
Let S 1 2 3 consist of just three elements, and define the transition probabilities
by p11 0, p12 1 2, p13 1 2, p21 1 3, p22 1 3, p23 1 3, p31 1 4,
p32 1 4, and p33 1 2. This means that, for example, if the chain is at the state 3,
then it has probability 1 4 of jumping to state 1 on the next jump, probability 1 4 of
jumping to state 2 on the next jump, and probability 1 2 of remaining at state 3 on the
next jump.

This Markov chain jumps around on the three points 1 2 3 in a random and
interesting way. For example, if it starts at the point 1, then it might jump to 2 or to 3
(with probability 1 2 each). If it jumps to (say) 3, then on the next step it might jump to
1 or 2 (probability 1 4 each) or 3 (probability 1 2). It continues making such random
jumps forever.

Note that we can also write the transition probabilities pi j in matrix form, as

pi j

0 1 2 1 2
1 3 1 3 1 3
1 4 1 4 1 2

(so that p31 1 4, etc.). The matrix pi j is then called a stochastic matrix. This
matrix representation is convenient sometimes.

EXAMPLE 11.2.2
Again, let S 1 2 3 . This time define the transition probabilities pi j in matrix
form, as

pi j

1 4 1 4 1 2
1 3 1 3 1 3
0 01 0 01 0 98

.

This also defines a Markov chain on S. For example, from the state 3, there is proba
bility 0.01 of jumping to state 1, probability 0.01 of jumping to state 2, and probability
0.98 of staying in state 3.

EXAMPLE 11.2.3
Let S bedroom, kitchen, den . Define the transition probabilities pi j in matrix
form by

pi j

1 4 1 4 1 2
0 0 1

0 01 0 01 0 98
.

This defines a Markov chain on S. For example, from the bedroom, the chain has
probability 1 4 of staying in the bedroom, probability 1 4 of jumping to the kitchen,
and probability 1 2 of jumping to the den.
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EXAMPLE 11.2.4
This time let S 1 2 3 4 , and define the transition probabilities pi j in matrix
form, as

pi j

0 2 0 4 0 0 4
0 4 0 2 0 4 0
0 0 4 0 2 0 4

0 4 0 0 4 0 2

.

This defines a Markov chain on S. For example, from the state 4, it has probability 0 4
of jumping to the state 1, but probability 0 of jumping to the state 2.

EXAMPLE 11.2.5
This time, let S 1 2 3 4 5 6 7 , and define the transition probabilities pi j in
matrix form, as

pi j

1 0 0 0 0 0 0
1 2 0 1 2 0 0 0 0
0 1 5 4 5 0 0 0 0
0 0 1 3 1 3 1 3 0 0

1 10 0 0 0 7 10 0 1 5
0 0 0 0 0 0 1
0 0 0 0 0 1 0

.

This defines a (complicated!) Markov chain on S.

EXAMPLE 11.2.6 Random Walk on the Circle
Let S 0 1 2 d 1 and define the transition probabilities by saying that
pii 1 3 for all i S, and also pi j 1 3 whenever i and j are “next to” each other
around the circle. That is, pi j 1 3 whenever j i , or j i 1, or j i 1. Also,
p0 d 1 pd 1 0 1 3. Otherwise, pi j 0.

If we think of the d elements of S as arranged in a circle, then our object, at each
step, either stays where it is, or moves one step clockwise, or moves one step counter
clockwise — each with probability 1 3. (Note in particular that it can go around the
“corner” by jumping from d 1 to 0, or from 0 to d 1, with probability 1 3.)

EXAMPLE 11.2.7 Ehrenfest’s Urn
Consider two urns, urn #1 and urn #2, where d balls are divided between the two urns.
Suppose at each step, we choose one ball uniformly at random from among the d balls
and switch it to the opposite urn. We let Xn be the number of balls in urn #1 at time n.
Thus, there are d Xn balls in urn #2 at time n.

Here, the state space is S 0 1 2 d because these are all the possible
numbers of balls in urn #1 at any time n.

Also, if there are i balls in urn #1 at some time, then there is probability i n that
we next choose one of those i balls, in which case the number of balls in urn #1 goes
down to i 1. Hence,

pi i 1 i d.

Similarly,
pi i 1 d i d
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because there is probability d i d that we will instead choose one of the d i
balls in urn #2. Thus, this Markov chain moves randomly among the possible numbers
0 1 d of balls in urn #1 at each time.

One might expect that, if d is large and the Markov chain is run for a long time,
there would most likely be approximately d 2 balls in urn #1. (We shall consider such
questions in Section 11.2.4.)

The above examples should convince you that Markov chains on finite state spaces
come in all shapes and sizes. Markov chains on infinite state spaces are also important.
Indeed, we have already seen one such class of Markov chains.

EXAMPLE 11.2.8 Simple Random Walk
Let S 2 1 0 1 2 be the set of all integers. Then S is infinite, so we
cannot write the transition probabilities pi j in matrix form.

Fix a S, and let X0 a. Fix a real number p with 0 p 1, and let pi i 1 p
and pi i 1 1 p for each i Z, with pi j 0 if j i 1. Thus, this Markov
chain begins at the point a (with probability 1) and at each step either increases by 1
(with probability p) or decreases by 1 (with probability 1 p). It is easily seen that
this Markov chain corresponds precisely to the random walk (i.e., repeated gambling)
model of Section 11.1.2.

Finally, we note that in a group, you can create your own Markov chain, as follows
(try it — it’s fun!).

EXAMPLE 11.2.9
Form a group of between 5 and 50 people. Each group member should secretly pick
out two other people from the group, an “A person” and “B person.” Also, each group
member should have a coin.

Take any object, such as a ball, or a pen, or a stuffed frog. Give the object to one
group member to start. This person should then immediately ip the coin. If the coin
comes up heads, the group member gives (or throws!) the object to his or her A person.
If it comes up tails, the object goes to his or her B person. The person receiving the
object should then immediately ip the coin and continue the process. (Saying your
name when you receive the object is a great way for everyone to meet each other!)

Continue this process for a large number of turns. What patterns do you observe?
Does everyone eventually receive the object? With what frequency? How long does it
take the object to return to where it started? Make as many interesting observations as
you can; some of them will be related to the topics that follow.

11.2.2 Computing with Markov Chains

Suppose a Markov chain Xn has transition probabilities pi j and initial distribution

i . Then P X0 i i for all states i . What about P X1 i ? We have the
following result.
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Theorem 11.2.1 Consider a Markov chain Xn with state space S, transition prob
abilities pi j , and initial distribution i . Then for any i S,

P X1 i
k S

k pki .

PROOF From the law of total probability,

P X1 i
k S

P X0 k X1 i .

But P X0 k X1 i P X0 k P X1 i X0 k k pki and the result
follows.

Consider an example of this.

EXAMPLE 11.2.10
Again, let S 1 2 3 , and

pi j

1 4 1 4 1 2
1 3 1 3 1 3
0 01 0 01 0 98

.

Suppose that P X0 1 1 7, P X0 2 2 7, and P X0 3 4 7. Then

P X1 3
k S

k pk3 1 7 1 2 2 7 1 3 4 7 0 98 0 73.

Thus, about 73% of the time, this chain will be in state 3 after one step.
To proceed, let us write

Pi A P A X0 i

for the probability of the event A assuming that the chain starts in the state i , that is,
assuming that i 1 and j 0 for j i . We then see that Pi Xn j is the
probability that, if the chain starts in state i and is run for n steps, it will end up in state
j . Can we compute this?

For n 0, we must have X0 i . Hence, Pi X0 j 1 if i j , while
Pi X0 j 0 if i j .

For n 1, we see that Pi X1 j pi j . That is, the probability that we will be
at the state j after one step is given by the transition probability pi j .

What about for n 2? If we start at i and end up at j after 2 steps, then we have
to be at some state after 1 step. Let k be this state. Then we see the following.

Theorem 11.2.2 We have Pi X1 k X2 j pik pk j .

PROOF If we start at i , then the probability of jumping first to k is equal to pik .
Given that we have jumped first to k, the probability of then jumping to j is given by
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pk j . Hence,

Pi X1 k X2 j P X1 k X2 j X0 i

P X1 k X0 i P X2 k X1 j X0 i

pik pk j .

Using this, we obtain the following.

Theorem 11.2.3 We have Pi X2 j k S pik pk j

PROOF By the law of total probability,

Pi X2 j
k S

Pi X1 k X2 j ,

so the result follows from Theorem 11.2.2.

EXAMPLE 11.2.11
Consider again the chain of Example 11.2.1, with S 1 2 3 and

pi j

0 1 2 1 2
1 3 1 3 1 3
1 4 1 4 1 2

.

Then

P1 X2 3
k S

p1k pk3 p11 p13 p12 p23 p13 p33

0 1 2 1 2 1 3 1 2 1 2 1 6 1 4 5 12.

By induction (see Problem 11.2.18), we obtain the following.

Theorem 11.2.4 We have

Pi Xn j
i1 i2 in 1 S

pii1 pi1i2 pi2i3 pin 2in 1 pin 1 j

PROOF See Problem 11.2.18.

Theorem 11.2.4 thus gives a complete formula for the probability, starting at a
state i at time 0, that the chain will be at some other state j at time n. We see from
Theorem 11.2.4 that, once we know the transition probabilities pi j for all i j S,
then we can compute the values of Pi Xn j for all i j S and all positive
integers n. (The computations get pretty messy, though!) The quantities Pi Xn j
are sometimes called the higherorder transition probabilities.

Consider an application of this.
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EXAMPLE 11.2.12
Consider once again the chain with S 1 2 3 and

pi j

0 1 2 1 2
1 3 1 3 1 3
1 4 1 4 1 2

.

Then

P1 X3 3
k S S

p1k pk p 3

p11 p11 p13 p11 p12 p23 p11 p13 p33 p12 p21 p13 p12 p22 p23 p12 p23 p33

p13 p31 p13 p13 p32 p23 p13 p33 p33

0 0 1 2 0 1 2 1 3 0 1 2 1 2 1 2 1 3 1 2

1 2 1 3 1 3 1 2 1 4 1 2 1 2 1 4 1 2

1 2 1 4 1 3 1 2 1 2 1 2

31 72.

Finally, we note that if we write A for the matrix pi j , write 0 for the row vec
tor i P X0 i , and write 1 for the row vector P X1 i , then Theo
rem 11.2.1 can be written succinctly using matrix multiplication as 1 0 A That
is, the (row) vector of probabilities for the chain after one step 1 is equal to the (row)
vector of probabilities for the chain after zero steps 0, multiplied by the matrix A of
transition probabilities. In fact, if we write n for the row vector P Xn i , then
proceeding by induction, we see that n 1 n A for each n. Therefore, n 0 An,
where An is the nth power of the matrix A. In this context, Theorem 11.2.4 has a par
ticularly nice interpretation. It says that Pi Xn j is equal to the i j entry of the
matrix An, i.e., the nth power of the matrix A.

11.2.3 Stationary Distributions

Suppose we have Markov chain transition probabilities pi j on a state space S. Let
i : i S be a probability distribution on S, so that i 0 for all i , and i S i

1 We have the following definition.

Definition 11.2.1 The distribution i : i S is stationary for a Markov chain
with transition probabilities pi j on a state space S, if i S i pi j j for all
j S.

The reason for the terminology “stationary” is that, if the chain begins with those
probabilities, then it will always have those same probabilities, as the following theo
rem and corollary show.

Theorem 11.2.5 Suppose i : i S is a stationary distribution for a Markov
chain with transition probabilities pi j on a state space S. Suppose that for some
integer n, we have P Xn i i for all i S. Then we also have P Xn 1
i i for all i S.
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PROOF If i is stationary, then we compute that

P Xn 1 j
i S

P Xn i Xn 1 j

i S

P Xn i P Xn 1 j Xn i
i S

i pi j j .

By induction, we obtain the following corollary.

Corollary 11.2.1 Suppose i : i S is a stationary distribution for a Markov
chain with transition probabilities pi j on a state space S. Suppose that for some
integer n, we have P Xn i i for all i S. Then we also have P Xm i

i for all i S and all integers m n.

The above theorem and corollary say that, once a Markov chain is in its stationary
distribution, it will remain in its stationary distribution forevermore.

EXAMPLE 11.2.13
Consider the Markov chain with S 1 2 3 , and

pi j

1 2 1 4 1 4
1 2 1 4 1 4
1 2 1 4 1 4

.

No matter where this Markov chain is, it always jumps with the same probabilities,
i.e., to state 1 with probability 1 2, to state 2 with probability 1 4, or to state 3 with
probability 1 4.

Indeed, if we set 1 1 2, 2 1 4, and 3 1 4, then we see that pi j j
for all i j S. Hence,

i S
i pi j

i S
i j j

i S
i j 1 j .

Thus, i is a stationary distribution. Hence, once in the distribution i , the chain
will stay in the distribution i forever.

EXAMPLE 11.2.14
Consider a Markov chain with S 0 1 and

pi j
0 1 0 9
0 6 0 4

.

If this chain had a stationary distribution i , then we must have that

0 0 1 1 0 6 0,

0 0 9 1 0 4 1.

The first equation gives 1 0 6 0 0 9 , so 1 3 2 0 . This is also consistent
with the second equation. In addition, we require that 0 1 1, i.e., that 0
3 2 0 1, so that 0 2 5. Then 1 3 2 2 5 3 5.
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We then check that the settings 0 2 5 and 1 3 5 satisfy the above equa
tions. Hence, i is indeed a stationary distribution for this Markov chain.

EXAMPLE 11.2.15
Consider next the Markov chain with S 1 2 3 , and

pi j

0 1 2 1 2
1 2 0 1 2
1 2 1 2 0

.

We see that this Markov chain has the property that, in addition to having j S pi j
1, for all i , it also has i S pi j 1, for all j . That is, not only do the rows of the
matrix pi j sum to 1, but so do the columns. (Such a matrix is sometimes called
doubly stochastic.)

Let 1 2 3 1 3, so that i is the uniform distribution on S. Then we
compute that

i S
i pi j

i S

1 3 pi j 1 3
i S

pi j 1 3 1 j .

Because this is true for all j , we see that i is a stationary distribution for this Markov
chain.

EXAMPLE 11.2.16
Consider the Markov chain with S 1 2 3 , and

pi j

1 2 1 4 1 4
1 3 1 3 1 3
0 1 4 3 4

.

Does this Markov chain have a stationary distribution?
Well, if it had a stationary distribution i , then the following equations would

have to be satisfied:

1 1 2 1 1 3 2 0 3,

2 1 4 1 1 3 2 1 4 3,

3 1 4 1 1 3 2 3 4 3.

The first equation gives 1 2 3 2. The second equation then gives

1 4 3 2 1 4 1 1 3 2 2 1 4 2 3 2 1 3 2 1 2 2,

so that 3 2 2.
But we also require 1 2 3 1, i.e., 2 3 2 2 2 2 1, so that

2 3 11. Then 1 2 11, and 3 6 11.
It is then easily checked that the distribution given by 1 2 11, 2 3 11, and

3 6 11 satisfies the preceding equations, so it is indeed a stationary distribution for
this Markov chain.
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EXAMPLE 11.2.17
Consider again random walk on the circle, as in Example 11.2.6. We observe that for
any state j , there are precisely three states i (namely, the state i j , the state one
clockwise from j , and the state one counterclockwise from j ) with pi j 1 3. Hence,

i S pi j 1 That is, the transition matrix pi j is again doubly stochastic.
It then follows, just as in Example 11.2.15, that the uniform distribution, given by

i 1 d for i 0 1 d 1, is a stationary distribution for this Markov chain.

EXAMPLE 11.2.18
For Ehrenfest’s urn (see Example 11.2.7), it is not obvious what might be a stationary
distribution. However, a possible solution emerges by thinking about each ball individ
ually. Indeed, any given ball usually stays still but occasionally gets ipped from one
urn to the other. So it seems reasonable that in stationarity, it should be equally likely
to be in either urn, i.e., have probability 1/2 of being in urn #1.

If this is so, then the total number of balls in urn #1 would have the distribution
Binomial n 1 2 , since there would be n balls, each having probability 1 2 of being
in urn #1.

To test this, we set i
d
i 2d for i 0 1 d. We then compute that if

1 j d 1, then

i S
i pi j j 1 p j 1 j j 1 p j 1 j

d

j 1

1

2d

d j 1

d

d

j 1

1

2d

j 1

d
d 1

j 1

1

2d

d 1

j

1

2d .

Next, we use the identity known as Pascal’s triangle, which says that

d 1

j 1

d 1

j

d

j
.

Hence, we conclude that

i S
i pi j

d

j

1

2d j .

With minor modifications (see Problem 11.2.19), the preceding argument works for
j 0 and j d as well. We therefore conclude that i S i pi j j for all j S.
Hence, i is a stationary distribution.

One easy way to check for stationarity is the following.

Definition 11.2.2 A Markov chain is said to be reversible with respect to a distrib
ution i if, for all i j S, we have i pi j j p ji .

Theorem 11.2.6 If a Markov chain is reversible with respect to i , then i is a
stationary distribution for the chain.
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PROOF We compute, using reversibility, that for any j S,

i S
i pi j

i S
j p ji j

i S

p ji j 1 j .

Hence, i is a stationarity distribution.

EXAMPLE 11.2.19
Suppose S 1 2 3 4 5 , and the transition probabilities are given by

pi j

1 3 2 3 0 0 0
1 3 0 2 3 0 0
0 1 3 0 2 3 0
0 0 1 3 0 2 3
0 0 0 1 3 2 3

.

It is not immediately clear what stationary distribution this chain may possess. Fur
thermore, to compute directly as in Example 11.2.16 would be quite messy.

On the other hand, we observe that for 1 i 4, we always have pi i 1
2 pi 1 i . Hence, if we set i C2i for some C 0, then we will have

i pi i 1 C2i pi i 1 C2i 2 pi 1 i ,

while
i 1 pi 1 i C2i 1 pi 1 i .

Hence, i pi i 1 i 1 pi 1 i for each i .
Furthermore, pi j 0 if i and j differ by at least 2. It follows that i pi j j p ji

for each i j S. Hence, the chain is reversible with respect to i and so i is a
stationary distribution for the chain.

Finally, we solve for C. We need i S i 1 Hence, we must have C
1 i S 2i 1 5

i 1 2i 1 63. Thus, i 2i 63 for i S.

11.2.4 Markov Chain Limit Theorem

Suppose now that Xn is a Markov chain, which has a stationary distribution i . We
have already seen that, if P Xn i i for all i for some n, then also P Xm i

i for all i for all m n.
Suppose now that it is not the case that P Xn i i for all i . One might still

expect that, if the chain is run for a long time (i.e., n ), then the probability of
being at a particular state i S might converge to i , regardless of the initial state
chosen. That is, one might expect that

lim
n

P Xn i i , (11.2.1)

for each i S regardless of the initial distribution i .
This is not true in complete generality, as the following two examples show. How

ever, we shall see in Theorem 11.2.8 that this is indeed true for most Markov chains.
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EXAMPLE 11.2.20
Suppose that S 1 2 and that the transition probabilities are given by

pi j
1 0
0 1

.

That is, this Markov chain never moves at all! Suppose also that 1 1, i.e., that we
always have X0 1.

In this case, any distribution is stationary for this chain. In particular, we can take
1 2 1 2 as a stationary distribution. On the other hand, we clearly have

P1 Xn 1 1 for all n. Because 1 1 2, and 1 1 2, we do not have
limn P Xn i i in this case.

We shall see later that this Markov chain is not “irreducible,” which is the obstacle
to convergence.

EXAMPLE 11.2.21
Suppose again that S 1 2 , but that this time the transition probabilities are given
by

pi j
0 1
1 0

.

That is, this Markov chain always moves from 1 to 2, and from 2 to 1. Suppose again
that 1 1, i.e., that we always have X0 1.

We may again take 1 2 1 2 as a stationary distribution (in fact, this time
the stationary distribution is unique). On the other hand, this time we clearly have
P1 Xn 1 1 for n even, and P1 Xn 1 0 for n odd. Hence, again we do not
have limn P1 Xn 1 1 1 2

We shall see that here the obstacle to convergence is that the Markov chain is “pe
riodic,” with period 2.

In light of these examples, we make some definitions.

Definition 11.2.3 A Markov chain is irreducible if it is possible for the chain to
move from any state to any other state. Equivalently, the Markov chain is irreducible
if for any i j S, there is a positive integer n with Pi Xn j 0.

Thus, the Markov chain of Example 11.2.20 is not irreducible because it is not
possible to get from state 1 to state 2. Indeed, in that case, P1 Xn 2 0 for all n.

EXAMPLE 11.2.22
Consider the Markov chain with S 1 2 3 , and

pi j

1 2 1 2 0
1 2 1 4 1 4
1 2 1 4 1 4

.

For this chain, it is not possible to get from state 1 to state 3 in one step. On the other
hand, it is possible to get from state 1 to state 2, and then from state 2 to state 3. Hence,
this chain is still irreducible.
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EXAMPLE 11.2.23
Consider the Markov chain with S 1 2 3 , and

pi j

1 2 1 2 0
3 4 1 4 0
1 2 1 4 1 4

.

For this chain, it is not possible to get from state 1 to state 3 in one step. Furthermore,
it is not possible to get from state 2 to state 3, either. In fact, there is no way to ever get
from state 1 to state 3, in any number of steps. Hence, this chain is not irreducible.

Clearly, if a Markov chain is not irreducible, then the Markov chain convergence
(11.2.1) will not always hold, because it will be impossible to ever get to certain states
of the chain.

We also need the following definition.

Definition 11.2.4 Given Markov chain transitions pi j on a state space S, and
a state i S, the period of i is the greatest common divisor (g.c.d.) of the set
n 1 : p n

ii 0 where p n
ii P Xn i X0 i

That is, the period of i is the g.c.d. of the times at which it is possible to travel from
i to i . For example, the period of i is 2 if it is only possible to travel from i to i in an
even number of steps. (Such was the case for Example 11.2.21.) On the other hand, if
pii 0, then clearly the period of i is 1.

Clearly, if the period of some state is greater than 1, then again (11.2.1) will not
always hold, because the chain will be able to reach certain states at certain times only.
This prompts the following definition.

Definition 11.2.5 A Markov chain is aperiodic if the period of each state is equal
to 1.

EXAMPLE 11.2.24
Consider the Markov chain with S 1 2 3 , and

pi j

0 1 0
0 0 1
1 0 0

.

For this chain, from state 1 it is possible only to get to state 2. And from state 2 it
is possible only to get to state 3. Then from state 3 it is possible only to get to state
1. Hence, it is possible only to return to state 1 after an integer multiple of 3 steps.
Hence, state 1 (and, indeed, all three states) has period equal to 3, and the chain is not
aperiodic.

EXAMPLE 11.2.25
Consider the Markov chain with S 1 2 3 , and

pi j

0 1 0
0 0 1

1 2 0 1 2
.
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For this chain, from state 1 it is possible only to get to state 2. And from state 2 it is
possible only to get to state 3. However, from state 3 it is possible to get to either state
1 or state 3. Hence, it is possible to return to state 1 after either 3 or 4 steps. Because
the g.c.d. of 3 and 4 is 1, we conclude that the period of state 1 (and, indeed, of all
three states) is equal to 1, and the chain is indeed aperiodic.

We note the following simple fact.

Theorem 11.2.7 If a Markov chain has pi j 0 for all i j S, then the chain is
irreducible and aperiodic.

PROOF If pi j 0 for all i j S, then Pi X1 j 0 for all i j S. Hence,
the Markov chain must be irreducible.

Also, if pi j 0 for all i j S, then the set n 1 : p n
ii 0 contains the value

n 1 (and, indeed, all positive integers n). Hence, its greatest common divisor must
be 1. Therefore, each state i has period 1, so the chain is aperiodic.

In terms of the preceding definitions, we have the following very important theorem
about Markov chain convergence.

Theorem 11.2.8 Suppose a Markov chain is irreducible and aperiodic and has a
stationary distribution i . Then regardless of the initial distribution i , we have
limn P Xn i i for all states i .

PROOF For a proof of this, see more advanced probability books, e.g., pages 92–93
of A First Look at Rigorous Probability Theory, 2nd ed., by J. S. Rosenthal (World
Scientific Publishing, Singapore, 2006).

Theorem 11.2.8 shows that stationary distributions are even more important. Not
only does a Markov chain remain in a stationary distribution once it is there, but for
most chains (irreducible and aperiodic ones), the probabilities converge to the station
ary distribution in any case. Hence, the stationary distribution provides fundamental
information about the longterm behavior of the Markov chain.

EXAMPLE 11.2.26
Consider again the Markov chain with S 1 2 3 , and

pi j

1 2 1 4 1 4
1 2 1 4 1 4
1 2 1 4 1 4

.

We have already seen that if we set 1 1 2, 2 1 4, and 3 1 4, then i
is a stationary distribution. Furthermore, we see that pi j 0 for all i j S, so by
Theorem 11.2.7 the Markov chain must be irreducible and aperiodic.

We conclude that limn P Xn i i for all states i . For example, limn
P Xn 1 1 2. (Also, this limit does not depend on the initial distribution, so, for
example, limn P1 Xn 1 1 2 and limn P2 Xn 1 1 2, as well.)

In fact, for this example we will have P Xn i i for all i provided n 1.
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EXAMPLE 11.2.27
Consider again the Markov chain of Example 11.2.14, with S 0 1 and

pi j
0 1 0 9
0 6 0 4

.

We have already seen that this Markov chain has a stationary distribution, given by
0 2 5 and 1 3 5.

Furthermore, because pi j 0 for all i j S, this Markov chain is irreducible
and aperiodic. Therefore, we conclude that limn P Xn i i . So, if (say)
n 100, then we will have P X100 0 2 5, and P X100 1 3 5. Once again,
this conclusion does not depend on the initial distribution, so, e.g., limn P0 Xn
i limn P1 Xn i i as well.

EXAMPLE 11.2.28
Consider again the Markov chain of Example 11.2.16, with S 1 2 3 , and

pi j

1 2 1 4 1 4
1 3 1 3 1 3
0 1 4 3 4

.

We have already seen that this chain has a stationary distribution i given by 1
2 11, 2 3 11, and 3 6 11.

Now, in this case, we do not have pi j 0 for all i j S because p31 0. On the
other hand, p32 0 and p21 0, so by Theorem 11.2.3, we have

P3 X2 1
k S

p3k pk1 p32 p21 0.

Hence, the chain is still irreducible.
Similarly, we have P3 X2 3 p32 p23 0, and P3 X3 3 p32 p21 p13 0.

Therefore, because the g.c.d. of 2 and 3 is 1, we see that the g.c.d. of the set of n with
P3 Xn 3 0 is also 1. Hence, the chain is still aperiodic.

Because the chain is irreducible and aperiodic, it follows from Theorem 11.2.8 that
limn P Xn i i , for all states i . Hence, limn P Xn 1 2 11
limn P Xn 2 3 11 and limn P Xn 3 6 11. Thus, if (say) n
500, then we expect that P X500 1 2 11, P X500 2 3 11, and P X500
3 6 11.

Summary of Section 11.2

A Markov chain is a sequence Xn of random variables, having transition prob
abilities pi j such that P Xn 1 j Xn i pi j , and having an initial
distribution i such that P X0 i i .

There are many different examples of Markov chains.

All probabilities for all the Xn can be computed in terms of i and pi j .

A distribution i is stationary for the chain if i S i pi j j for all j S.
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If the Markov chain is irreducible and aperiodic, and i is stationary, then
limn P Xn i i for all i S.

EXERCISES

11.2.1 Consider a Markov chain with S 1 2 3 , 1 0 7, 2 0 1, 3 0 2,
and

pi j

1 4 1 4 1 2
1 6 1 2 1 3
1 8 3 8 1 2

.

Compute the following quantities.
(a) P X0 1
(b) P X0 2
(c) P X0 3
(d) P X1 2 X0 1
(e) P X3 2 X2 1
(f) P X1 2 X0 2
(g) P X1 2
11.2.2 Consider a Markov chain with S high, low , high 1 3, low 2 3, and

pi j
1 4 3 4
1 6 5 6

.

Compute the following quantities.
(a) P X0 high
(b) P X0 low
(c) P X1 high X0 high
(d) P X3 high X2 low
(e) P X1 high

11.2.3 Consider a Markov chain with S 0 1 , and

pi j
0 2 0 8
0 3 0 7

.

(a) Compute Pi X2 j for all four combinations of i j S.
(b) Compute P0 X3 1 .

11.2.4 Consider again the Markov chain with S 0 1 and

pi j
0 2 0 8
0 3 0 7

.

(a) Compute a stationary distribution i for this chain.
(b) Compute limn P0 Xn 0 .
(c) Compute limn P1 Xn 0 .
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11.2.5 Consider the Markov chain of Example 11.2.5, with S 1 2 3 4 5 6 7
and

pi j

1 0 0 0 0 0 0
1 2 0 1 2 0 0 0 0
0 1 5 4 5 0 0 0 0
0 0 1 3 1 3 1 3 0 0

1 10 0 0 0 7 10 0 1 5
0 0 0 0 0 0 1
0 0 0 0 0 1 0

.

Compute the following quantities.
(a) P2 X1 1
(b) P2 X1 2
(c) P2 X1 3
(d) P2 X2 1
(e) P2 X2 2
(f) P2 X2 3
(g) P2 X3 3
(h) P2 X3 1
(i) P2 X1 7
(j) P2 X2 7
(k) P2 X3 7
(l) maxn P2 Xn 7 (i.e., the largest probability of going from state 2 to state 7 in n
steps, for any n)
(m) Is this Markov chain irreducible?
11.2.6 For each of the following transition probability matrices, determine (with ex
planation) whether it is irreducible, and whether it is aperiodic.
(a)

pi j
0 2 0 8
0 3 0 7

(b)

pi j

1 4 1 4 1 2
1 6 1 2 1 3
1 8 3 8 1 2

(c)

pi j
0 1

0 3 0 7

(d)

pi j

0 1 0
1 3 1 3 1 3
0 1 0

(e)

pi j

0 1 0
0 0 1
1 0 0
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(f)

pi j

0 1 0
0 0 1

1 2 0 1 2

11.2.7 Compute a stationary distribution for the Markov chain of Example 11.2.4.
(Hint: Do not forget Example 11.2.15.)
11.2.8 Show that the random walk on the circle process (see Example 11.2.6) is
(a) irreducible.
(b) aperiodic.
(c) reversible with respect to its stationary distribution.
11.2.9 Show that the Ehrenfest’s Urn process (see Example 11.2.7) is
(a) irreducible.
(b) not aperiodic.
(c) reversible with respect to its stationary distribution.

11.2.10 Consider the Markov chain with S 1 2 3 , and

pi j

0 1 0
0 0 1

1 2 1 2 0
.

(a) Determine (with explanation) whether or not the chain is irreducible.
(b) Determine (with explanation) whether or not the chain is aperiodic.
(c) Compute a stationary distribution for the chain.
(d) Compute (with explanation) a good approximation to P1 X500 2 .
11.2.11 Repeat all four parts of Exercise 11.2.10 if S 1 2 3 and

pi j

0 1 2 1 2
0 0 1

1 2 1 2 0
.

11.2.12 Consider a Markov chain with S 1 2 3 and

pi j

0 3 0 3 0 4
0 2 0 2 0 6
0 1 0 2 0 7

.

(a) Is this Markov chain irreducible and aperiodic? Explain. (Hint: Do not forget
Theorem 11.2.7.)
(b) Compute P1 X1 3 .
(c) Compute P1 X2 3 .
(d) Compute P1 X3 3 .
(e) Compute limn P1 Xn 3 . (Hint: find a stationary distribution for the chain.)
11.2.13 For the Markov chain of the previous exercise, compute P1 X1 X2 5 .
11.2.14 Consider a Markov chain with S 1 2 3 and

pi j

1 0 0
0 0 1
0 1 0

.
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(a) Compute the period of each state.
(b) Is this Markov chain aperiodic? Explain.
11.2.15 Consider a Markov chain with S 1 2 3 and

pi j

0 1 0
0 5 0 0 5
0 1 0

.

(a) Is this Markov chain irreducible? Explain.
(b) Is this Markov chain aperiodic? Explain.

PROBLEMS

11.2.16 Consider a Markov chain with S 1 2 3 4 5 , and

pi j

1 5 4 5 0 0 0
1 5 0 4 5 0 0
0 1 5 0 4 5 0
0 0 1 5 0 4 5
0 0 0 1 5 4 5

.

Compute a stationary distribution i for this chain. (Hint: Use reversibility, as in
Example 11.2.19.)
11.2.17 Suppose 100 lily pads are arranged in a circle, numbered 0 1 99 (with
pad 99 next to pad 0). Suppose a frog begins at pad 0 and each second either jumps one
pad clockwise, or jumps one pad counterclockwise, or stays where it is — each with
probability 1 3. After doing this for a month, what is the approximate probability that
the frog will be at pad 55? (Hint: The frog is doing random walk on the circle, as in
Example 11.2.6. Also, the results of Example 11.2.17 and Theorem 11.2.8 may help.)
11.2.18 Prove Theorem 11.2.4. (Hint: Proceed as in the proof of Theorem 11.2.3, and
use induction.)
11.2.19 In Example 11.2.18, prove that i S i pi j j when j 0 and when
j d.

DISCUSSION TOPICS

11.2.20 With a group, create the “human Markov chain” of Example 11.2.9. Make as
many observations as you can about the longterm behavior of the resulting Markov
chain.

11.3 Markov Chain Monte Carlo
In Section 4.5, we saw that it is possible to estimate various quantities (such as prop
erties of real objects through experimentation, or the value of complicated sums or
integrals) by using Monte Carlo techniques, namely, by generating appropriate random
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variables on a computer. Furthermore, we have seen in Section 2.10 that it is quite easy
to generate random variables having certain special distributions. The Monte Carlo
method was used several times in Chapters 6, 7, 9, and 10 to assist in the implementa
tion of various statistical methods.

However, for many (in fact, most!) probability distributions, there is no simple,
direct way to simulate (on a computer) random variables having such a distribution.
We illustrate this with an example.

EXAMPLE 11.3.1
Let Z be a random variable taking values on the set of all integers, with

P Z j C j 1 2 4e 3 j cos2 j (11.3.1)

for j 2 1 0 1 2 3 , where C 1 j j 1 2 4e 3 j cos2 j

Now suppose that we want to compute the quantity A E Z 20 2 .
Well, if we could generate i.i.d. random variables Y1 Y2 YM with distribution

given by (11.3.1), for very large M , then we could estimate A by

A A
1

M

M

i 1

Yi 20 2.

Then A would be a Monte Carlo estimate of A.
The problem, of course, is that it is not easy to generate random variables Yi with

this distribution. In fact, it is not even easy to compute the value of C .

Surprisingly, the difficulties described in Example 11.3.1 can sometimes be solved
using Markov chains. We illustrate this idea as follows.

EXAMPLE 11.3.2
In the context of Example 11.3.1, suppose we could find a Markov chain on the state
space S 2 1 0 1 2 of all integers, which was irreducible and aperi
odic and which had a stationary distribution given by j C j 1 2 4e 3 j cos2 j
for j S

If we did, then we could run the Markov chain for a long time N , to get random
values X0 X1 X2 X N . For large enough N , by Theorem 11.2.8, we would have

P X N j j C j 1 2 4e 3 j cos2 j .

Hence, if we set Y1 X N , then we would have P Y1 j approximately equal to
(11.3.1), for all integers j . That is, the value of X N would be approximately as good
as a true random variable Y1 with this distribution.

Once the value of Y1 was generated, then we could repeat the process by again
running the Markov chain, this time to generate new random values

X [2]
0 X [2]

1 X [2]
2 X [2]

N

(say). We would then have

P X [2]
N j j C j 1 2 4e 3 j cos2 j .
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Hence, if we set Y2 X [2]
N , then we would have P Y2 j approximately equal to

(11.3.1), for all integers j .
Continuing in this way, we could generate values Y1 Y2 Y3 YM , such that

these are approximately i.i.d. from the distribution given by (11.3.1). We could then,
as before, estimate A by

A A
1

M

M

i 1

Yi 20 2.

This time, the approximation has two sources of error. First, there is Monte Carlo
error because M might not be large enough. Second, there is Markov chain error,
because N might not be large enough. However, if M and N are both very large, then
A will be a good approximation to A.

We summarize the method of the preceding example in the following theorem.

Theorem 11.3.1 (The Markov chain Monte Carlo method) Suppose we wish to
estimate the expected value A E h Z where P Z j j for j S, with
P Z j 0 for j S. Suppose for i 1 2 M, we can generate values
X [i]

0 X [i]
1 X [i]

2 X [i]
N from some Markov chain that is irreducible, aperiodic, and

has j as a stationary distribution. Let

A
1

M

M

i 1

h X [i]
N .

If M and N are sufficiently large, then A A.

It is somewhat inefficient to run M different Markov chains. Instead, practitioners
often just run a single Markov chain, and average over the different values of the chain.
For an irreducible Markov chain run long enough, this will again converge to the right
answer, as the following theorem states.

Theorem 11.3.2 (The singlechain Markov chain Monte Carlo method) Suppose
we wish to estimate the expected value A E h Z where P Z j j
for j S, with P Z j 0 for j S. Suppose we can generate values
X0 X1 X2 X N from some Markov chain that is irreducible, aperiodic, and
has j as a stationary distribution. For some integer B 0, let

A
1

N B 1

N

i B 1

h X i .

If N B is sufficiently large, then A A.

Here, B is the burnin time, designed to remove the inuence of the chain’s starting
value X0. The best choice of B remains controversial among statisticians. However, if
the starting value X0 is “reasonable,” then it is okay to take B 0, provided that N is
sufficiently large. This is what was done, for instance, in Example 7.3.2.
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These theorems indicate that, if we can construct a Markov chain that has i
as a stationary distribution, then we can use that Markov chain to estimate quantities
associated with i . This is a very helpful trick, and it has made the Markov chain
Monte Carlo method into one of the most popular techniques in the entire subject of
computational statistics.

However, for this technique to be useful, we need to be able to construct a Markov
chain that has i as a stationary distribution. This sounds like a difficult problem!
Indeed, if i were very simple, then we would not need to use Markov chain Monte
Carlo at all. But if i is complicated, then how can we possibly construct a Markov
chain that has that particular stationary distribution?

Remarkably, this problem turns out to be much easier to solve than one might
expect. We now discuss one of the best solutions, the Metropolis–Hastings algorithm.

11.3.1 The Metropolis–Hastings Algorithm

Suppose we are given a probability distribution i on a state space S. How can we
construct a Markov chain on S that has i as a stationary distribution?

One answer is given by the Metropolis–Hastings algorithm. It designs a Markov
chain that proceeds in two stages. In the first stage, a new point is proposed from
some proposal distribution. In the second stage, the proposed point is either accepted
or rejected. If the proposed point is accepted, then the Markov chain moves there. If
it is rejected, then the Markov chain stays where it is. By choosing the probability
of accepting to be just right, we end up creating a Markov chain that has i as a
stationary distribution.

The details of the algorithm are as follows. We start with a state space S, and
a probability distribution i on S. We then choose some (simple) Markov chain
transition probabilities qi j : i j S called the proposal distribution. Thus, we
require that qi j 0, and j S qi j 1 for each i S. However, we do not assume
that i is a stationary distribution for the chain qi j ; indeed, the chain qi j might
not even have a stationary distribution.

Given Xn i , the Metropolis–Hastings algorithm computes the value Xn 1 as
follows.

1. Choose Yn 1 j according to the Markov chain qi j .

2. Set i j min 1 j q ji

i qi j
(the acceptance probability).

3. With probability i j , let Xn 1 Yn 1 j (i.e., accepting the proposal Yn 1).
Otherwise, with probability 1 i j , let Xn 1 Xn i (i.e., rejecting the
proposal Yn 1).

The reason for this unusual algorithm is given by the following theorem.

Theorem 11.3.3 The preceding Metropolis–Hastings algorithm results in a Markov
chain X0 X1 X2 which has i as a stationary distribution.
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PROOF See Section 11.7 for the proof.

We consider some applications of this algorithm.

EXAMPLE 11.3.3
As in Example 11.3.1, suppose S 2 1 0 1 2 and

j C j 1 2 4e 3 j cos2 j ,

for j S. We shall construct a Markov chain having i as a stationary distribution.
We first need to choose some simple Markov chain qi j . We let qi j be simple

random walk with p 1 2, so that qi j 1 2 if j i 1 or j i 1, and qi j 0
otherwise.

We then compute that if j i 1 or j i 1, then

i j min 1
q ji j

qi j i
min 1

1 2 C j 1 2 4e 3 j cos2 j

1 2 C i 1 2 4e3i cos2 i

min 1
j 1 2 4e 3 j cos2 j

i 1 2 4e3i cos2 i
. (11.3.2)

Note that C has cancelled out, so that i j does not depend on C. (In fact, this will
always be the case.) Hence, we see that i j , while somewhat messy, is still very easy
for a computer to calculate.

Given Xn i , the Metropolis–Hastings algorithm computes the value Xn 1 as
follows.

1. Let Yn 1 Xn 1 or Yn 1 Xn 1, with probability 1 2 each.

2. Let j Yn 1, and compute i j as in (11.3.2).

3. With probability i j , let Xn 1 Yn 1 j . Otherwise, with probability 1 i j ,
let Xn 1 Xn i .

These steps can all be easily performed on a computer. If we repeat this for n
0 1 2 N 1 for some large number N of iterations, then we will obtain a random
variable X N , where P X N j j C j 1 2 4e 3 j cos2 j for all j S.

EXAMPLE 11.3.4
Again, let S 2 1 0 1 2 , and this time let j K e j4

for j S.
Let the proposal distribution qi j correspond to a simple random walk with p 1 4,
so that Yn 1 Xn 1 with probability 1 4, and Yn 1 Xn 1 with probability 3 4.

In this case, we compute that if j i 1, then

i j min 1
q j i j

qi j i
min 1

3 4 K e j4

1 4 Ke i4 min 1 3e j4 i4
. (11.3.3)

If instead j i 1, then

i j min 1
q j i j

qi j i
min 1

1 4 K e j4

3 4 K e i4

min 1 1 3 e j4 i4
. (11.3.4)
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(Note that the constant K has again cancelled out, as expected.) Hence, again i j is
very easy for a computer to calculate.

Given Xn i , the Metropolis–Hastings algorithm computes the value Xn 1 as
follows.

1. Let Yn 1 Xn 1 with probability 1 4, or Yn 1 Xn 1 with probability
3 4.

2. Let j Yn 1, and compute i j using (11.3.3) and (11.3.4).

3. With probability i j , let Xn 1 Yn 1 j . Otherwise, with probability 1 i j ,
let Xn 1 Xn i .

Once again, these steps can all be easily performed on a computer; if repeated for
some large number N of iterations, then P X N j j Ke j4

for j S.

The Metropolis–Hastings algorithm can also be used for continuous random vari
ables by using densities, as follows.

EXAMPLE 11.3.5
Suppose we want to generate a sample from the distribution with density proportional
to

f y e y4
1 y 3.

So the density is C f y , where C 1 f y dy How can we generate a random
variable Y such that Y has approximately this distribution, i.e., has probability density
approximately equal to C f y ?

Let us use a proposal distribution given by an N x 1 distribution, namely, a nor
mal distribution with mean x and variance 1. That is, given Xn x , we choose Yn 1

by Yn 1 N x 1 . Because the N x 1 distribution has density 2 1 2 e y x 2 2

this corresponds to a proposal density of q x y 2 1 2 e y x 2 2.
As for the acceptance probability x y , we again use densities, so that

x y min 1
C f y q y x

C f x q x y

min 1
1 y

1 x

3 Ce y4
2 1 2 e y x 2 2

Ce x4 2 1 2 e x y 2 2

min 1
1 y

1 x

3

e y4 x4
. (11.3.5)

Given Xn x , the Metropolis–Hastings algorithm computes the value Xn 1 as
follows.

1. Generate Yn 1 N Xn 1 .

2. Let y Yn 1, and compute x y as before.

3. With probability x y , let Xn 1 Yn 1 y. Otherwise, with probability
1 x y , let Xn 1 Xn x .
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Once again, these steps can all be easily performed on a computer; if repeated for
some large number N of iterations, then the random variable X N will approximately
have density given by C f y .

11.3.2 The Gibbs Sampler

In Section 7.3.3 we discussed the Gibbs sampler and its application in a Bayesian
statistics problem. As we will now demonstrate, the Gibbs sampler is a specialized
version of the Metropolis–Hastings algorithm, designed for multivariate distributions.
It chooses the proposal probabilities qi j just right so that we always have i j 1, i.e.,
so that no rejections are ever required.

Suppose that S 2 1 0 1 2 2 1 0 1 2 i.e., S is
the set of all ordered pairs of integers i i1 i2 . (Thus, 2 3 S, and 6 14 S,
etc.) Suppose that some distribution i is defined on S. Define a proposal distribution
q 1

i j as follows.
Let V i j S : j2 i2 . That is, V i is the set of all states j S such that i

and j agree in their second coordinate. Thus, V i is a vertical line in S, which passes
through the point i .

In terms of this definition of V i , define q 1
i j 0 if j V i , i.e., if i and j differ

in their second coordinate. If j V i , i.e., if i and j agree in their second coordinate,
then define

q 1
i j

j

k V i k
.

One interpretation is that, if Xn i , and P Yn 1 j q 1
i j for j S, then the

distribution of Yn 1 is the conditional distribution of i , conditional on knowing that
the second coordinate must be equal to i2.

In terms of this choice of q 1
i j , what is i j ? Well, if j V i , then i V j , and

also V j V i . Hence,

i j min 1
j q

1
ji

i q
1

i j

min 1
j i k V j k

i j l V i l

min 1
j i

i j
min 1 1 1.

That is, this algorithm accepts the proposal Yn 1 with probability 1, and never rejects
at all!

Now, this algorithm by itself is not very useful because it proposes only states in
V i , so it never changes the value of the second coordinate at all. However, we can
similarly define a horizontal line through i by H i j S : j1 i1 , so that H i
is the set of all states j such that i and j agree in their first coordinate. That is, H i is
a horizontal line in S that passes through the point i .
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We can then define q 2
i j 0 if j H i (i.e., if i and j differ in their first coordi

nate), while if j V i (i.e., if i and j agree in their first coordinate), then

q 2
i j

j

k H i k
.

As before, we compute that for this proposal, we will always have i j 1, i.e., the
Metropolis–Hastings algorithm with this proposal will never reject.

The Gibbs sampler works by combining these two different Metropolis–Hastings
algorithms, by alternating between them. That is, given a value Xn i , it produces a
value Xn 1 as follows.

1. Propose a value Yn 1 V i according to the proposal distribution q 1
i j .

2. Always accept Yn 1 and set j Yn 1 thus moving vertically.

3. Propose a value Zn 1 H j according to the proposal distribution q 2
i j .

4. Always accept Zn 1 thus moving horizontally.

5. Set Xn 1 Zn 1.

In this way, the Gibbs sampler does a “zigzag” through the state space S, alternately
moving in the vertical and in the horizontal direction.

In light of Theorem 11.3.2, we immediately obtain the following.

Theorem 11.3.4 The preceding Gibbs sampler algorithm results in a Markov chain
X0 X1 X2 that has i as a stationary distribution.

The Gibbs sampler thus provides a particular way of implementing the Metropolis–
Hastings algorithm in multidimensional problems, which never rejects the proposed
values.

Summary of Section 11.3

In cases that are too complicated for ordinary Monte Carlo techniques, it is pos
sible to use Markov chain Monte Carlo techniques instead, by averaging values
arising from a Markov chain.

The Metropolis–Hastings algorithm provides a simple way to create a Markov
chain with stationary distribution i . Given Xn , it generates a proposal Yn 1
from a proposal distribution qi j , and then either accepts this proposal (and sets
Xn 1 Yn 1) with probability i j , or rejects this proposal (and sets Xn 1
Xn) with probability 1 i j .

Alternatively, the Gibbs sampler updates the coordinates one at a time from their
conditional distribution, such that we always have i j 1.



Chapter 11: Advanced Topic — Stochastic Processes 649

EXERCISES

11.3.1 Suppose i Ce i 13 4
for i S 2 1 0 1 2 , where C

1 i e i 13 4
. Describe in detail a Metropolis–Hastings algorithm for i ,

which uses simple random walk with p 1 2 for the proposals.

11.3.2 Suppose i C i 6 5 8 for i S 2 1 0 1 2 , where
C 1 i i 6 5 8. Describe in detail a Metropolis–Hastings algorithm for

i , which uses simple random walk with p 5 8 for the proposals.

11.3.3 Suppose i K e i4 i6 i8
for i S 2 1 0 1 2 , where

C 1 i e i4 i6 i8
. Describe in detail a Metropolis–Hastings algorithm for

i , which uses simple random walk with p 7 9 for the proposals.

11.3.4 Suppose f x e x4 x6 x8
for x R1. Let K 1 e x4 x6 x8

dx
Describe in detail a Metropolis–Hastings algorithm for the distribution having density
K f x , which uses the proposal distribution N x 1 , i.e., a normal distribution with
mean x and variance 1.
11.3.5 Let f x e x4 x6 x8

for x R1, and let K 1 e x4 x6 x8
dx .

Describe in detail a Metropolis–Hastings algorithm for the distribution having density
K f x , which uses the proposal distribution N x 10 , i.e., a normal distribution with
mean x and variance 10.

COMPUTER EXERCISES

11.3.6 Run the algorithm of Exercise 11.3.1. Discuss the output.

11.3.7 Run the algorithm of Exercise 11.3.2. Discuss the output.

PROBLEMS

11.3.8 Suppose S 1 2 3 1 2 3 , i.e., S is the set of all pairs of positive
integers. For i i1 i2 S, suppose i C 2i1 i2 for appropriate positive constant
C . Describe in detail a Gibbs sampler algorithm for this distribution i .

COMPUTER PROBLEMS

11.3.9 Run the algorithm of Exercise 11.3.4. Discuss the output.
11.3.10 Run the algorithm of Exercise 11.3.5. Discuss the output.

DISCUSSION TOPICS

11.3.11 Why do you think Markov chain Monte Carlo algorithms have become so
popular in so many branches of science? (List as many reasons as you can.)
11.3.12 Suppose you will be using a Markov chain Monte Carlo estimate of the form

A
1

M

M

i 1

h X [i]
N .
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Suppose also that, due to time constraints, your total number of iterations cannot be
more than one million. That is, you must have N M 1,000,000. Discuss the advan
tages and disadvantages of the following choices of N and M.
(a) N 1,000,000 M 1
(b) N 1, M 1,000,000
(c) N 100, M 10,000
(d) N 10,000, M 100

(e) N 1000, M 1000
(f) Which choice do you think would be best, under what circumstances? Why?

11.4 Martingales
In this section, we study a special class of stochastic processes called martingales. We
shall see that these processes are characterized by “staying the same on average.”

As motivation, consider again a simple random walk in the case of a fair game, i.e.,
with p 1 2. Suppose, as in the gambler’s ruin setup, that you start at a and keep
going until you hit either c or 0, where 0 a c. Let Z be the value that you end up
with, so that we always have either Z c or Z 0. We know from Theorem 11.1.2
that in fact P Z c a c, so that P Z 0 1 a c.

Let us now consider the expected value of Z . We have that

E Z
z R1

z P Z z cP Z c 0P Z 0 c a c a.

That is, the average value of where you end up is a. But a is also the value at which
you started!

This is not a coincidence. Indeed, because p 1 2 (i.e., the game was fair), this
means that “on average” you always stayed at a. That is, Xn is a martingale.

11.4.1 Definition of a Martingale

We begin with the definition of a martingale. For simplicity, we assume that the mar
tingale is a Markov chain, though this is not really necessary.

Definition 11.4.1 Let X0 X1 X2 be a Markov chain. The chain is a martingale
if for all n 0 1 2 , we have E Xn 1 Xn Xn 0. That is, on average the
chain’s value does not change, regardless of what the current value Xn actually is.

EXAMPLE 11.4.1
Let Xn be simple random walk with p 1 2. Then Xn 1 Xn is equal to either 1
or 1, with probability 1 2 each. Hence,

E Xn 1 Xn Xn 1 1 2 1 1 2 0,

so Xn stays the same on average and is a martingale. (Note that we will never actually
have Xn 1 Xn 0. However, on average we will have Xn 1 Xn 0.)
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EXAMPLE 11.4.2
Let Xn be simple random walk with p 2 3. Then Xn 1 Xn is equal to either 1
or 1, with probabilities 2 3 and 1 3 respectively. Hence,

E Xn 1 Xn Xn 1 2 3 1 1 3 1 3 0.

Thus, Xn is not a martingale in this case.

EXAMPLE 11.4.3
Suppose we start with the number 5 and then repeatedly do the following. We either add
3 to the number (with probability 1 4), or subtract 1 from the number (with probability
3 4). Let Xn be the number obtained after repeating this procedure n times. Then,
given the value of Xn, we see that Xn 1 Xn 3 with probability 1 4, while Xn 1
Xn 1 with probability 3 4. Hence,

E Xn 1 Xn Xn 3 1 4 1 3 4 3 4 3 4 0

and Xn is a martingale.

It is sometimes possible to create martingales in subtle ways, as follows.

EXAMPLE 11.4.4
Let Xn again be simple random walk, but this time for general p. Then Xn 1 Xn
is equal to 1 with probability p, and to 1 with probability q 1 p. Hence,

E Xn 1 Xn Xn 1 p 1 q p q 2p 1.

If p 1 2, then this is not equal to 0. Hence, Xn does not stay the same on average,
so Xn is not a martingale.

On the other hand, let

Zn
1 p

p

Xn

,

i.e., Zn equals the constant 1 p p raised to the power of Xn . Then increasing Xn by
1 corresponds to multiplying Zn by 1 p p, while decreasing Xn by 1 corresponds
to dividing Zn by 1 p p, i.e., multiplying by p 1 p . But Xn 1 Xn 1 with
probability p, while Xn 1 Xn 1 with probability q 1 p. Therefore, we see
that, given the value of Zn, we have

E Zn 1 Zn Zn
1 p

p
Zn Zn p

p

1 p
Zn Zn 1 p

1 p Zn pZn pZn 1 p Zn 0.

Accordingly, E Zn 1 Zn Zn 0, so that Zn stays the same on average, i.e., Zn
is a martingale.

11.4.2 Expected Values

Because martingales stay the same on average, we immediately have the following.
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Theorem 11.4.1 Let Xn be a martingale with X0 a. Then E Xn a for all
n.

This theorem sometimes provides very useful information, as the following exam
ples demonstrate.

EXAMPLE 11.4.5
Let Xn again be simple random walk with p 1 2. Then we have already seen that
Xn is a martingale. Hence, if X0 a, then we will have E Xn a for all n. That

is, for a fair game (i.e., for p 1 2), no matter how long you have been gambling,
your average fortune will always be equal to your initial fortune a.

EXAMPLE 11.4.6
Suppose we start with the number 10 and then repeatedly do the following. We either
add 2 to the number (with probability 1 3), or subtract 1 from the number (with proba
bility 2 3). Suppose we repeat this process 25 times. What is the expected value of the
number we end up with?

Without martingale theory, this problem appears to be difficult, requiring lengthy
computations of various possibilities for what could happen on each of the 25 steps.
However, with martingale theory, it is very easy.

Indeed, let Xn be the number after n steps, so that X0 10 X1 12 (with
probability 1 3) or X1 9 (with probability 2 3), etc. Then, because Xn 1 Xn
equals either 2 (with probability 1 3) or 1 (with probability 2 3), we have

E Xn 1 Xn Xn 2 1 3 1 2 3 2 3 2 3 0.

Hence, Xn is a martingale.
It then follows that E Xn X0 10, for any n. In particular, E X25 10.

That is, after 25 steps, on average the number will be equal to 10.

11.4.3 Stopping Times

If Xn is a martingale with X0 a, then it is very helpful to know that E Xn a
for all n. However, it is sometimes even more helpful to know that E XT a, where
T is a random time. Now, this is not always true; however, it is often true, as we shall
see. We begin with another definition.

Definition 11.4.2 Let Xn be a stochastic process, and let T be a random variable
taking values in 0 1 2 . Then T is a stopping time if for all m 0 1 2 ,
the event T m is independent of the values Xm 1 Xm 2 . That is, when
deciding whether or not T m (i.e., whether or not to “stop” at time m), we are
not allowed to look at the future values Xm 1 Xm 2 .

EXAMPLE 11.4.7
Let Xn be simple random walk, let b be any integer, and let b min n 0 : Xn
b be the first time we hit the value b. Then b is a stopping time because the event

b n depends only on X0 Xn , not on Xn 1 Xn 2 .
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On the other hand, let T b 1, so that T corresponds to stopping just before
we hit b. Then T is not a stopping time because it must look at the future value Xm 1
to decide whether or not to stop at time m.

A key result about martingales and stopping times is the optional stopping theorem,
as follows.

Theorem 11.4.2 (Optional stopping theorem) Suppose Xn is a martingale with
X0 a, and T is a stopping time. Suppose further that either

(a) the martingale is bounded up to time T , i.e., for some M 0 we have Xn M
for all n T ; or
(b) the stopping time is bounded, i.e., for some M 0 we have T M .

Then E XT a i.e., on average the value of the process at the random time T is
equal to the starting value a.

PROOF For a proof and further discussion, see, e.g., page 273 of Probability: The
ory and Examples, 2nd ed., by R. Durrett (Duxbury Press, New York, 1996).

Consider a simple application of this.

EXAMPLE 11.4.8
Let Xn be simple random walk with initial value a and with p 1 2. Let r a s
be integers. Let T min r s be the first time the process hits either r or s. Then
r Xn s for n T , so that condition (a) of the optional stopping theorem applies.
We conclude that E XT a, i.e., that at time T , the walk will on average be equal to
a.

We shall see that the optional stopping theorem is useful in many ways.

EXAMPLE 11.4.9
We can use the optional stopping theorem to find the probability that the simple random
walk with p 1 2 will hit r before hitting another value s.

Indeed, again let Xn be simple random walk with initial value a and p 1 2,
with r a s integers and T min r s Then as earlier, E XT a. We can
use this to solve for P XT r , i.e., for the probability that the walk hits r before
hitting s.

Clearly, we always have either XT r or XT s. Let h P XT r . Then
E XT hr 1 h s. Because E XT a, we must have a hr 1 h s.
Solving for h, we see that

P XT r
a s

r s
.

We conclude that the probability that the process will hit r before it hits s is equal
to a s r s . Note that absolutely no difficult computations were required to
obtain this result.

A special case of the previous example is particularly noteworthy.
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EXAMPLE 11.4.10
In the previous example, suppose r c and s 0. Then the value h P XT r
is precisely the same as the probability of success in the gambler’s ruin problem. The
previous example shows that h a s r s a c. This gives the same answer
as Theorem 11.1.2, but with far less effort.

It is impressive that, in the preceding example, martingale theory can solve the
gambler’s ruin problem so easily in the case p 1 2. Our previous solution, without
using martingale theory, was much more difficult (see Section 11.7). Even more sur
prising, martingale theory can also solve the gambler’s ruin problem when p 1 2, as
follows.

EXAMPLE 11.4.11
Let Xn be simple random walk with initial value a and with p 1 2. Let 0 a c
be integers. Let T min c 0 be the first time the process hits either c or 0. To
solve the gambler’s ruin problem in this case, we are interested in g P XT c
We can use the optional stopping theorem to solve for the gambler’s ruin probability g,
as follows.

Now, Xn is not a martingale, so we cannot apply martingale theory to it. However,
let

Zn
1 p

p

Xn

.

Then Zn has initial value Z0 1 p p a . Also, we know from Example 11.4.4
that Zn is a martingale. Furthermore,

0 Zn max
1 p

p

c 1 p

p

c

for n T , so that condition (a) of the optional stopping theorem applies. We conclude
that

E ZT Z0
1 p

p

a

.

Now, clearly, we always have either XT c (with probability g) or XT 0
(with probability 1 g). In the former case, ZT 1 p p c, while in the latter
case, ZT 1. Hence, E ZT g 1 p p c 1 g 1 . Because E ZT

1 p p a , we must have

1 p

p

a

g
1 p

p

c

1 g 1 .

Solving for g, we see that

g
1 p p a 1

1 p p c 1
.

This again gives the same answer as Theorem 11.1.2, this time for p 1 2, but
again with far less effort.

Martingale theory can also tell us other surprising facts.
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EXAMPLE 11.4.12
Let Xn be simple random walk with p 1 2 and with initial value a 0. Will
the walk hit the value 1 some time during the first million steps? Probably yes, but
not for sure. Furthermore, conditional on not hitting 1, it will probably be extremely
large, as we now discuss.

Let T min 106
1 That is, T is the first time the process hits 1, unless that

takes more than one million steps, in which case T 106.
Now, Xn is a martingale. Also T is a stopping time (because it does not look

into the future when deciding whether or not to stop). Furthermore, we always have
T 106, so condition (b) of the optional stopping theorem applies. We conclude that
E XT a 0.

On the other hand, by the law of total expectation, we have

E XT E XT XT 1 P XT 1 E XT XT 1 P XT 1 .

Also, clearly E XT XT 1 1. Let u P XT 1 , so that P XT
1 1 u. Then we conclude that 0 1 u E XT XT 1 1 u so that

E XT XT 1
u

1 u
.

Now, clearly, u will be very close to 1, i.e., it is very likely that within 106 steps the
process will have hit 1. Hence, E XT XT 1 is extremely large.

We may summarize this discussion as follows. Nearly always we have XT 1.
However, very occasionally we will have XT 1. Furthermore, the average value
of XT when XT 1 is so large that overall (i.e., counting both the case XT 1
and the case XT 1), the average value of XT is 0 (as it must be because Xn is a
martingale)!

If one is not careful, then it is possible to be tricked by martingale theory, as follows.

EXAMPLE 11.4.13
Suppose again that Xn is simple random walk with p 1 2 and with initial value
a 0. Let T 1, i.e., T is the first time the process hits 1 (no matter how long
that takes).

Because the process will always wait until it hits 1, we always have XT 1.
Because this is true with probability 1, we also have E XT 1.

On the other hand, again Xn is a martingale, so again it appears that we should
have E XT 0. What is going on?

The answer, of course, is that neither condition (a) nor condition (b) of the optional
stopping theorem is satisfied in this case. That is, there is no limit to how large T might
have to be or how large Xn might get for some n T . Hence, the optional stopping
theorem does not apply in this case, and we cannot conclude that E XT 0. Instead,
E XT 1 here.

Summary of Section 11.4

A Markov chain Xn is a martingale if it stays the same on average, i.e., if
E Xn 1 Xn Xn 0 for all n. There are many examples.
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A stopping time T for the chain is a nonnegative integervalued random variable
that does not look into the future of Xn . For example, perhaps T b is the
first time the chain hits some state b.

If Xn is a martingale with stopping time T , and if either T or Xn n T is
bounded, then E XT X0. This can be used to solve many problems, e.g.,
gambler’s ruin.

EXERCISES

11.4.1 Suppose we define a process Xn as follows. Given Xn, with probability 3 8
we let Xn 1 Xn 4, while with probability 5 8 we let Xn 1 Xn C . What value
of C will make Xn be a martingale?
11.4.2 Suppose we define a process Xn as follows. Given Xn, with probability p we
let Xn 1 Xn 7, while with probability 1 p we let Xn 1 Xn 2. What value
of p will make Xn be a martingale?
11.4.3 Suppose we define a process Xn as follows. Given Xn, with probability p we
let Xn 1 2Xn, while with probability 1 p we let Xn 1 Xn 2. What value of p
will make Xn be a martingale?
11.4.4 Let Xn be a martingale, with initial value X0 14. Suppose for some n, we
know that P Xn 8 P Xn 12 P Xn 17 1, i.e., Xn is always either 8,
12, or 17. Suppose further that P Xn 8 0 1. Compute P Xn 14 .
11.4.5 Let Xn be a martingale, with initial value X0 5. Suppose we know that
P X8 3 P X8 4 P X8 6 1, i.e., X8 is always either 3, 4, or 6.
Suppose further that P X8 3 2 P X8 6 . Compute P X8 4 .
11.4.6 Suppose you start with 175 pennies. You repeatedly ip a fair coin. Each time
the coin comes up heads, you win a penny; each time the coin comes up tails, you lose
a penny.
(a) After repeating this procedure 20 times, how many pennies will you have on aver
age?
(b) Suppose you continue until you have either 100 or 200 pennies, and then you stop.
What is the probability you will have 200 pennies when you stop?
11.4.7 Define a process Xn by X0 27, and Xn 1 3Xn with probability 1 4, or
Xn 1 Xn 3 with probability 3 4. Let T min 1 81 be the first time the process
hits either 1 or 81.
(a) Show that Xn is a martingale.
(b) Show that T is a stopping time.
(c) Compute E XT .
(d) Compute the probability P XT 1 that the process hits 1 before hitting 81.

PROBLEMS

11.4.8 Let Xn be a stochastic process, and let T1 be a stopping time. Let T2 T1 i
and T3 T1 i , for some positive integer i . Which of T2 and T3 is necessarily a
stopping time, and which is not? (Explain your reasoning.)
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11.4.9 Let Xn be a stochastic process, and let T1 and T2 be two different stopping
times. Let T3 min T1 T2 , and T4 max T1 T2 .
(a) Is T3 necessarily a stopping time? (Explain your reasoning.)
(b) Is T4 necessarily a stopping time? (Explain your reasoning.)

11.5 Brownian Motion
The simple random walk model of Section 11.1.2 (with p 1 2) can be extended to
an interesting continuoustime model, called Brownian motion, as follows. Roughly,
the idea is to speed up time faster and faster by a factor of M (for very large M),
while simultaneously shrinking space smaller and smaller by a factor of 1 M. The
factors of M and 1 M are chosen just right so that, using the central limit theorem,
we can derive properties of Brownian motion. Indeed, using the central limit theorem,
we shall see that various distributions related to Brownian motion are in fact normal
distributions.

Historically, Brownian motion gets its name from Robert Brown, a botanist, who
in 1828 observed the motions of tiny particles in solution, under a microscope, as
they were bombarded from random directions by many unseen molecules. Brownian
motion was proposed as a model for the observed chaotic, random movement of such
particles. In fact, Brownian motion turns out not to be a very good model for such
movement (for example, Brownian motion has infinite derivative, which would only
make sense if the particles moved infinitely quickly!). However, Brownian motion has
many useful mathematical properties and is also very important in the theory of finance
because it is often used as a model of stock price uctuations. A proper mathematical
theory of Brownian motion was developed in 1923 by Norbert Wiener2; as a result,
Brownian motion is also sometimes called the Wiener process.

We shall construct Brownian motion in two steps. First, we construct faster and
faster random walks, to be called Y M

t where M is large. Then, we take the limit as
M to get Brownian motion.

11.5.1 Faster and Faster Random Walks

To begin, we let Z1 Z2 be i.i.d. with P Zi 1 P Zi 1 1 2 For
each M 1 2 , define a discretetime random process

Y M
i M : i 0 1 ,

by Y M
0 0, and

Y M
i 1 M Y M

i
M

1

M
Zi 1,

for i 0 1 2 so that

Y M
i M

1

M
Z1 Z2 Zi .

2Wiener was such an absentminded professor that he once got lost and could not find his house. In his
confusion, he asked a young girl for directions, without recognizing the girl as his daughter!
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Intuitively, then, Y M
i M is like an ordinary (discretetime) random walk (with p

1 2), except that time has been sped up by a factor of M and space has been shrunk
by a factor of M (each step in the new walk moves a distance 1 M . That is, this
process takes lots and lots of very small steps.

To make Y M
i M into a continuoustime process, we can then “fill in” the missing

values by making the function linear on the intervals [i M i 1 M]. In this way,
we obtain a continuoustime process

Y M
t : t 0

which agrees with Y M
i M whenever t 1 M. In Figure 11.5.1, we have plotted

Y 10
i 10 : i 0 1 20

(the dots) and the corresponding values of

Y 10
t : 0 t 20

(the solid line), arising from the realization

Z1 Z20 1 1 1 1 1 1 ,

where we have taken 1 10 0 316

2.01.91.81.71.61.51.41.31.21.11.00.90.80.70.60.50.40.30.20.10.0

0.9490.949

0.6320.6320.6320.6320.632

0.3160.3160.3160.3160.3160.316

0.0000.0000.0000.0000.000

0.3160.316

0.632

t

Y

Figure 11.5.1: Plot of some values of Y 10
i 10 and Y 10

t

The collection of variables Y M
t : t 0 is then a stochastic process but is now

indexed by the continuous time parameter t 0. This is an example of a continuous
time stochastic process.

Now, the factors M and M have been chosen carefully, as the following theorem
illustrates.
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Theorem 11.5.1 Let Y M
t : t 0 be as defined earlier. Then for large M:

(a) For t 0, the distribution of Y M
t is approximately N 0 t , i.e., normally

distributed with mean t .
(b) For s t 0, the covariance

Cov Y M
t Y M

t

is approximately equal to min s t .
(c) For t s 0, the distribution of the increment Y M

t Y M
s is approxi

mately N 0 t s , i.e., normally distributed with mean 0 and variance t s, and
is approximately independent of Y M

s .
(d) Y M

t is a continuous function of t .

PROOF See Section 11.7 for the proof of this result.

We shall use this limit theorem to construct Brownian motion.

11.5.2 Brownian Motion as a Limit

We have now developed the faster and faster processes Y M
t : t 0 , and some

of their properties. Brownian motion is then defined as the limit as M of the
processes Y M

t : t 0 . That is, we define Brownian motion Bt : t 0 by saying
that the distribution of Bt : t 0 is equal to the limit as M of the distribution
of Y M

t : t 0 . A graph of a typical run of Brownian motion is in Figure 11.5.2.

2.52.01.51.00.50.0

2

1

0

1

t

B

Figure 11.5.2: A typical outcome from Brownian motion.

In this way, all the properties of Y M
t for large M , as developed in Theorem 11.5.1,

will apply to Brownian motion, as follows.
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Theorem 11.5.2 Let Bt : t 0 be Brownian motion. Then
(a) Bt is normally distributed: Bt N 0 t for any t 0;
(b) Cov Bs Bt E Bs Bt min s t for s t 0;
(c) if 0 s t , then the increment Bt Bs is normally distributed: Bt Bs
N 0 t s , and furthermore Bt Bs is independent of Bs ;
(d) the function Bt t 0 is a continuous function.

This theorem can be used to compute many things about Brownian motion.

EXAMPLE 11.5.1
Let Bt be Brownian motion. What is P B5 3 ?

We know that B5 N 0 5 . Hence, B5 5 N 0 1 . We conclude that

P B5 3 P B5 5 3 5 3 5 0 910,

where

x
x 1

2
e s2 2 ds

is the cdf of a standard normal distribution, and we have found the numerical value
from Table D.2. Thus, about 91% of the time, Brownian motion will be less than 3 at
time 5.

EXAMPLE 11.5.2
Let Bt be Brownian motion. What is P B7 4 ?

We know that B7 N 0 7 . Hence, B7 7 N 0 1 . We conclude that

P B7 4 1 P B7 4 1 P B7 7 4 7

1 4 7 1 0 065 0 935.

Thus, over 93% of the time, Brownian motion will be at least 4 at time 7.

EXAMPLE 11.5.3
Let Bt be Brownian motion. What is P B8 B6 1 5 ?

We know that B8 B6 N 0 8 6 N 0 2 . Hence, B8 B6 2 N 0 1 .
We conclude that

P B8 B6 1 5 P B8 B6 2 1 5 2 1 5 2 0 144.

Thus, about 14% of the time, Brownian motion will decrease by at least 1.5 between
time 6 and time 8.

EXAMPLE 11.5.4
Let Bt be Brownian motion. What is P B2 0 5 B5 B2 1 5 ?

By Theorem 11.5.2, we see that B5 B2 and B2 are independent. Hence,

P B2 0 5 B5 B2 1 5 P B2 0 5 P B5 B2 1 5 .

Now, we know that B2 N 0 2 . Hence, B2 2 N 0 1 , and

P B2 0 5 P B2 2 0 5 2 0 5 2 .
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Similarly, B5 B2 N 0 3 , so B5 B2 3 N 0 1 , and

P B5 B2 1 5 P B5 B2 3 1 5 3

1 P B5 B2 3 1 5 3 1 5 3 .

We conclude that

P B2 0 5 B5 B2 1 5 P B2 0 5 P B5 B2 1 5

0 5 2 1 5 3 0 292.

Thus, about 29% of the time, Brownian motion will be no more than 1 2 at time 2
and will then increase by at least 1.5 between time 2 and time 5.

We note also that, because Brownian motion was created from simple random
walks with p 1 2, it follows that Brownian motion is a martingale. This implies
that E Bt 0 for all t , but of course, we already knew that because Bt N 0 t .
On the other hand, we can now use the optional stopping theorem (Theorem 11.4.2) to
conclude that E BT 0 where T is a stopping time (provided, as usual, that either
T or Bt : t T is bounded). This allows us to compute certain probabilities, as
follows.

EXAMPLE 11.5.5
Let Bt be Brownian motion. Let c 0 b. What is the probability the process will
hit c before it hits b?

To solve this problem, we let c be the first time the process hits c, and b be the
first time the process hits b. We then let T min c b be the first time the process
either hits c or hits b. The question becomes, what is P c b ? Equivalently, what
is P BT c ?

To solve this, we note that we must have E BT B0 0. But if h P BT c ,
then BT c with probability h, and BT b with probability 1 h. Hence, we must
have 0 E BT hc 1 h b so that h b b c . We conclude that

P BT c P c b
b

b c
.

(Recall that c 0, so that b c b c here.)

Finally, we note that although Brownian motion is a continuous function, it turns
out that, with probability one, Brownian motion is not differentiable anywhere at all!
This is part of the reason that Brownian motion is not a good model for the movement of
real particles. (See Challenge 11.5.15 for a result related to this.) However, Brownian
motion has many other uses, including as a model for stock prices, which we now
describe.

11.5.3 Diffusions and Stock Prices

Brownian motion is used to construct various diffusion processes, as follows.
Given Brownian motion Bt , we can let

Xt a t Bt ,
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where a and are any real numbers, and 0. Then X t is a diffusion.
Here, a is the initial value, (called the drift) is the average rate of increase, and

(called the volatility parameter) represents the amount of randomness of the diffusion.
Intuitively, Xt is approximately equal to the linear function a t , but due to

the randomness of Brownian motion, Xt takes on random values around this linear
function.

The precise distribution of X t can be computed, as follows.

Theorem 11.5.3 Let Bt be Brownian motion, and let X t a t Bt be a
diffusion. Then
(a) E X t a t ,
(b) Var X t

2t ,
(c) X t N a t 2t .

PROOF We know Bt N 0 1 , so E Bt 0 and Var Bt t . Also, a t is
not random (i.e., is a constant from the point of view of random variables). Hence,

E X t E a t Bt a t E Bt a t ,

proving part (a).
Similarly,

Var X t Var a t Bt Var Bt
2Var Bt

2t ,

proving part (b).
Finally, because Xt is a linear function of the normally distributed random variable

Bt , Xt must be normally distributed by Theorem 4.6.1. This proves part (c).

Diffusions are often used as models for stock prices. That is, it is often assumed
that the price X t of a stock at time t is given by X t a t Bt for appropriate
values of a, , and .

EXAMPLE 11.5.6
Suppose a stock has initial price $20, drift of $3 per year, and volatility parameter 1 4.
What is the probability that the stock price will be over $30 after two and a half years?

Here, the stock price after t years is given by Xt 20 3t 1 4Bt and is thus a
diffusion.

So, after 2 5 years, we have X2 5 20 7 5 1 4B2 5 27 5 1 4B2 5 Hence,

P X2 5 30 P 27 5 1 4B2 5 30 P B2 5 30 27 5 1 4

P B2 5 1 79 .

But like before,

P B2 5 1 79 1 P B2 5 1 79 1 P B2 5 2 5 1 79 2 5

1 1 79 2 5 0 129.

We conclude that P X2 5 30 0 129.
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Hence, there is just under a 13% chance that the stock will be worth more than $30
after two and a half years.

EXAMPLE 11.5.7
Suppose a stock has initial price $100, drift of $2 per year, and volatility parameter
5 5. What is the probability that the stock price will be under $90 after just half a year?

Here, the stock price after t years is given by X t 100 2t 5 5Bt and is again
a diffusion. So, after 0 5 years, we have X0 5 100 1 0 5 5B0 5 99 5 5B0 5
Hence,

P X0 5 90 P 99 5 5B0 5 90 P B0 5 90 99 5 5

P B0 5 1 64 P B0 5 0 5 1 64 0 5

1 64 0 5 2 32 0 010.

Therefore, there is about a 1% chance that the stock will be worth less than $90 after
half a year.

More generally, the drift and volatility could be functions of the value X t ,
leading to more complicated diffusions X t , though we do not pursue this here.

Summary of Section 11.5

Brownian motion Bt t 0 is created from simple random walk with p 1 2, by
speeding up time by a large factor M, and shrinking space by a factor 1 M.

Hence, B0 0 Bt N 0 t , and Bt has independent normal increments with
Bt Bs N 0 t s for 0 s t , and Cov Bs Bt min s t , and Bt is
a continuous function.

Diffusions (often used to model stock prices) are of the form X t a t Bt .

EXERCISES

11.5.1 Consider the speededup processes Y M
i M used to construct Brownian motion.

Compute the following quantities.
(a) P Y 1

1 1

(b) P Y 2
1 1

(c) P Y 2
1 2 (Hint: Don’t forget that 2 2 2.)

(d) P Y M
1 1 for M 1, M 2, M 3, and M 4

11.5.2 Let Bt be Brownian motion. Compute P B1 1 .

11.5.3 Let Bt be Brownian motion. Compute each of the following quantities.
(a) P B2 1
(b) P B3 4
(c) P B9 B5 2 4
(d) P B26 B11 9 8
(e) P B26 3 6
(f) P B26 3 0
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11.5.4 Let Bt be Brownian motion. Compute each of the following quantities.
(a) P B2 1 B5 B2 2
(b) P B5 2 B13 B5 4
(c) P B8 4 3 2 B18 6 B8 4 0 9
11.5.5 Let Bt be Brownian motion. Compute E B13 B8 . (Hint: Do not forget
part (b) of Theorem 11.5.2.)
11.5.6 Let Bt be Brownian motion. Compute E B17 B14

2 in two ways.
(a) Use the fact that B17 B14 N 0 3 .
(b) Square it out, and compute E B2

17 2 E B17 B14 E B2
14 .

11.5.7 Let Bt be Brownian motion.
(a) Compute the probability that the process hits 5 before it hits 15.
(b) Compute the probability that the process hits 15 before it hits 5.
(c) Which of the answers to Part (a) or (b) is larger? Why is this so?
(d) Compute the probability that the process hits 15 before it hits 5.
(e) What is the sum of the answers to parts (a) and (d)? Why is this so?
11.5.8 Let X t 5 3t 2Bt be a diffusion (so that a 5, 3, and 2).
Compute each of the following quantities.
(a) E X7
(b) Var X8 1
(c) P X2 5 12
(d) P X17 50
11.5.9 Let Xt 10 1 5 t 4Bt . Compute E X3 X5 .

11.5.10 Suppose a stock has initial price $400 and has volatility parameter equal to 9.
Compute the probability that the stock price will be over $500 after 8 years, if the drift
per year is equal to
(a) $0.
(b) $5.
(c) $10.
(d) $20.

11.5.11 Suppose a stock has initial price $200 and drift of $3 per year. Compute
the probability that the stock price will be over $250 after 10 years, if the volatility
parameter is equal to
(a) 1.
(b) 4.
(c) 10.
(d) 100.

PROBLEMS

11.5.12 Let Bt be Brownian motion, and let X 2B3 7B5. Compute the mean
and variance of X .

11.5.13 Prove that P Bt x P Bt x for any t 0 and any x R1.
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CHALLENGES

11.5.14 Compute P Bs x Bt y , where 0 s t , and x y R1. (Hint: You
will need to use conditional densities.)
11.5.15 (a) Let f : R1 R1 be a Lipschitz function, i.e., a function for which there
exists K such that f x f y K x y for all x y R1. Compute

lim
h 0

f t h f t 2

h

for any t R1.
(b) Let Bt be Brownian motion. Compute

lim
h 0

E
Bt h Bt

2

h

for any t 0.
(c) What do parts (a) and (b) seem to imply about Brownian motion?
(d) It is a known fact that all functions that are continuously differentiable on a closed
interval are Lipschitz. In light of this, what does part (c) seem to imply about Brownian
motion?

DISCUSSION TOPICS

11.5.16 Diffusions such as those discussed here (and more complicated, varying co
efficient versions) are very often used by major investors and stock traders to model
stock prices.
(a) Do you think that diffusions provide good models for stock prices?
(b) Even if diffusions did not provide good models for stock prices, why might in
vestors still need to know about them?

11.6 Poisson Processes
Finally, we turn our attention to Poisson processes. These processes are models for
events that happen at random times Tn. For example, Tn could be the time of the
nth fire in a city, or the detection of the nth particle by a Geiger counter, or the nth car
passing a checkpoint on a road. Poisson processes provide a model for the probabilities
for when these events might take place.

More formally, we let a 0, and let R1 R2 be i.i.d. random variables, each
having the Exponential a distribution. We let T0 0, and for n 1,

Tn R1 R2 Rn .

The value Tn thus corresponds to the (random) time of the nth event.
We also define a collection of counting variables Nt , as follows. For t 0, we let

Nt max n : Tn t
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That is, Nt counts the number of events that have happened by time t . (In particular,
N0 0. Furthermore, Nt 0 for all t T1, i.e., before the first event occurs.)

We can think of the collection of variables Nt for t 0 as being a stochastic
process, indexed by the continuous time parameter t 0. The process Nt : t 0 is
thus another example, like Brownian motion, of a continuoustime stochastic process.

In fact, Nt : t 0 is called a Poisson process (with intensity a). This name comes
from the following.

Theorem 11.6.1 For any t 0, the distribution of Nt is Poisson at .

PROOF See Section 11.7 for the proof of this result.

In fact, even more is true.

Theorem 11.6.2 Let 0 t0 t1 t2 t3 td . Then for i 1 2 d,
the distribution of Nti Nti 1 is Poisson a ti ti 1 . Furthermore, the random
variables Nti Nti 1 for i 1 d are independent.

PROOF See Section 11.7 for the proof of this result.

EXAMPLE 11.6.1
Let Nt be a Poisson process with intensity a 5. What is P N3 12 ?

Here, N3 Poisson 3a Poisson 15 . Hence, from the definition of the Poisson
distribution, we have

P N3 12 e 15 15 12 12! 0 083,

which is a little more than 8%.

EXAMPLE 11.6.2
Let Nt be a Poisson process with intensity a 2. What is P N6 11 ?

Here N6 Poisson 6a Poisson 12 . Hence,

P N6 11 e 12 12 11 11! 0 114,

or just over 11%.

EXAMPLE 11.6.3
Let Nt be a Poisson process with intensity a 4. What is P N2 3 N5 4 ?
(Recall that here the comma means “and” in probability statements.)

We begin by writing P N2 3 N5 4 P N2 3 N5 N2 1 This
is just rewriting the question. However, it puts it into a context where we can use
Theorem 11.6.2.

Indeed, by that theorem, N2 and N5 N2 are independent, with N2 Poisson 8
and N5 N2 Poisson 12 . Hence,

P N2 3 N5 4 P N2 3 N5 N2 1

P N2 3 P N5 N2 1

e 8 83

3!
e 12 121

1!
0 0000021.

We thus see that the event N2 3 N5 4 is very unlikely in this case.
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Summary of Section 11.6

Poisson processes are models of events that happen at random times Tn.

It is assumed that the time Rn Tn Tn 1 between consecutive events in
Exponential a for some a 0. Then Nt represents the total number of events
by time t .

It follows that Nt Poisson at , and in fact the process Nt t 0 has independent
increments, with Nt Ns Poisson a t s for 0 s t .

EXERCISES

11.6.1 Let N t t 0 be a Poisson process with intensity a 7. Compute the follow
ing probabilities.
(a) P N2 13
(b) P N5 3
(c) P N6 20 .
(d) P N50 340
(e) P N2 13 N5 3 .
(f) P N2 13 N6 20
(g) P N2 13 N5 3 N6 20

11.6.2 Let N t t 0 be a Poisson process with intensity a 3. Compute P N1 2
6 and P N0 3 5 .

11.6.3 Let N t t 0 be a Poisson process with intensity a 1 3. Compute P N2
6 and P N3 5 .
11.6.4 Let N t t 0 be a Poisson process with intensity a 3. Compute P N2
6 N3 5 . Explain your answer.
11.6.5 Let N t t 0 be a Poisson process with intensity a 0. Compute (with expla
nation) the conditional probability P N2 6 2 N2 9 2
11.6.6 Let N t t 0 be a Poisson process with intensity a 1 3. Compute (with
explanation) the following conditional probabilities.
(a) P N6 5 N9 5
(b) P N6 5 N9 7
(c) P N9 5 N6 7
(d) P N9 7 N6 7
(e) P N9 12 N6 7

PROBLEMS

11.6.7 Let Nt : t 0 be a Poisson process with intensity a 0. Let 0 s t , and
let j be a positive integer.
(a) Compute (with explanation) the conditional probability P Ns j Nt j
(b) Does the answer in part (a) depend on the value of the intensity a? Intuitively, why
or why not?
11.6.8 Let Nt : t 0 be a Poisson process with intensity a 0. Let T1 be the time
of the first event, as usual. Let 0 s t .
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(a) Compute P Ns 1 Nt 1 (If you wish, you may use the previous problem,
with j 1.)
(b) Suppose t is fixed, but s is allowed to vary in the interval 0 t . What does the an
swer to part (b) say about the “conditional distribution” of T1, conditional on knowing
that Nt 1?

11.7 Further Proofs
Proof of Theorem 11.1.1

We want to prove that when Xn is a simple random walk, n is a positive integer, and
if k is an integer such that n k n and n k is even, then

P Xn a k
n

n k
2

p n k 2q n k 2.

For all other values of k, we have P Xn a k 0. Furthermore,

E Xn a n 2p 1 .

Of the first n bets, let Wn be the number won, and let Ln be the number lost. Then
n Wn Ln . Also, Xn a Wn Ln.

Adding these two equations together, we conclude that n Xn Wn Ln a
Wn Ln a 2Wn Solving for Wn, we see that Wn n Xn a 2. Because
Wn must be an integer, it follows that n Xn a must be even. We conclude that
P Xn a k 0 unless n k is even.

On the other hand, solving for Xn, we see that Xn a 2Wn n, or Xn
a 2Wn n. Because 0 Wn n, it follows that n Xn a n, i.e., that
P Xn a k 0 if k n or k n.

Suppose now that k n is even, and n k n. Then from the above, P Xn
a k P Wn n k 2 . But the distribution of Wn is clearly Binomial n p .
We conclude that

P Xn a k
n

n k
2

p n k 2q n k 2,

provided that k n is even and n k n.
Finally, because Wn Binomial n p , therefore E Wn np. Hence, because

Xn a 2Wn n, therefore E Xn a 2E Wn n a 2np n a n 2p 1 ,
as claimed.

Proof of Theorem 11.1.2

We want to prove that when Xn is a simple random walk, with some initial fortune a
and probability p of winning each bet, and 0 a c, then the probability P c 0
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of hitting c before 0 is given by

P c 0

a c p 1 2
1 q

p

a

1 q
p

c p 1 2.

To begin, let us write s b for the probability P c 0 when starting at the initial
fortune b, for any 0 b c. We are interested in computing s a . However, it turns
out to be easier to solve for all of the values s 0 s 1 s 2 s c simultaneously,
and this is the trick we use.

We have by definition that s 0 0 (i.e., if we start with $0, then we can never
win) and s c 1 (i.e., if we start with $c, then we have already won). So, those two
cases are easy. However, the values of s b for 1 b c 1 are not obtained as
easily.

Our trick will be to develop equations that relate the values s b for different values
of b. Indeed, suppose 1 b c 1. It is difficult to compute s b directly. However,
it is easy to understand what will happen on the first bet — we will either lose $1 with
probability p, or win $1 with probability q. That leads to the following result.

Lemma 11.7.1 For 1 b c 1, we have

s b ps b 1 qs b 1 . (11.7.1)

PROOF Suppose first that we win the first bet, i.e., that Z1 1. After this first
bet, we will have fortune b 1. We then get to “start over” in our quest to reach c
before reaching 0, except this time starting with fortune b 1 instead of b. Hence, after
winning this first bet, our chance of reaching c before reaching 0 is now s b 1 . (We
still do not know what s b 1 is, but at least we are making a connection between
s b and s b 1 .)

Suppose instead that we lose this first bet, i.e., that Z1 1. After this first bet,
we will have fortune b 1. We then get to “start over” with fortune b 1 instead of b.
Hence, after this first bet, our chance of reaching c before reaching 0 is now s b 1 .

We can combine all of the preceding information, as follows.

s b P c 0

P Z1 1 c 0 P Z1 1 c 0

ps b 1 qs b 1

That is, s b p s b 1 q s b 1 , as claimed.

So, where are we? We had c 1 unknowns, s 0 s 1 s c . We now know
the two equations s 0 0 and s c 1, plus the c 1 equations of the form s b
p s b 1 q s b 1 for b 1 2 c 1. In other words, we have c 1 equations
in c 1 unknowns, so we can now solve our problem!

The solution still requires several algebraic steps, as follows.
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Lemma 11.7.2 For 1 b c 1, we have

s b 1 s b
q

p
s b s b 1 .

PROOF Recalling that p q 1 we rearrange (11.7.1) as follows.

s b p s b 1 q s b 1

p q s b p s b 1 q s b 1

q s b s b 1 p s b 1 s b

And finally,

s b 1 s b
q

p
s b s b 1 ,

which gives the result.

Lemma 11.7.3 For 0 b c, we have

s b
b 1

i 0

q

p

i

s 1 . (11.7.2)

PROOF Applying the equation of Lemma 11.7.2 with b 1, we obtain

s 2 s 1
q

p
s 1 s 0

q

p
s 1

(because s 0 0). Applying it again with b 2, we obtain

s 3 s 2
q

p
s 2 s 1

q

p

2

s 1 s 0
q

p

2

s 1 .

By induction, we see that

s b 1 s b
q

p

b

s 1 ,

for b 0 1 2 c 1. Hence, we compute that for b 0 1 2 c,

s b

s b s b 1 s b 1 s b 2 s b 2 s b 3

s 1 s 0
b 1

i 0

s i 1 s i
b 1

i 0

q

p

i

s 1 .

This gives the result.



Chapter 11: Advanced Topic — Stochastic Processes 671

We are now able to finish the proof of Theorem 11.1.2.
If p 1 2, then q p 1, so (11.7.2) becomes s b bs 1 . But s c 1, so we

must have cs 1 1, i.e., s 1 1 c. Then s b bs 1 b c. Hence, s a a c
in this case.

If p 1 2, then q p 1, so (11.7.2) is a geometric series, and becomes

s b
q p b 1

q p 1
s 1 .

Because s c 1, we must have

1
q p c 1

q p 1
s 1 ,

so

s 1
q p 1

q p c 1
.

Then

s b
q p b 1

q p 1
s 1

q p b 1

q p 1

q p 1

q p c 1

q p b 1

q p c 1
.

Hence,

s a
q p a 1

q p c 1

in this case.

Proof of Theorem 11.1.3

We want to prove that when Xn is a simple random walk, with initial fortune a 0
and probability p of winning each bet, then the probability P 0 that the walk
will ever hit 0 is given by

P 0
1 p 1 2
q p a p 1 2.

By continuity of probabilities, we see that

P 0 lim
c

P 0 c lim
c

1 P c 0 .

Hence, if p 1 2, then P 0 limc 1 a c 1.
Now, if p 1 2, then

P 0 lim
c

1
1 q p a

1 q p c .

If p 1 2 then q p 1, so limc q p c , and P 0 1 If p 1 2
then q p 1, so limc q p c 0, and P 0 q p a .
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Proof of Theorem 11.3.3

We want to prove that the Metropolis–Hastings algorithm results in a Markov chain
X0 X1 X2 which has i as a stationary distribution.

We shall prove that the resulting Markov chain is reversible with respect to i ,
i.e., that

i P Xn 1 j Xn i j P Xn 1 i Xn j , (11.7.3)

for i j S It will then follow from Theorem 11.2.6 that i is a stationary distribu
tion for the chain.

We thus have to prove (11.7.3). Now, (11.7.3) is clearly true if i j , so we can
assume that i j .

But if i j , and Xn i , then the only way we can have Xn 1 j is if Yn 1 j
(i.e., we propose the state j , which we will do with probability pi j ). Also we accept
this proposal (which we will do with probability i j ). Hence,

P Xn 1 j Xn i qi j i j qi j min 1
j q ji

i qi j
min qi j

j q j i

i
.

It follows that i P Xn 1 j Xn i min i qi j j q ji
Similarly, we compute that j P Xn 1 i Xn j min j q ji i qi j It

follows that (11.7.3) is true.

Proof of Theorem 11.5.1

We want to prove that when Y M
t : t 0 is as defined earlier, then for large M:

(a) For t 0, the distribution of Y M
t is approximately N 0 t , i.e., normally dis

tributed with mean t.
(b) For s t 0, the covariance

Cov Y M
t Y M

t

is approximately equal to min s t .
(c) For t s 0, the distribution of the increment

Y M
t Y M

s

is approximately N 0 t s , i.e., normally distributed with mean 0 and variance t s,
and is approximately independent of Y M

s .
(d) Y M

t is a continuous function of t .

Write r for the greatest integer not exceeding r , so that, e.g., 7 6 7. Then we
see that for large M, t is very close to t M M, so that Y M

t is very close (formally,
within O 1 M in probability) to

A Y M
t M M

1

M
Z1 Z2 Z t M .
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Now, A is equal to 1 M times the sum of t M different i.i.d. random variables,
each having mean 0 and variance 1. It follows from the central limit theorem that A
converges in distribution to the distribution N 0 t as M . This proves part (a).

For part (b), note that also Y M
s is very close to

B Y M
s M M

1

M
Z1 Z2 Z s M .

Because E Zi 0, we must have E A E B 0, so that Cov A B E AB .
For simplicity, assume s t the case s t is similar. Then we have

Cov A B E AB
1

M
E Z1 Z2 Z sM Z1 Z2 Z t M

1

M
E

sM

i 1

t M

j 1

Zi Z j
1

M

sM

i 1

t M

j 1

E Zi Z j .

Now, we have E Zi Z j 0 unless i j , in which case E Zi Z j 1. There will
be precisely sM terms in the sum for which i j , namely, one for each value of i
(since t s). Hence,

Cov A B
sM

M
,

which converges to s as M . This proves part (b).
Part (c) follows very similarly to part (a). Finally, part (d) follows because the

function Y M
t was constructed in a continuous manner (as in Figure 11.5.1).

Proof of Theorem 11.6.1

We want to prove that for any t 0, the distribution of Nt is Poisson at .

We first require a technical lemma.

Lemma 11.7.4 Let gn t e atantn 1 n 1 ! be the density of the
Gamma n a distribution. Then for n 1,

t

0
gn s ds

i n

e at at i i!. (11.7.4)

PROOF If t 0, then both sides are 0. For other t , differentiating with respect to
t , we see (setting j i 1) that t i n e at at i i! i n ae at at i i!
e atai t i 1 i 1 ! i n e at ai 1t i i! j n 1 e at a j 1t j j!

e ata n 1 1tn 1 n 1 ! gn t t
t

0 gn s ds. Because this is true for all t 0,
we see that (11.7.4) is satisfied for any n 0.

Recall (see Example 2.4.16) that the Exponential distribution is the same as the
Gamma 1 distribution. Furthermore, (see Problem 2.9.15) if X Gamma 1
and Y Gamma 2 are independent, then X Y Gamma 1 2 .
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Now, in our case, we have Tn R1 R2 Rn, where Ri Exponential a
Gamma 1 a . It follows that Tn Gamma n a . Hence, the density of Tn is gn t
e atantn 1 n 1 !.

Now, the event that Nt n (i.e., that the number of events by time t is at least n) is
the same as the event that Tn t (i.e., that the nth event occurs before time n). Hence,

P Nt n P Tn t
t

0
gn s ds

Then by Lemma 11.7.4,

P Nt n
i n

e at at i

i !
(11.7.5)

for any n 1. If n 0 then both sides are 1, so in fact (11.7.5) holds for any n 0.
Using this, we see that

P Nt j P Nt j P Nt j 1

i j

e at at i i!
i j 1

e at at i i! e at at j j!.

It follows that Nt Poisson at , as claimed.

Proof of Theorem 11.6.2

We want to prove that when 0 t0 t1 t2 t3 td , then for i 1 2 d,
the distribution of Nti Nti 1 is Poisson a ti ti 1 . Furthermore, the random
variables Nti Nti 1 for i 1 d are independent.

From the memoryless property of the exponential distributions (see Problem 2.4.14),
it follows that regardless of the values of Ns for s ti 1, this will have no effect on
the distribution of the increments Nt Nti 1 for t ti 1. That is, the process Nt
starts fresh at each time ti 1, except from a different initial value Nti 1 instead of from
N0 0.

Hence, the distribution of Nti 1 u Nti 1 for u 0 is identical to the distribution
of Nu N0 Nu and is independent of the values of Ns for s ti 1. Because we
already know that Nu Poisson au , it follows that Nti 1 u Nti 1 Poisson au
as well. In particular, Nti Nti 1 Poisson a ti ti 1 as well, with Nti Nti 1

independent of Ns : s ti 1 . The result follows.



Appendix A

Mathematical Background

To understand this book, it is necessary to know certain mathematical subjects listed
below. Because it is assumed the student has already taken a course in calculus, topics
such as derivatives, integrals, and infinite series are treated quite briey here. Multi
variable integrals are treated in somewhat more detail.

A.1 Derivatives
From calculus, we know that the derivative of a function f is its instantaneous rate of
change:

f x
d

dx
f x lim

h 0

f x h f x

h

In particular, the reader should recall from calculus that

d
dx 5 0 d

dx x3 3x2 d
dx xn nxn 1

d
dx ex ex d

dx sin x cos x d
dx cos x sin x

etc. Hence, if f x x3, then f x 3x2 and, e.g., f 7 3 72 147.
Derivatives respect addition and scalar multiplication, so if f and g are functions

and C is a constant, then

d

dx
C f x g x C f x g x

Thus,

d

dx
5x3 3x2 7x 12 15x2 6x 7

etc.

675
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Finally, derivatives satisfy a chain rule; if a function can be written as a composition
of two other functions, as in f x g h x , then f x g h x h x . Thus,

d
dx e5x 5e5x

d
dx sin x2 2x cos x2

d
dx x2 x3 5 5 x2 x3 4 2x 3x2

etc.
Higherorder derivatives are defined by

f x
d

dx
f x f x

d

dx
f x

etc. In general, the r thorder derivative f r x can be defined inductively by f 0 x
f x and

f r x
d

dx
f r 1 x

for r 1. Thus, if f x x4, then f x 4x3, f x f 2 x 12x2, f 3 x
24x , f 4 x 24, etc.

Derivatives are used often in this text.

A.2 Integrals
If f is a function, and a b are constants, then the integral of f over the interval
[a b], written

b

a
f x dx

represents adding up the values f x , multiplied by the widths of small intervals around
x . That is, b

a f x dx d
i 1 f xi xi xi 1 where a x0 x1 xd b

and where xi xi 1 is small.
More formally, we can set xi a i d b a and let d , to get a formal

definition of integral as

b

a
f x dx lim

d

d

i 1

f a i d b a 1 d

To compute b
a f x dx in this manner each time would be tedious. Fortunately, the

fundamental theorem of calculus provides a much easier way to compute integrals. It
says that if F x is any function with F x f x , then b

a f x dx F b F a
Hence,

b
a 3x2 dx b3 a3

b
a x2 dx 1

3 b3 a3

b
a xn dx 1

n 1 bn 1 an 1
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and
b

a cos x dx sin b sin a

b
a sin x dx cos b cos a

b
a e5x dx 1

5 e5b e5a

A.3 Infinite Series
If a1 a2 a3 is an infinite sequence of numbers, we can consider the infinite sum
(or series)

i 1

ai a1 a2 a3

Formally, i 1 ai limN
N
i 1 ai . This sum may be finite or infinite.

For example, clearly i 1 1 1 1 1 1 On the other hand,
because

1

2

1

4

1

8

1

16

1

2n

2n 1

2n

we see that

1

2

1

4

1

8

1

16
i 1

1

2i lim
N

N

i 1

1

2i lim
N

2N 1

2N 1

More generally, we compute that

i 1

ai a

1 a

whenever a 1
One particularly important kind of infinite series is a Taylor series. If f is a func

tion, then its Taylor series is given by

f 0 x f 0
1

2!
x2 f 0

1

3!
x3 f 3 0

i 0

1

i!
x i f i 0

(Here i! i i 1 i 2 2 1 stands for i factorial, with 0! 1! 1, 2! 2,
3! 6, 4! 24, etc.) Usually, f x will be exactly equal to its Taylor series expansion,
thus,

sin x x x3 3 x5 5 x7 7

cos x 1 x2 2 x4 4 x5 5

ex 1 x x2 2! x3 3! x4 4!

e5x 1 5x 5x 2 2! 5x 3 3! 5x 4 4!

etc. If f x is a polynomial (e.g., f x x3 3x2 2x 6), then the Taylor series
of f x is precisely the same function as f x itself.
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A.4 Matrix Multiplication
A matrix is any r s collection of numbers, e.g.,

A
8 6
5 2

B
3 6 2
7 6 0

C
2 1

3 5 2 5
0 6 17 9

etc.
Matrices can be multiplied, as follows. If A is an r s matrix, and B is an s u ma

trix, then the product AB is an r u matrix whose i j entry is given by s
k 1 Aik Bk j

a sum of products. For example, with A and B as above, if M AB, then

M
8 6
5 2

3 6 2
7 6 0

8 3 6 7 8 6 6 6 8 2 6 0
5 3 2 7 5 6 2 6 5 2 2 0

18 84 16
1 42 10

as, for example, the 2 1 entry of M equals 5 3 2 7 1
Matrix multiplication turns out to be surprisingly useful, and it is used in various

places in this book.

A.5 Partial Derivatives
Suppose f is a function of two variables, as in f x y 3x2y3 Then we can take a
partial derivative of f with respect to x , writing

x
f x y

by varying x while keeping y fixed. That is,

x
f x y lim

h 0

f x h y f x y

h

This can be computed simply by regarding y as a constant value. For the example
above,

x
3x2y3 6xy3

Similarly, by regarding x as constant and varying y, we see that

y
3x2y3 9x2y2

Other examples include

x
18exy x6y8 sin y3 18yexy 6x5y8

y
18exy x6y8 sin y3 18xexy 8x6y7 3y2 sin y3
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etc.
If f is a function of three or more variables, then partial derivatives may similarly

be taken. Thus,

x
x2y4z6 2xy4z6

y
x2y4z6 4x2y3z6

z
x2y4z6 6x2y4z5

etc.

A.6 Multivariable Integrals
If f is a function of two or more variables, we can still compute integrals of f . How
ever, instead of taking integrals over an interval [a b], we must take integrals over
higherdimensional regions.

For example, let f x y x2 y3, and let R be the rectangular region given by
R 0 x 1 5 y 7 [0 1] [5 7] What is

R
f x y dx dy

the integral of f over the region R? In geometrical terms, it is the volume under the
graph of f (and this is a surface) over the region R But how do we compute this?

Well, if y is constant, we know that

1

0
f x y dx

1

0
x2y3 dx

1

3
y3 (A.6.1)

This corresponds to adding up the values of f along one “strip” of the region R, where
y is constant. In Figure A.6.1, we show the region on integration R [0 1] [5 7]
The value of (A.6.1), when y 6 2 is 6 2 3 3 79 443 this is the area under the
curve x2 6 2 3 over the line [0 1] 6 2

y

x1

5

7

y = 6.2

Figure A.6.1: Plot of the region of integration (shaded) R [0 1] [5 7] together with the
line at y 6 2.
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If we then add up the values of the areas over these strips along all different possible
y values, then we obtain the overall integral or volume, as follows:

R
f x y dx dy

7

5

1

0
f x y dx dy

7

5

1

0
x2y3 dx dy

7

5

1

3
y3 dy

1

3

1

4
74 54 148

So the volume under the the graph of f and over the region R is given by 148.
Note that we can also compute this integral by integrating first y and then x , and

we get the same answer:

R
f x y dx dy

1

0

7

5
f x y dy dx

1

0

7

5
x2y3 dy dx

1

0

1

4
x2 74 54 dx

1

3

1

4
74 54 148

Nonrectangular Regions

If the region R is not a rectangle, then the computation is more complicated. The idea
is that, for each value of x , we integrate y over only those values for which the point
x y is inside R.

For example, suppose that R is the triangle given by R x y : 0 2y
x 6 In Figure A.6.2, we have plotted this region together with the slices at x 3
and y 3 2 We use the xslices to determine the limits on y for fixed x when we
integrate out y first; we use the yslices to determine the limits on x for fixed y when
we integrate out x first.

y

x
x = 3 x = 6

y = 3/2

2y = x

Figure A.6.2: The integration region (shaded) R x y : 0 2y x 6 together with
the slices at x 3 and y 3 2.
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Then x can take any value between 0 and 6. However, once we know x , then y can
only take values between 0 and x 2. Hence, if f x y xy x6y8, then

R
f x y dx dy

6

0

x 2

0
f x y dy dx

6

0

x 2

0
xy x6y8 dy dx

6

0
x

1

2
x 2 2 02 x6 1

9
x 2 9 09 dx

6

0

1

8
x3 1

4608
x15 dx

1

8

1

4
64 04 1

4608

1

16
616 016

3 8264 107

Once again, we can compute the same integral in the opposite order, by integrating
first x and then y. In this case, y can take any value between 0 and 3. Then, for a given
value of y, we see that x can take values between 0 and 2y. Hence,

R
f x y dx dy

3

0

6

2y
f x y dx dy

3

0

6

2y
xy x6y8 dx dy

We leave it as an exercise for the reader to finish this integral, and see that the same
answer as above is obtained.

Functions of three or more variables can also be integrated over regions of the
corresponding dimension three or higher. For simplicity, we do not emphasize such
higherorder integrals in this book.





Appendix B

Computations

We briey describe two computer packages that can be used for all the computations
carried out in the text. We recommend that students familiarize themselves with at
least one of these. The description of R is quite complete, at least for the computations
based on material in this text, whereas another reference is required to learn Minitab.

B.1 Using R
R is a free statistical software package that can be downloaded and installed on your
computer (see http://cran.rproject.org/). A free manual is also available at this site.

Once you have R installed on your system, you can invoke it by clicking on the
relevant icon (or, on Unix systems, simply typing “R”). You then see a window, called
the R Console that contains some text and a prompt ‘ ’ after which you type com
mands. Commands are separated by new lines or ‘ ; ’. Output from commands is also
displayed in this window, unless it is purposefully directed elsewhere. To quit R, type
q() after the prompt. To learn about anything in R, a convenient resource is to use
Help on the menu bar available at the top of the R window. Alternatively, type ?name
after the prompt (and press enter) to display information about name, e.g., ?q brings
up a page with information about the terminate command q.

Basic Operations and Functions

A basic command evaluates an expression, such as

2+3
[1] 5

which adds 2 and 3 and produces the answer 5. Alternatively, we could assign the value
of the expression to a variable such as

a  2

where  (less than followed by minus) assigns the value 2 to a variable called a.
Alternatively, = can be used for assignment as in a = 2, but we will use . We
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can then verify this assignment by simply typing a and hitting return, which causes the
value of a to be printed.

a
[1] 2

Note that R is case sensitive, so A would be a different variable than a. There are some
restrictions in choosing names for variables and vectors, but you won’t go wrong if you
always start the name with a letter.

We can assign the values in a vector using the concatenate function c() such as

b  c(1,1,1,3,4,5)
b

[1] 1 1 1 3 4 5

which creates a vector called b with six values in it. We can access the ith entry in a
vector b by referring to it as b[i]. For example,

b[3]
[1] 1

prints the third entry in b, namely, 1. Alternatively, we can use the scan command to
input data. For example,

b  scan()
1: 1 1 1 3 4 5
7:
Read 6 items

b
[1] 1 1 1 3 4 5

accomplishes the same assignment. Note that with the scan command, we simply
type in the data and terminate data input by entering a blank line. We can also use
scan to read data in from a file, and we refer the reader to ?scan for this.

Sometimes we want vectors whose entries are in some pattern. We can often use
the rep function for this. For example, x  rep(1,20) creates a vector of 20
ones. More complicated patterns can be obtained, and we refer the reader to ?rep for
this.

Basic arithmetic can be carried out on variables and vectors using + (addition), 
(subtraction), * (multiplication), / (division), and ^ (exponentiation). These operations
are carried out componentwise. For example, we could multiply each component of b
by itself via

b*b
[1] 1 1 1 9 16 25

or multiply each element of b by 2 as in

2*b
[1] 2 2 2 6 8 10

which accomplishes this.
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There are various functions available in R, such as abs(x) (calculates the absolute
value of x), log(x) (calculates the natural logarithm of x), exp(x) (calculates e
raised to the power x), sin(x), cos(x), tan(x) (which calculate the trigonomet
ric functions), sqrt(x) (which calculates the square root of x), ceiling(x), and
floor(x) (calculate the ceiling and oor of x). When such a function is applied to
a vector x, it returns a vector of the same length, with the function applied to each
element of the original vector. There are numerous special functions available in R, but
two important ones are gamma(x), which returns the gamma function applied to x,
and lgamma(x), which returns the natural logarithm of the gamma function.

There are also functions that return a single value when applied to a vector. For
example, min(x) and max(x) return, respectively, the smallest and largest elements
in x; length(x) gives the number of elements in x; and sum(x) gives the sum of
the values in x.

R also operates on logical quantities TRUE (or T for true) and FALSE (or F for
false). Logical values are generated by conditions that are either true or false. For
example,

a  c(3,4,2,1,5)
b  a 0
b

[1] FALSE TRUE TRUE FALSE FALSE

compares each element of the vector awith 0, returning TRUE when it is greater than 0
and FALSE otherwise, and these logical values are stored in the vector b. The follow
ing logical operators can be used: , =, =, , == (for equality), != (for inequality)
as well as & (for conjunction), (for disjunction) and ! (for negation). For example, if
we create a logical vector c as follows:

c  c(T,T,T,T,T)
b&c

[1] FALSE TRUE TRUE FALSE FALSE
b c

[1] TRUE TRUE TRUE TRUE TRUE

then an element of b&c is TRUE when both corresponding elements of b and c are
TRUE, while an element of b c is TRUE when at least one of the corresponding ele
ments of b and c is TRUE.

Sometimes we may have variables that take character values. While it is always
possible to code these values as numbers, there is no need to do this, as R can also
handle charactervalued variables. For example, the commands

A  c(’a’,’b’)
A

[1] "a" "b"

create a character vector A, containing two values a and b, and then we print out this
vector. Note that we included the character values in single quotes when doing the
assignment.
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Sometimes data values are missing and so are listed as NA (not available). Opera
tions on missing values create missing values. Also, an impossible operation, such as
0/0, produces NaN (not a number).

Various objects can be created during an R session. To see those created so far in
your session, use the command ls(). You can remove any objects in your workspace
using the rm command. For example, rm(x) removes the vector x.

Probability Functions

R has a number of builtin functions for evaluation of the cdf, the inverse cdf, the
density or probability function, and generating random samples for the common dis
tributions we encounter in probability and statistics. These are distinguished by prefix
and base distribution names. Some of the distribution names are given in the following
table.

Distribution R name and arguments Distribution R name and arguments
beta beta( ,a,b) hypergeometric hyper( ,N,M,n)
binomial binom( ,n,p) negative binomial nbinom( ,k,p)
chisquared chisq( ,df) normal norm( ,mu,sigma)
exponential exp( ,lambda) Poisson pois( ,lambda)
F f( ,df1,df2) t t( ,df)
gamma gamma( ,alpha,lambda) uniform unif( ,min,max)
geometric geom( ,p)

As usual, one has to be careful with the gamma distribution. The safest path is
to include another argument with the distribution to indicate whether or not lambda
is a rate parameter (density is 1 x 1e x or a scale parameter (density
is 1 x 1e x So gamma( ,alpha,rate=lambda) indicates that
lambda is a rate parameter, and gamma( ,alpha,scale=lambda) indicates that
it is a scale parameter.

The argument given by is specified according to what purpose the command using
the distribution name has. To obtain the cdf of a distribution, precede the name by p,
and then is the value at which you want to evaluate the cdf. To obtain the inverse cdf
of a distribution, precede the name by q, and then is the value at which you want to
evaluate the inverse cdf. To obtain the density or probability function, precede the name
by d, and then is the value at which you want to evaluate the density or probability
function. To obtain random samples, precede the name by r, and then is the size of
the random sample you want to generate.

For example,

x  rnorm(4,1,2)
x

[1] 0.2462307 2.7992913 4.7541085 3.3169241

generates a sample of 4 from the N 1 22 distribution and assigns this to the vector x.
The command
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dnorm(3.2,2,.5)
[1] 0.04478906

evaluates the N 2 25 pdf at 3.2, while

pnorm(3.2,2,.5)
[1] 0.9918025

evaluates the N 2 0 25 cdf at 3.2, and

qnorm(.025,2,.5)
[1] 1.020018

gives the 0 025 quantile of the N 2 0 25 distribution.
If we have data stored in a vector x, then we can sample values from x, with or

without replacement, using the sample function. For example, sample(x,n,T)
will generate a sample of n from x with replacement, while sample(x,n,F) will
generate a sample of n from x without replacement (note n must be no greater than
length(x) in the latter case).

Sometimes it is convenient to be able to repeat a simulation so the same random
values are generated. For this, you can use the set.seed command. For example,
set.seed(12345) establishes the seed as 12345.

Tabulating Data

The table command is available for tabulating data. For example, table(x) re
turns a table containing a list of the unique values found in x and their frequency of
occurrence in x. This table can be assigned to a variable via

y  table(x)

for further analysis (see The ChiSquared Test section on the next page).
If x and y are vectors of the same length, then table(x,y) produces a cross

tabulation, i.e., counts the number of times each possible value of x y is obtained,
where x can be any of the values taken in x and y can be any of the values taken in y.

Plotting Data

R has a number of commands available for plotting data. For example, suppose we
have a sample of size n stored in the vector x.

The command hist(x) will provide a frequency histogram of the data where the
cutpoints are chosen automatically by R. We can add optional arguments to hist. The
following are some of the arguments available.

breaks — A vector containing the cutpoints.

freq — A logical variable; when freq=T (the default), a frequency
histogram is obtained, and when freq=F, a density histogram is obtained.

For example, hist(x,breaks=c(10,5,2,0,2,5,10),freq=F)will plot
a density histogram with cutpoints 10 5 2 0 2 5 10 where we have been care
ful to ensure that min(x) 10 and max(x) 10.
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If y is another vector of the same length as x, then we can produce a scatter plot of
y against x via the command plot(x,y). The command plot(x,y,type="l")
provides a scatter plot of y against x, but now the points are joined by lines. The
command plot(x) plots the values in x against their index. The plot(ecdf(x))
command plots the empirical cdf of the data in x.

A boxplot of the data in x is obtained via the boxplot(x) command. Sideby
side boxplots of the data in x, y, z, etc., can be obtained via boxplot(x,y,z).

A normal probability plot of the values in x can be obtained using the command
qqnorm(x).

A barplot can be obtained using the barplot command. For example,

h  c(1,2,3)
barplot(h)

produces a barplot with 3 bars of heights 1, 2, and 3.
There are many other aspects to plotting in R that allow the user considerable con

trol over the look of plots. We refer the reader to the manual for more discussion of
these.

Statistical Inference

R has a powerful approach to fitting and making inference about models. Models are
specified by the symbol ~. We do not discuss this fully here but only indicate how to use
this to handle the simple and multiple linear regression models (where the response and
the predictors are all quantitative), the one and twofactor models (where the response
is quantitative but the predictors are categorical), and the logistic regression model
(where the response is categorical but the predictors are quantitative). Suppose, then,
that we have a vector y containing the response values.

Basic Statistics

The function mean(y) returns the mean of the values in y, var(y) returns the
sample variance of the values in y, and sd(y) gives the sample standard devia
tion. The command median(y)returns the median of y, while quantile(y,p)
returns the sample quantiles as specified in the vector of probabilities p. For example,
quantile(y,c(.25,.5,.75)) returns the median and the first and third quan
tiles. The function sort(y) returns a vector with the values in y sorted from smallest
to largest, and rank(y) gives the ranks of the values in y.

The Test

For the data in y, we can use the command

t.test(y,mu=1,alternative="two.sided",conf.level=.95)

to carry out a ttest. This computes the Pvalue for testing H0 : 1 and forms a
0 95confidence interval for

The ChiSquared Test

Suppose y contains a vector of counts for k cells and prob contains hypothesized
probabilities for these cells. Then the command
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chisq.test(y,p=prob)

carries out the chisquared test to assess this hypothesis. Note that y could also corre
spond to a onedimensional table.

If x and y are two vectors of the same length, then chisq.test(x,y) carries
out a chisquared test for independence on the table formed by crosstabulating the
entries in x and y. If we first create this crosstabulation in the table t using the
table function, then chisq.test(t) carries out this test.

Simple Linear Regression

Suppose we have a single predictor with values in the vector x. The simple linear
regression model E y x 1 2x is then specified in R by y~x. We refer to y~x
as a model formula, and read this as “y is modelled as a linear model involving x.” To
carry out the fitting (which we have done here for a specific set of data), we use the
fitting linear models command lm, as follows. The command

regexamp  lm(y~x)

carries out the computations for fitting and inference about this model and assigns the
result to a structure called regexamp. Any other valid name could have been used for
this structure. We can now use various R functions to pick off various items of interest.
For example,

summary(regexamp)
Call:
lm(formula = y~x)
Residuals:
Min 1Q Median 3Q Max

4.2211 2.1163 0.3248 1.7255 4.3323
Coefficients:
Estimate Std. Error t value Pr( t )
(Intercept) 6.5228 1.2176 5.357 4.31e05 ***

x 1.7531 0.1016 17.248 1.22e12 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’
0.1 ‘ ’ 1
Residual standard error: 2.621 on 18 degrees of freedom
Multiple Rsquared: 0.9429, Adjusted Rsquared: 0.9398

Fstatistic: 297.5 on 1 and 18 DF, pvalue: 1.219e12

uses the summary function to give us all the information we need. For example, the
fitted line is given by 6 5228 1 7531x The test of H0 : 2 0 has a Pvalue of
1 22 10 12 so we have strong evidence against H0 Furthermore, the R2 is given
by 94.29%. Individual items can be accessed via various R functions and we refer the
reader to ?lm for this.



690 Appendix B: Computations

Multiple Linear Regression

If we have two quantitative predictors in the vectors x1 and x2, then we can proceed
just as with simple linear regression to fit the linear regression model E y x1 x2

1 2x1 2x2. For example, the commands

regex  lm(y~x1+x2)
summary(regex)

fit the above linear model, assign the results of this to the structure regex, and then
the summary function prints out (suppressed here) all the relevant quantities. We read
y~x1+x2 as, “y is modelled as a linear model involving x1 and x2.” In particular,
the Fstatistic, and its associated Pvalue, is obtained for testing H0 : 2 3 0

This generalizes immediately to linear regression models with k quantitative pre
dictors x1 xk . Furthermore, suppose we want to test that the model only involves
x1 xl for l k We use lm to fit the model for all k predictors, assign this to
regex, and also use lm to fit the model that only involves l predictors and assign
this to regex1. Then the command anova(regex,regex1) will output the F
statistics, and its Pvalue, for testing H0 : l 1 k 0

One and TwoFactor ANOVA

Suppose now that A denotes a categorical predictor taking two levels a1 and a2. Note
that the values of A may be character in value rather than numeric, e.g., x is a character
vector containing the values a1 and a2, used to denote at which level the correspond
ing value of y was observed. In either case, we need to make this into a factor A, via
the command

A  factor(x)

so that A can be used in the analysis. Then the command

aov(y~A)

produces the oneway ANOVA table. Of course, aov also handles factors with more
than two levels. To produce the cell means, use the command tapply(y,A,mean).

Suppose there is a second factor B taking 5 levels b1 b5 If this is the factor B
in R, then the command

aov(y~A+B+A:B)

produces the twoway ANOVA for testing for interactions between factors A and B. To
produce the cell means, use the command tapply(y,list(A,B),mean). The
command aov(y~A+B) produces the ANOVA table, assuming that there are no inter
actions.

Logistic Regression

Suppose we have binary data stored in the vector y, and x contains the corresponding
values of a quantitative predictor. Then we can use the generalized linear model com
mand glm to fit the logistic regression model P Y 1 x exp 1 2x 1
exp 1 2x The commands
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logreg  glm(y~x,family=binomial)
summary(logreg)

fit the logistic regression model, assign the results to logreg, and then the summary
command outputs this material. This gives us the estimates of the i their standard
errors, and Pvalues for testing that the i 0

Control Statements and R Programs

A basic control statement is of the form if (expr1) expr2 else expr3, where
expr1 takes a logical value, expr2 is executed if expr1 is T, andexpr3 is executed
if expr1 is F. For example, if x is a variable taking value 2, then

if (x 0) {y  1} else {y  1}

results in y being assigned the value 1. Note that the else part of the statement can
be dropped.

The command for (name in expr) expr2 executes expr2 for each value
of name in expr1. For example,

for (i in 1:10) print(i)

prints the value of the variable i as i is sequentially assigned values in 1 2 10
Note that m:n is a shorthand for the sequence m m 1 n in R. As another
example,

for (i in 1:20) y[i]  2^i

creates a vector y with 20 entries, where the i th element of y equals 2i

The break terminates a loop, perhaps based on some condition holding, while
next halts the processing of the current iteration and advances the looping index.
Both break and next apply only to the innermost of nested loops.

Commands in R can be grouped by placing them within braces {expr1; expr2;
...}. The commands within the braces are executed as a unit. For example,

for (i in 1:20) {print(i); y[i]  2^i}; print(y[i])}

causes i to be printed, y[i] to be assigned, and y[i] to be printed, all within a for
loop.

Often when a computation is complicated, such as one that involves looping, it
is better to put all the R commands in a single file and then execute the file in batch
mode. For example, suppose you have a file prog.R containing R code. Then the
command source("pathname/prog.R") causes all the commands in the file to
be executed.

It is often convenient to put comments in R programs to explain what the lines of
code are doing. A comment line is preceded by # and of course it is not executed.

UserDefined Functions

R also allows userdefined functions. The syntax of a function definition is as follows.
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function name  function(arguments) {
function body;
return(return value);

}

For example, the following function computes the sample coefficient of variation of the
data x.

coef_var  function(x) {
result  sd(x)/mean(x);
return(result);

}

Then if we want to subsequently compute the coefficient of variation of data y, we
simply type coef_var(y).

Arrays and Lists

A vector of length m can also be thought of as a onedimensional array of length m.
R can handle multidimensional arrays, e.g., m n m n p arrays, etc. If a is a
threedimensional array, then a[i,j,k] refers to the entry in the i j k th position
of the array. There are various operations that can be carried out on arrays and we refer
the reader to the manual for these. Later in this manual, we will discuss the special
case of twodimensional arrays, which are also known as matrices. For now, we just
think of arrays as objects in which we store data.

A very general data structure in R is given by a list. A list is similar to an array,
with several important differences.

1. Any entry in an array is referred to by its index. But any entry in a list may
be referred to by a character name. For example, the fitted regression coeffi
cients are referred to by regex$coefficients after fitting the linear model
regex  lm(y x1 + x2). The dollar mark ($) is the entry reference
operator, that is, varname$entname indicates the “entname” entry in the list
“varname.”

2. While an array stores only the same type of data, a list can store any R objects.
For example, the coefficients entry in a linear regression object is a nu
meric vector, and the model entry is a list.

3. The reference operators are different: arr[i] refers to the i th entry in the array
arr, and lst[[i]] refers to the i th entry in the list lst. Note that i can be
the entry name, i.e., lst$entname and lst[[’entname’]] refer to the
same data.

Examples

We now consider some examples relevant to particular sections or examples in the main
text. To run any of these codes, you first have to define the functions. To do this, load
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the code using the source command. Arguments to the functions then need to be
specified. Note that lines in the listings may be broken unnaturally and continue on the
following line.

EXAMPLE B.1.1 Bootstrapping in Example 6.4.2
The following R code generates bootstrap samples and calculates the median of each
of these samples. To run this code, type y  bootstrap_median(m,x), where
m is the number of bootstrap samples, x contains the original sample, and the medians
of the resamples are stored in y. The statistic to be bootstrapped can be changed by
substituting for median in the code.

# Example B.1.1
# function name: bootstrap_median
# parameters:
# m resample size
# x original data
# return value:
# a vector of resampled medians
# description: resamples and stores its median

bootstrap_median  function(m,x) {
n  length(x);
result  rep(0,m);
for(i in 1:m) result[i]  median(sample(x,n,T));

return(result);
}

EXAMPLE B.1.2 Sampling from the Posterior in Example 7.3.1
The following R code generates a sample of from the joint posterior in Example 7.3.1.
To run a simulation, type

post  post_normal(m,x,alpha0,beta0,mu0,tau0square)

where m is the Monte Carlo sample size and the remaining arguments are the hyperpa
rameters of the prior. The result is a list called (in this case) post, where post$mu
and post$sigmasq contain the generated values of and 2 respectively. For
example,

x  c(11.6714, 1.8957, 2.1228, 2.1286, 1.0751, 8.1631,
1.8236, 4.0362, 6.8513, 7.6461, 1.9020, 7.4899, 4.9233,
8.3223, 7.9486);

post  post_normal(10**4,x,2,1,4,2)
z  sqrt(post$sigmasq)/post$mu

runs a simulation as in Example 7.3.1, with N 104

# Example B.1.2
# function name: post_normal
# parameters:
# m sample size
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# x data
# alpha0 shape parameter for 1/sigma^2
# beta0 rate parameter for 1/sigma^2
# mu0 location parameter for mu
# tau0square variance ratio parameter for mu
# returned values:
# mu sampled mu
# sigmasq sampled sigmasquare
# description: samples from the posterior distribution
# in Example 7.3.1
#
post_normal function(m,x,alpha0,beta0,mu0,tau0square){
# set the length of the data
n  length(x);
# the shape and rate parameters of the posterior dist.
# alpha_x = first parameter of the gamma dist.
# = (alpha0 + n/2)
alpha_x  alpha0 + n/2
# beta_x = the rate parameter of the gamma dist.
beta_x  beta0 + (n1)/2 * var(x) + n*(mean(x)mu0)**2/

2/(1+n*tau0square);
# mu_x = the mean parameter of the normal dist.
mu_x  (mu0/tau0square+n*mean(x))/(n+1/tau0square);
# tausq_x = the variance ratio parameter of the normal
# distribution
tausq_x  1/(n+1/tau0square);
# initialize the result
result  list();
result$sigmasq  1/rgamma(m,alpha_x,rate=beta_x);
result$mu  rnorm(m,mu_x,sqrt(tausq_x *

result$sigmasq));
return(result);
}

EXAMPLE B.1.3 Calculating the Estimates and Standard Errors in Example 7.3.1
Once we have a sample of values from the posterior distribution of stored in psi,
we can calculate the interval given by the mean value of psi plus or minus 3 standard
deviations as a measure of the accuracy of the estimation.

# Example B.1.3
# set the data
x  c(11.6714, 1.8957, 2.1228, 2.1286, 1.0751, 8.1631,

1.8236, 4.0362, 6.8513, 7.6461, 1.9020, 7.4899,
4.9233, 8.3223, 7.9486);

post  post_normal(10**4,x,2,1,4,2);
# compute the coefficient of variation
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psi  sqrt(post$sigmasq)/post$mu;
psi_hat  mean(psi = .5);
psi_se  sqrt(psi_hat * (1psi_hat))/sqrt(length(psi));
# the interval
cq  3
cat("The three times s.e. interval is ",

"[",psi_hatcq*psi_se, ", ", psi_hat+cq*psi_se,"] n");

EXAMPLE B.1.4 Using the Gibbs Sampler in Example 7.3.2
To run this function, type

post gibbs_normal(m,x,alpha0,beta0,lambda,mu0,
tau0sq,burnin=0)

as this creates a list called post, where post$mu and post$sigmasq contain the
generated values of and 2 respectively. Note that the burnin argument is set to
a nonnegative integer and indicates that we wish to discard the first burnin values of

and 2 and retain the last m. The default value is burnin=0.

# Example B.1.4
# function name: gibbs_normal
# parameters
# m the size of posterior sample
# x data
# alpha0 shape parameter for 1/sigma^2
# beta0 rate parameter for 1/sigma^2
# lambda degree of freedom of Student’s tdist.
# mu0 location parameter for mu
# tau0sq scale parameter for mu
# burnin size of burn in. the default value is 0.
#
# returnrd values
# mu sampled mu’s
# sigmasq sampled sigma^2’s
# description: samples from the posterior in Ex. 7.3.2
#
gibbs_normal  function(m,x,alpha0,beta0,lambda,mu0,

tau0sq,burnin=0) {
# initialize the result
result  list();
result$sigmasq  result$mu  rep(0,m);
# set the initial parameter
mu  mean(x);
sigmasq  var(x);
n  length(x);

# set parameters
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alpha_x  n/2 + alpha0 + 1/2;
# loop
for(i in (1burnin):m) {
# update v_i’s
v  rgamma(n,(lambda+1)/2,rate=((xmu)**2/

sigmasq/lambda+1)/2);
# update sigmasquare
beta_x (sum(v*(xmu)**2)/lambda+(mumu0)**2/

tau0sq)/2+beta0;
sigmasq  1/rgamma(1,alpha_x,rate=beta_x);
# update mu
r  1/(sum(v)/lambda+1/tau0sq);
mu  rnorm(1,r*(sum(v*x)/lambda+mu0/tau0sq),

sqrt(r*sigmasq));
# burnin check
if(i 1) next;
result$mu[i]  mu;
result$sigmasq[i]  sigmasq;
}
result$psi  sqrt(result$sigmasq)/result$mu;
return(result);

}

EXAMPLE B.1.5 Batching in Example 7.3.2
The following R code divides a series of data into batches and calculates the batch
means. To run the code, type y batching(k,x) to place the consecutive batch
means of size k, of the data in the vector x, in the vector y.

# Example B.1.5
# function name: batching
# parameters:
# k size of each batch
# x data
# return value:
# an array of the averages of each batch
# description: this function separates the data x into
# floor(length(x)/k) batches and returns the array of
# the averages of each batch
batching  function(k,x) {

m  floor(length(x)/k);
result  rep(0,m);
for(i in 1:m) result[i]  mean(x[(i1)*k+(1:k)]);
return(result);

}
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EXAMPLE B.1.6 Simulating a Sample from the Distribution of the Discrepancy Sta
tistic in Example 9.1.2
The following R code generates a sample from the discrepancy statistic specified in
Example 9.1.2. To generate the sample, type y discrepancy(m,n) to place a
sample of size m in y, where n is the size of the original data set. This code can be
easily modified to generate samples from other discrepancy statistics.

# Example B.1.6
# function name: discrepancy
# parameters:
# m resample size
# n size of data
# return value:
# an array of m discrepancies
# description: this function generates m discrepancies
# when the data size is n
discrepancy  function(m,n) {

result  rep(0,m);
for(i in 1:m) {

x  rnorm(n);
xbar  mean(x);
r  (xxbar)/sqrt((sum((xxbar)**2)));
result[i]  sum(log(r**2));

}
return(result/n);

}

EXAMPLE B.1.7 Generating from a Dirichlet Distribution in Example 10.2.3
The following R code generates a sample from a Dirichlet( 1 2 3 4) distribution.
To generate from this distribution, first assign values to the vector alpha and then
type ddirichlet(n,alpha), where n is the sample size.

# Example B.1.7
# function name: ddirichlet
# parameters:
# n sample size
# alpha vector(alpha1,...,alphak)
# return value:
# a (n x k) matrix. rows are i.i.d. samples
# description: this function generates n random samples
# from Dirichlet(alpha1,...,alphak) distribution
ddirichlet  function(n,alpha) {

k  length(alpha);
result  matrix(0,n,k);
for(i in 1:k) result[,i]  rgamma(n,alpha[i]);
for(i in 1:n) result[i,]  result[i,] /

sum(result[i,]);
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return(result);
}

Matrices

A matrix can be thought of as a collection of data values with two subscripts or as a
rectangular array of data. So if a is a matrix, then a[i,j] is the i j th element in
a. Note that a[i,] refers to the i th row of a and a[,j] refers to the j th column of
a. If a matrix has m rows and n columns, then it is an m n matrix, and m and n are
referred to as the dimensions of the matrix.

Perhaps the simplest way to create matrices is with cbind and rbind commands.
For example,

x c(1,2,3)
y c(4,5,6)
a cbind(x,y)
a

x y
[1,] 1 4
[2,] 2 5
[3,] 3 6

creates the vectors x and y, and the cbind command takes x as the first column
and y as the second column of the newly created 3 2 matrix a. Note that in the
printout of a, the columns are still labelled x and y, although we can still refer to
these as a[,1] and a[,2]. We can remove these column names via the command
colnames(a) NULL. Similarly, the rbind command will treat vector arguments
as the rows of a matrix. To determine the number of rows and columns of a matrix a,
we can use the nrow(a) and ncol(a) commands. We can also create a diagonal
matrix using the diag command. If x is an ndimensional vector, then diag(x) is
an n n matrix with the entries in x along the diagonal and 0’s elsewhere. If a is an
m n matrix, then diag(a) is the vector with entries taken from the main diagonal
of a. To create an n n identity matrix, use diag(n).

There are a number of operations that can be carried out on matrices. If matrices
a and b are m n then a+b is the m n matrix formed by adding the matrices
componentwise. The transpose of a is the n m matrix t(a), with i th row equal
to the i th column of a. If c is a number, then c*a is the m n matrix formed by
multiplying each element of a by c. If a is m n and b is n p then a%*%b is the
m p matrix product (Appendix A.4) of a and b. A numeric vector is treated as a
column vector in matrix multiplication. Note that a*b is also defined when a and b
are of the same dimension, but this is the componentwise product of the two matrices,
which is quite different from the matrix product.

If a is an m m matrix, then the inverse of a is obtained as solve(a). The
solve command will return an error if the matrix does not have an inverse. If a is a
square matrix, then det(a) computes the determinant of a.

We now consider an important application.
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EXAMPLE B.1.8 Fitting Regression Models
Suppose the ndimensional vector y corresponds to the response vector and the n k
matrix V corresponds to the design matrix when we are fitting a linear regression model
given by E y V V The leastsquares estimate of is given by b as computed in

b solve(t(V)%*%V)%*%t(V)%*%y

with the vector of predicted values p and residuals r given by

p V%*%b
r yp

with squared lengths

slp t(p)%*%p
slr t(r)%*%r

where slp is the squared length of p and slr is the squared length of r. Note that
the matrix solve(t(V)%*%V) is used for forming confidence intervals and tests for
the individual i Virtually all the computations involved in fitting and inference for
the linear regression matrix can be carried out using matrix computations in R like the
ones we have illustrated.

Packages

There are many packages that have been written to extend the capability of basic R. It is
very likely that if you have a data analysis need that cannot be met with R, then you can
find a freely available package to add. We refer the reader to ?install.packages
and ?library for more on this.

B.2 Using Minitab
All the computations found in this text were carried out using Minitab. This statistical
software package is very easy to learn and use. Other packages such as SAS or R (see
Section B.1) could also be used for this purpose.

Most of the computations were performed using Minitab like a calculator, i.e., data
were entered and then a number of Minitab commands were accessed to obtain the
quantities desired. No programming is required for these computations.

There were a few computations, however, that did involve a bit of programming.
Typically, this was a computation in which numerous operations had to be performed
many times, and so looping was desirable. In each such case, we have recorded here the
Minitab code that we used for these computations. As the following examples show,
these programs were never very involved.

Students can use these programs as templates for writing their own Minitab pro
grams. Actually, the language is so simple that we feel that anyone using another
language for programming can read these programs and use them as templates in the
same way. Simply think of the symbols c1, c2, etc. as arrays where we address the
i th element in the array c1 by c1(i). Furthermore, there are constants k1, k2, etc.
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A Minitab program is called a macro and must start with the statement gmacro
and end with the statement endmacro. The first statement after gmacro gives a name
to the program. Comments in a program, put there for explanatory purposes, start with
note.

If the file containing the program is called prog.txt and this is stored in the root
directory of a disk drive called c, then the Minitab command

MTB %c:/prog.txt

will run the program. Any output will either be printed in the Session window (if you
have used a print command) or stored in the Minitab worksheet.

More details on Minitab can be found by using Help in the program. We provide
some examples of Minitab macros used in the text.

EXAMPLE B.2.1 Bootstrapping in Example 6.4.2
The following Minitab code generates 1000 bootstrap samples from the data in c1,
calculates the median of each of these samples, and then calculates the sample variance
of these medians.

gmacro
bootstrapping
base 34256734
note  original sample is stored in c1
note  bootstrap sample is placed in c2 with each one
note overwritten
note  medians of bootstrap samples are stored in c3
note  k1 = size of data set (and bootstrap samples)
let k1=15
do k2=1:1000
sample 15 c1 c2;
replace.
let c3(k2)=median(c2)
enddo
note  k3 equals (6.4.5)
let k3=(stdev(c3))**2
print k3
endmacro

EXAMPLE B.2.2 Sampling from the Posterior in Example 7.3.1
The following Minitab code generates a sample of 104 from the joint posterior in Ex
ample 7.3.1. Note that in Minitab software, the Gamma density takes the form

x 1e x So to generate from a Gamma distribution, as defined
in this book, we must put the second shape parameter equal to 1 in Minitab.

gmacro
normalpost
note  the base command sets the seed for the random
note numbers
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base 34256734
note  the parameters of the posterior
note  k1 = first parameter of the gamma distribution
note = (alpha_0 + n/2)
let k1=9.5
note  k2 = 1/beta
let k2=1/77.578
note  k3 = posterior mean of mu
let k3=5.161
note  k4 = (n + 1/(tau_0 squared) )^(1)
let k4=1/15.5
note  main loop
note  c3 contains generated value of sigma**2
note  c4 contains generated value of mu
note  c5 contains generated value of coefficient of

variation
do k5=1:10000
random 1 c1;
gamma k1 k2.
let c3(k5)=1/c1(1)
let k6=sqrt(k4/c1(1))
random 1 c2;
normal k3 k6.
let c4(k5)=c2(1)
let c5(k5)=sqrt(c3(k5))/c4(k5)
enddo
endmacro

EXAMPLE B.2.3 Calculating the Estimates and Standard Errors in Example 7.3.1
We have a sample of 104 values from the posterior distribution of stored in C5.
The following computations use this sample to calculate an estimate of the posterior
probability that 0 5 (k1), as well as to calculate the standard error of this estimate
(k2), the estimate minus three times its standard error (k3), and the estimate plus three
times its standard error (k4).

let c6=c5 le .5
let k1=mean(c6)
let k2=sqrt(k1*(1k1))/sqrt(10000)
let k3=k13*k2
let k4=k1+3*k2
print k1 k2 k3 k4
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EXAMPLE B.2.4 Using the Gibbs Sampler in Example 7.3.2
The following Minitab code generates a chain of length 104 values using the Gibbs
sampler described in Example 7.3.2.

gmacro
gibbs
base 34256734
note  data sample is stored in c1
note  starting value for mu.
let k1=mean(c1)
note  starting value for sigma**2
let k2=stdev(c1)
let k2=k2**2
note  lambda
let k3=3
note  sample size
let k4=15
note  n/2 + alpha_0 + 1/2
let k5=k4/2 +2+.5
note  mu_0
let k6=4
note  tau_0**2
let k7=2
note  beta_0
let k8=1
let k9=(k3/2+.5)
note  main loop
do k100=1:10000
note  generate the nu_i in c10
do k111=1:15
let k10=.5*(((c1(k111)k1)**2)/(k2*k3) +1)
let k10=1/k10
random 1 c2;
gamma k9 k10.
let c10(k111)=c2(1)
enddo
note  generate sigma**2 in c20
let c11=c10*((c1k1)**2)
let k11=.5*sum(c11)/k3+.5*((k1k6)**2)/k7 +k8
let k11=1/k11
random 1 c2;
gamma k5 k11.
let c20(k100)=1/c2(1)
let k2=1/c2(1)
note  generate mu in c21
let k13=1/(sum(c10)/k3 +1/k7)
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let c11=c1*c10/k3
let k14=sum(c11)+k6/k7
let k14=k13*k14
let k13=sqrt(k13*k2)
random 1 c2;
normal k14 k13.
let c21(k100)=c2(1)
let k1=c2(1)
enddo
endmacro

EXAMPLE B.2.5 Batching in Example 7.3.2
The following Minitab code divides the generated sample, obtained via the Gibbs sam
pling code for Example 7.3.2, into batches, and calculates the batch means.

gmacro
batching
note  k2= batch size
let k2=40
note  k4 holds the batch sums
note  c1 contains the data to be batched (10000 data values)
note  c2 will contain the batch means (250 batch means)
do k10=1:10000/40
let k4=0
do k20=0:39
let k3=c1(k10+k20)
let k4=k4+k3
enddo
let k11=floor(k10/k2) +1
let c2(k11)=k4/k2
enddo
endmacro

EXAMPLE B.2.6 Simulating a Sample from the Distribution of the Discrepancy Sta
tistic in Example 9.1.2
The following code generates a sample from the discrepancy statistic specified in Ex
ample 9.1.2.

gmacro
goodnessoffit
base 34256734
note  generated sample is stored in c1
note  residuals are placed in c2
note  value of D(r) are placed in c3
note  k1 = size of data set
let k1=5
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do k2=1:10000
random k1 c1
let k3=mean(c1)
let k4=sqrt(k11)*stdev(c1)
let c2=((c1k3)/k4)**2
let c2=loge(c2)
let k5=sum(c2)/k1
let c3(k2)=k5
enddo
endmacro

EXAMPLE B.2.7 Generating from a Dirichlet Distribution in Example 10.2.3
The following code generates a sample from a Dirichlet( 1 2 3 4) distribution,
where 1 2 2 3 3 1 4 1 5.

gmacro
dirichlet
note  the base command sets the seed for the random
note number generator (so you can repeat a simulation).
base 34256734
note  here we provide the algorithm for generating from
note a Dirichlet(k1,k2,k3,k4) distribution.
note  assign the values of the parameters.
let k1=2
let k2=3
let k3=1
let k4=1.5
let k5=K2+k3+k4
let k6=k3+k4
note  generate the sample with ith sample in ith row
note of c2, c3, c4, c5, ....
do k10=1:5
random 1 c1;
beta k1 k5.
let c2(k10)=c1(1)
random 1 c1;
beta k2 k6.
let c3(k10)=(1c2(k10))*c1(1)
random 1 c1;
beta k3 k4.
let c4(k10)=(1c2(k10)c3(k10))*c1(1)
let c5(k10)= 1c2(k10)c3(k10)c4(k10)
enddo
endmacro
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Common Distributions

We record here the most commonly used distributions in probability and statistics as
well as some of their basic characteristics.

C.1 Discrete Distributions
1. Bernoulli [0 1] (same as Binomial 1 ).

probability function: p x x 1 1 x for x 0 1
mean:
variance: 1
momentgenerating function: m t 1 et for t R1

2. Binomial n n 0 an integer, [0 1]

probability function: p x n
x

x 1 n x for x 0 1 n
mean: n
variance: n 1
momentgenerating function: m t 1 et n for t R1

3. Geometric 0 1] (same as NegativeBinomial 1 ).

probability function: p x 1 x for x 0 1 2
mean: 1
variance: 1 2

momentgenerating function: m t 1 1 et 1 for t ln 1

4. Hypergeometric N M n , M N n N all positive integers.

probability function:

p x
M

x

N M

n x

N

n
for max 0 n M N x min n M

mean: n M
N

variance: n M
N 1 M

N
N n
N 1

5. Multinomial n 1 k n 0 an integer, each i [0 1] 1 k 1

705
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probability function:

p x1 xk
n

x1 xk

x1
1

xk
k where each xi 0 1 n

and x1 xk n

mean: E Xi n i
variance: Var X i n i 1 i
covariance: Cov X i X j n i j when i j

6. NegativeBinomial r r 0 an integer 0 1]

probability function: p x r 1 x
x

r 1 x for x 0 1 2 3
mean: r 1
variance: r 1 2

momentgenerating function: m t r 1 1 et r for t ln 1

7. Poisson 0

probability function: p x
x

x! e for x 0 1 2 3
mean:
variance:
momentgenerating function: m t exp et 1 for t R1

C.2 Absolutely Continuous Distributions
1. Beta a b a 0 b 0 (same as Dirichlet a b ).

density function: f x a b
a b xa 1 1 x b 1 for x 0 1

mean: a a b
variance: ab a b 1 a b 2

2. Bivariate Normal 1 2
2
1

2
2 for 1 2 R1 2

1
2
2 0 [ 1 1]

density function:

fX1 X2 x1 x2

1

2 1 2 1 2
exp

1

2 1 2

x1 1
1

2 x2 2
2

2

2 x1 1
1

x2 2
2

for x1 R1 x2 R1

mean: E Xi i
variance: Var X i

2
i

covariance: Cov X1 X2 1 2

3. Chisquared or 2 , 0 (same as Gamma 2 1 2 ).

density function: f x 2 2 2 1x 2 1e x 2 for x 0
mean:
variance: 2
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momentgenerating function: m t 1 2t 2 for t 1 2

4. Dirichlet 1 k 1 i 0 for each i

density function:

fX1 Xk x1 xk

1 k 1

1 k 1
x 1 1

1 x k 1
k 1 x1 xk

k 1 1

for xi 0 i 1 k and 0 x1 xk 1

mean:
E Xi

i

1 k 1

variance:

Var Xi
i 1 k 1 i

1 k 1
2 1 1 k 1

covariance when i j :

Cov Xi X j
i j

1 k 1
2 1 1 k 1

.

5. Exponential 0 (same as Gamma 1 ).

density function: f x e x for x 0
mean: 1

variance: 2

momentgenerating function: m t t 1 for t

Note that some books and software packages instead replace by 1 in the definition
of the Exponential distribution — always check this when using another book or
when using software to generate from this distribution.

6. F 0 0

density function:

f x
2

2 2

x
2 1

1 x
2

for x 0

mean: 2 when 2
variance: 2 2 2 2 2 4 when 4

7. Gamma 0 0

density function: f x x 1
e x for x 0

mean:
variance: 2

momentgenerating function: m t t for t
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Note that some books and software packages instead replace by 1 in the definition
of the Gamma distribution — always check this when using another book or
when using software to generate from this distribution.

8. Lognormal or log N 2 R1 2 0

density function: f x 2 2 1 2x 1 exp 1
2 2 ln x 2 for x 0

mean: exp 2 2
variance: exp 2 2 exp 2 1

9. N 2 R1 2 0

density function: f x 2 2 1 2 exp 1
2 2 x 2 for x R1

mean:
variance: 2

momentgenerating function: m t exp t 2t2 2 for t R1

10. Student or t 0 ( 1 gives the Cauchy distribution)

density function:

f x

1
2

1
2 2

1
x2 1 2

1

for x R1

mean: 0 when 1
variance: 2 when 2

11. Uniform[L R] R L

density function: f x 1 R L for L x R
mean: L R 2
variance: (R L 2 12
momentgenerating function: m t eRt eLt t R L



Appendix D

Tables

The following tables can be used for various computations. It is recommended, how
ever, that the reader become familiar with the use of a statistical software package
instead of relying on the tables. Computations of a much greater variety and accuracy
can be carried out using the software, and, in the end, it is much more convenient.

709
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D.1 Random Numbers
Each line in Table D.1 is a sample of 40 random digits, i.e., 40 independent and identi
cally distributed (i.i.d.) values from the uniform distribution on the set 0 1 2 3 4 5
6 7 8 9

Suppose we want a sample of five i.i.d. values from the uniform distribution on
S 1 2 25 , i.e., a random sample of five, with replacement, from S. To do
this, pick a starting point in the table and start reading off successive (nonoverlapping)
twodigit numbers, treating a pair such as 07 as 7, and discarding any pairs that are not
in the range 1 to 25, until you have five values. For example, if we start at line 110, we
read the pairs ( indicates a sample element) 38, 44, 84, 87, 89, 18 , 33, 82, 46, 97, 39,
36, 44, 20 , 06 , 76, 68, 80, 87, 08 , 81, 48, 66, 94, 87, 60, 51, 30, 92, 97, 00, 41, 27,
12 . We can see at this point that we have a sample of five given by 18, 20, 6, 8, 12.

If we want a random sample of five, without replacement, from S, then we proceed
as above but now ignore any repeats in the generated sample until we get the five
numbers. In this preceding case, we did not get any repeats, so this is also a simple
random sample of size five without replacement.

Table D.1 Random Numbers
Line

101 19223 95034 05756 28713 96409 12531 42544 82853

102 73676 47150 99400 01927 27754 42648 82425 36290

103 45467 71709 77558 00095 32863 29485 82226 90056

104 52711 38889 93074 60227 40011 85848 48767 52573

105 95592 94007 69971 91481 60779 53791 17297 59335

106 68417 35013 15529 72765 85089 57067 50211 47487

107 82739 57890 20807 47511 81676 55300 94383 14893

108 60940 72024 17868 24943 61790 90656 87964 18883

109 36009 19365 15412 39638 85453 46816 83485 41979

110 38448 48789 18338 24697 39364 42006 76688 08708

111 81486 69487 60513 09297 00412 71238 27649 39950

112 59636 88804 04634 71197 19352 73089 84898 45785

113 62568 70206 40325 03699 71080 22553 11486 11776

114 45149 32992 75730 66280 03819 56202 02938 70915

115 61041 77684 94322 24709 73698 14526 31893 32592

116 14459 26056 31424 80371 65103 62253 50490 61181

117 38167 98532 62183 70632 23417 26185 41448 75532

118 73190 32533 04470 29669 84407 90785 65956 86382

119 95857 07118 87664 92099 58806 66979 98624 84826

120 35476 55972 39421 65850 04266 35435 43742 11937

121 71487 09984 29077 14863 61683 47052 62224 51025

122 13873 81598 95052 90908 73592 75186 87136 95761

123 54580 81507 27102 56027 55892 33063 41842 81868

124 71035 09001 43367 49497 72719 96758 27611 91596

125 96746 12149 37823 71868 18442 35119 62103 39244
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Table D.1 Random Numbers (continued)
Line

126 96927 19931 36809 74192 77567 88741 48409 41903

127 43909 99477 25330 64359 40085 16925 85117 36071

128 15689 14227 06565 14374 13352 49367 81982 87209

129 36759 58984 68288 22913 18638 54303 00795 08727

130 69051 64817 87174 09517 84534 06489 87201 97245

131 05007 16632 81194 14873 04197 85576 45195 96565

132 68732 55259 84292 08796 43165 93739 31685 97150

133 45740 41807 65561 33302 07051 93623 18132 09547

134 27816 78416 18329 21337 35213 37741 04312 68508

135 66925 55658 39100 78458 11206 19876 87151 31260

136 08421 44753 77377 28744 75592 08563 79140 92454

137 53645 66812 61421 47836 12609 15373 98481 14592

138 66831 68908 40772 21558 47781 33586 79177 06928

139 55588 99404 70708 41098 43563 56934 48394 51719

140 12975 13258 13048 45144 72321 81940 00360 02428

141 96767 35964 23822 96012 94591 65194 50842 53372

142 72829 50232 97892 63408 77919 44575 24870 04178

143 88565 42628 17797 49376 61762 16953 88604 12724

144 62964 88145 83083 69453 46109 59505 69680 00900

145 19687 12633 57857 95806 09931 02150 43163 58636

146 37609 59057 66967 83401 60705 02384 90597 93600

147 54973 86278 88737 74351 47500 84552 19909 67181

148 00694 05977 19664 65441 20903 62371 22725 53340

149 71546 05233 53946 68743 72460 27601 45403 88692

150 07511 88915 41267 16853 84569 79367 32337 03316

151 03802 29341 29264 80198 12371 13121 54969 43912

152 77320 35030 77519 41109 98296 18984 60869 12349

153 07886 56866 39648 69290 03600 05376 58958 22720

154 87065 74133 21117 70595 22791 67306 28420 52067

155 42090 09628 54035 93879 98441 04606 27381 82637

156 55494 67690 88131 81800 11188 28552 25752 21953

157 16698 30406 96587 65985 07165 50148 16201 86792

158 16297 07626 68683 45335 34377 72941 41764 77038

159 22897 17467 17638 70043 36243 13008 83993 22869

160 98163 45944 34210 64158 76971 27689 82926 75957

161 43400 25831 06283 22138 16043 15706 73345 26238

162 97341 46254 88153 62336 21112 35574 99271 45297

163 64578 67197 28310 90341 37531 63890 52630 76315

164 11022 79124 49525 63078 17229 32165 01343 21394

165 81232 43939 23840 05995 84589 06788 76358 26622
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D.2 Standard Normal Cdf
If Z N 0 1 then we can use Table D.2 to compute the cumulative distribution
function (cdf) for Z For example, suppose we want to compute z P Z
1 03 The symmetry of the N 0 1 distribution about 0 implies that z 1

z so using Table D.2, we have that P Z 1 03 P Z 1 03 1 P Z
1 03 1 0 1515 0 8485

Table D.2 Standard Normal Cdf
z 00 01 02 03 04 05 06 07 08 09
3 4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002

3 3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003

3 2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005

3 1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007

3 0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010

2 9 .0019 .0018 .0018 .0017 .0016 .0016 .0015 .0015 .0014 .0014

2 8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019

2 7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026

2 6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036

2 5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048

2 4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064

2 3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084

2 2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110

2 1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143

2 0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183

1 9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233

1 8 .0359 .0351 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294

1 7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367

1 6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455

1 5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

1 4 .0808 .0793 .0778 .0764 .0749 .0735 .0721 .0708 .0694 .0681

1 3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823

1 2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985

1 1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170

1 0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379

0 9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611

0 8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867

0 7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148

0 6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451

0 5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776

0 4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121

0 3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483

0 2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859

0 1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247

0 0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
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D.3 ChiSquared Distribution Quantiles
If X 2 d f then we can use Table D.3 to obtain some quantiles for this distribution
For example, if d f 10 and P 0 98 then x0 98 21 16 is the 0 98 quantile of this
distribution.

Table D.3 2 d f Quantiles
P

d f 0.75 0.85 0.90 0.95 0.975 0.98 0.99 0.995 0.9975 0.999

1 1.32 2.07 2.71 3.84 5.02 5.41 6.63 7.88 9.14 10.83

2 2.77 3.79 4.61 5.99 7.38 7.82 9.21 10.60 11.98 13.82

3 4.11 5.32 6.25 7.81 9.35 9.84 11.34 12.84 14.32 16.27

4 5.39 6.74 7.78 9.49 11.14 11.67 13.28 14.86 16.42 18.47

5 6.63 8.12 9.24 11.07 12.83 13.39 15.09 16.75 18.39 20.51

6 7.84 9.45 10.64 12.59 14.45 15.03 16.81 18.55 20.25 22.46

7 9.04 10.75 12.02 14.07 16.01 16.62 18.48 20.28 22.04 24.32

8 10.22 12.03 13.36 15.51 17.53 18.17 20.09 21.95 23.77 26.12

9 11.39 13.29 14.68 16.92 19.02 19.68 21.67 23.59 25.46 27.88

10 12.55 14.53 15.99 18.31 20.48 21.16 23.21 25.19 27.11 29.59

11 13.70 15.77 17.28 19.68 21.92 22.62 24.72 26.76 28.73 31.26

12 14.85 16.99 18.55 21.03 23.34 24.05 26.22 28.30 30.32 32.91

13 15.98 18.20 19.81 22.36 24.74 25.47 27.69 29.82 31.88 34.53

14 17.12 19.41 21.06 23.68 26.12 26.87 29.14 31.32 33.43 36.12

15 18.25 20.60 22.31 25.00 27.49 28.26 30.58 32.80 34.95 37.70

16 19.37 21.79 23.54 26.30 28.85 29.63 32.00 34.27 36.46 39.25

17 20.49 22.98 24.77 27.59 30.19 31.00 33.41 35.72 37.95 40.79

18 21.60 24.16 25.99 28.87 31.53 32.35 34.81 37.16 39.42 42.31

19 22.72 25.33 27.20 30.14 32.85 33.69 36.19 38.58 40.88 43.82

20 23.83 26.50 28.41 31.41 34.17 35.02 37.57 40.00 42.34 45.31

21 24.93 27.66 29.62 32.67 35.48 36.34 38.93 41.40 43.78 46.80

22 26.04 28.82 30.81 33.92 36.78 37.66 40.29 42.80 45.20 48.27

23 27.14 29.98 32.01 35.17 38.08 38.97 41.64 44.18 46.62 49.73

24 28.24 31.13 33.20 36.42 39.36 40.27 42.98 45.56 48.03 51.18

25 29.34 32.28 34.38 37.65 40.65 41.57 44.31 46.93 49.44 52.62

26 30.43 33.43 35.56 38.89 41.92 42.86 45.64 48.29 50.83 54.05

27 31.53 34.57 36.74 40.11 43.19 44.14 46.96 49.64 52.22 55.48

28 32.62 35.71 37.92 41.34 44.46 45.42 48.28 50.99 53.59 56.89

29 33.71 36.85 39.09 42.56 45.72 46.69 49.59 52.34 54.97 58.30

30 34.80 37.99 40.26 43.77 46.98 47.96 50.89 53.67 56.33 59.70

40 45.62 49.24 51.81 55.76 59.34 60.44 63.69 66.77 69.70 73.40

50 56.33 60.35 63.17 67.50 71.42 72.61 76.15 79.49 82.66 86.66

60 66.98 71.34 74.40 79.08 83.30 84.58 88.38 91.95 95.34 99.61

80 88.13 93.11 96.58 101.9 106.6 108.1 112.3 116.3 120.1 124.8

100 109.1 114.7 118.5 124.3 129.6 131.1 135.8 140.2 144.3 149.4
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D.4 t Distribution Quantiles
Table D.4 contains some quantiles for t or Student distributions. For example, if X
t d f with d f 10 and P 0 98 then x0 98 2 359 is the 0 98 quantile of the t 10
distribution. Recall that the t d f distribution is symmetric about 0 so, for example,
x0 25 x0 75

Table D.4 t d f Quantiles
P

d f 0.75 0.85 0.90 0.95 0.975 0.98 0.99 0.995 0.9975 0.999

1 1.000 1.963 3.078 6.314 12.71 15.89 31.82 63.66 127.3 318.3

2 0.816 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.09 22.33

3 0.765 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.21

4 0.741 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173

5 0.727 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893

6 0.718 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208

7 0.711 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785

8 0.706 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501

9 0.703 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297

10 0.700 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144

11 0.697 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025

12 0.695 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930

13 0.694 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852

14 0.692 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787

15 0.691 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733

16 0.690 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686

17 0.689 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646

18 0.688 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.611

19 0.688 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579

20 0.687 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552

21 0.686 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527

22 0.686 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505

23 0.685 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485

24 0.685 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467

25 0.684 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450

26 0.684 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435

27 0.684 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421

28 0.683 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408

29 0.683 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396

30 0.683 1.055 1.310 1.697 2.042 2.147 2.457 2.750 3.030 3.385

40 0.681 1.050 1.303 1.684 2.021 2.123 2.423 2.704 2.971 3.307

50 0.679 1.047 1.299 1.676 2.009 2.109 2.403 2.678 2.937 3.261

60 0.679 1.045 1.296 1.671 2.000 2.099 2.390 2.660 2.915 3.232

80 0.678 1.043 1.292 1.664 1.990 2.088 2.374 2.639 2.887 3.195

100 0.677 1.042 1.290 1.660 1.984 2.081 2.364 2.626 2.871 3.174

1000 0.675 1.037 1.282 1.646 1.962 2.056 2.330 2.581 2.813 3.098

0.674 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.091

50% 70% 80% 90% 95% 96% 98% 99% 99.5% 99.8%

Confidence level
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D.5 F Distribution Quantiles
If X F nd f dd f then we can use Table D.5 to obtain some quantiles for this
distribution For example, if nd f 3 dd f 4 and P 0 975 then x0 975 9 98
is the 0 975 quantile of the F 3 4 distribution. Note that if X F nd f dd f then
Y 1 X F dd f nd f and P X x P Y 1 x .

Table D.5 F nd f dd f Quantiles
nd f

dd f P 1 2 3 4 5 6

1 0.900 39.86 49.50 53.59 55.83 57.24 58.20

0.950 161.45 199.50 215.71 224.58 230.16 233.99

0.975 647.79 799.50 864.16 899.58 921.85 937.11

0.990 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99

0.999 405284.07 499999.50 540379.20 562499.58 576404.56 585937.11

2 0.900 8.53 9.00 9.16 9.24 9.29 9.33

0.950 18.51 19.00 19.16 19.25 19.30 19.33

0.975 38.51 39.00 39.17 39.25 39.30 39.33

0.990 98.50 99.00 99.17 99.25 99.30 99.33

0.999 998.50 999.00 999.17 999.25 999.30 999.33

3 0.900 5.54 5.46 5.39 5.34 5.31 5.28

0.950 10.13 9.55 9.28 9.12 9.01 8.94

0.975 17.44 16.04 15.44 15.10 14.88 14.73

0.990 34.12 30.82 29.46 28.71 28.24 27.91

0.999 167.03 148.50 141.11 137.10 134.58 132.85

4 0.900 4.54 4.32 4.19 4.11 4.05 4.01

0.950 7.71 6.94 6.59 6.39 6.26 6.16

0.975 12.22 10.65 9.98 9.60 9.36 9.20

0.990 21.20 18.00 16.69 15.98 15.52 15.21

0.999 74.14 61.25 56.18 53.44 51.71 50.53

5 0.900 4.06 3.78 3.62 3.52 3.45 3.40

0.950 6.61 5.79 5.41 5.19 5.05 4.95

0.975 10.01 8.43 7.76 7.39 7.15 6.98

0.990 16.26 13.27 12.06 11.39 10.97 10.67

0.999 47.18 37.12 33.20 31.09 29.75 28.83

6 0.900 3.78 3.46 3.29 3.18 3.11 3.05

0.950 5.99 5.14 4.76 4.53 4.39 4.28

0.975 8.81 7.26 6.60 6.23 5.99 5.82

0.990 13.75 10.92 9.78 9.15 8.75 8.47

0.999 35.51 27.00 23.70 21.92 20.80 20.03

7 0.900 3.59 3.26 3.07 2.96 2.88 2.83

0.950 5.59 4.74 4.35 4.12 3.97 3.87

0.975 8.07 6.54 5.89 5.52 5.29 5.12

0.990 12.25 9.55 8.45 7.85 7.46 7.19

0.999 29.25 21.69 18.77 17.20 16.21 15.52
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Table D.5 F nd f dd f Quantiles (continued)
nd f

dd f P 7 8 9 10 11 12

1 0.900 58.91 59.44 59.86 60.19 60.47 60.71

0.950 236.77 238.88 240.54 241.88 242.98 243.91

0.975 948.22 956.66 963.28 968.63 973.03 976.71

0.990 5928.36 5981.07 6022.47 6055.85 6083.32 6106.32

0.999 592873.29 598144.16 602283.99 605620.97 608367.68 610667.82

2 0.900 9.35 9.37 9.38 9.39 9.40 9.41

0.950 19.35 19.37 19.38 19.40 19.40 19.41

0.975 39.36 39.37 39.39 39.40 39.41 39.41

0.990 99.36 99.37 99.39 99.40 99.41 99.42

0.999 999.36 999.37 999.39 999.40 999.41 999.42

3 0.900 5.27 5.25 5.24 5.23 5.22 5.22

0.950 8.89 8.85 8.81 8.79 8.76 8.74

0.975 14.62 14.54 14.47 14.42 14.37 14.34

0.990 27.67 27.49 27.35 27.23 27.13 27.05

0.999 131.58 130.62 129.86 129.25 128.74 128.32

4 0.900 3.98 3.95 3.94 3.92 3.91 3.90

0.950 6.09 6.04 6.00 5.96 5.94 5.91

0.975 9.07 8.98 8.90 8.84 8.79 8.75

0.990 14.98 14.80 14.66 14.55 14.45 14.37

0.999 49.66 49.00 48.47 48.05 47.70 47.41

5 0.900 3.37 3.34 3.32 3.30 3.28 3.27

0.950 4.88 4.82 4.77 4.74 4.70 4.68

0.975 6.85 6.76 6.68 6.62 6.57 6.52

0.990 10.46 10.29 10.16 10.05 9.96 9.89

0.999 28.16 27.65 27.24 26.92 26.65 26.42

6 0.900 3.01 2.98 2.96 2.94 2.92 2.90

0.950 4.21 4.15 4.10 4.06 4.03 4.00

0.975 5.70 5.60 5.52 5.46 5.41 5.37

0.990 8.26 8.10 7.98 7.87 7.79 7.72

0.999 19.46 19.03 18.69 18.41 18.18 17.99

7 0.900 2.78 2.75 2.72 2.70 2.68 2.67

0.950 3.79 3.73 3.68 3.64 3.60 3.57

0.975 4.99 4.90 4.82 4.76 4.71 4.67

0.990 6.99 6.84 6.72 6.62 6.54 6.47

0.999 15.02 14.63 14.33 14.08 13.88 13.71



Appendix D.5: F Distribution Quantiles 717

Table D.5 F nd f dd f Quantiles (continued)
nd f

dd f P 15 20 30 60 120 10000

1 0.900 61.22 61.74 62.26 62.79 63.06 63.32

0.950 245.95 248.01 250.10 252.20 253.25 254.30

0.975 984.87 993.10 1001.41 1009.80 1014.02 1018.21

0.990 6157.28 6208.73 6260.65 6313.03 6339.39 6365.55

0.999 615763.66 620907.67 626098.96 631336.56 633972.40 636587.61

2 0.900 9.42 9.44 9.46 9.47 9.48 9.49

0.950 19.43 19.45 19.46 19.48 19.49 19.50

0.975 39.43 39.45 39.46 39.48 39.49 39.50

0.990 99.43 99.45 99.47 99.48 99.49 99.50

0.999 999.43 999.45 999.47 999.48 999.49 999.50

3 0.900 5.20 5.18 5.17 5.15 5.14 5.13

0.950 8.70 8.66 8.62 8.57 8.55 8.53

0.975 14.25 14.17 14.08 13.99 13.95 13.90

0.990 26.87 26.69 26.50 26.32 26.22 26.13

0.999 127.37 126.42 125.45 124.47 123.97 123.48

4 0.900 3.87 3.84 3.82 3.79 3.78 3.76

0.950 5.86 5.80 5.75 5.69 5.66 5.63

0.975 8.66 8.56 8.46 8.36 8.31 8.26

0.990 14.20 14.02 13.84 13.65 13.56 13.46

0.999 46.76 46.10 45.43 44.75 44.40 44.06

5 0.900 3.24 3.21 3.17 3.14 3.12 3.11

0.950 4.62 4.56 4.50 4.43 4.40 4.37

0.975 6.43 6.33 6.23 6.12 6.07 6.02

0.990 9.72 9.55 9.38 9.20 9.11 9.02

0.999 25.91 25.39 24.87 24.33 24.06 23.79

6 0.900 2.87 2.84 2.80 2.76 2.74 2.72

0.950 3.94 3.87 3.81 3.74 3.70 3.67

0.975 5.27 5.17 5.07 4.96 4.90 4.85

0.990 7.56 7.40 7.23 7.06 6.97 6.88

0.999 17.56 17.12 16.67 16.21 15.98 15.75

7 0.900 2.63 2.59 2.56 2.51 2.49 2.47

0.950 3.51 3.44 3.38 3.30 3.27 3.23

0.975 4.57 4.47 4.36 4.25 4.20 4.14

0.990 6.31 6.16 5.99 5.82 5.74 5.65

0.999 13.32 12.93 12.53 12.12 11.91 11.70
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Table D.5 F nd f dd f Quantiles (continued)
nd f

dd f P 1 2 3 4 5 6

8 0.900 3.46 3.11 2.92 2.81 2.73 2.67

0.950 5.32 4.46 4.07 3.84 3.69 3.58

0.975 7.57 6.06 5.42 5.05 4.82 4.65

0.990 11.26 8.65 7.59 7.01 6.63 6.37

0.999 25.41 18.49 15.83 14.39 13.48 12.86

9 0.900 3.36 3.01 2.81 2.69 2.61 2.55

0.950 5.12 4.26 3.86 3.63 3.48 3.37

0.975 7.21 5.71 5.08 4.72 4.48 4.32

0.990 10.56 8.02 6.99 6.42 6.06 5.80

0.999 22.86 16.39 13.90 12.56 11.71 11.13

10 0.900 3.29 2.92 2.73 2.61 2.52 2.46

0.950 4.96 4.10 3.71 3.48 3.33 3.22

0.975 6.94 5.46 4.83 4.47 4.24 4.07

0.990 10.04 7.56 6.55 5.99 5.64 5.39

0.999 21.04 14.91 12.55 11.28 10.48 9.93

11 0.900 3.23 2.86 2.66 2.54 2.45 2.39

0.950 4.84 3.98 3.59 3.36 3.20 3.09

0.975 6.72 5.26 4.63 4.28 4.04 3.88

0.990 9.65 7.21 6.22 5.67 5.32 5.07

0.999 19.69 13.81 11.56 10.35 9.58 9.05

12 0.900 3.18 2.81 2.61 2.48 2.39 2.33

0.950 4.75 3.89 3.49 3.26 3.11 3.00

0.975 6.55 5.10 4.47 4.12 3.89 3.73

0.990 9.33 6.93 5.95 5.41 5.06 4.82

0.999 18.64 12.97 10.80 9.63 8.89 8.38

13 0.900 3.14 2.76 2.56 2.43 2.35 2.28

0.950 4.67 3.81 3.41 3.18 3.03 2.92

0.975 6.41 4.97 4.35 4.00 3.77 3.60

0.990 9.07 6.70 5.74 5.21 4.86 4.62

0.999 17.82 12.31 10.21 9.07 8.35 7.86

14 0.900 3.10 2.73 2.52 2.39 2.31 2.24

0.950 4.60 3.74 3.34 3.11 2.96 2.85

0.975 6.30 4.86 4.24 3.89 3.66 3.50

0.990 8.86 6.51 5.56 5.04 4.69 4.46

0.999 17.14 11.78 9.73 8.62 7.92 7.44
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Table D.5 F nd f dd f Quantiles (continued)
nd f

dd f P 7 8 9 10 11 12

8 0.900 2.62 2.59 2.56 2.54 2.52 2.50

0.950 3.50 3.44 3.39 3.35 3.31 3.28

0.975 4.53 4.43 4.36 4.30 4.24 4.20

0.990 6.18 6.03 5.91 5.81 5.73 5.67

0.999 12.40 12.05 11.77 11.54 11.35 11.19

9 0.900 2.51 2.47 2.44 2.42 2.40 2.38

0.950 3.29 3.23 3.18 3.14 3.10 3.07

0.975 4.20 4.10 4.03 3.96 3.91 3.87

0.990 5.61 5.47 5.35 5.26 5.18 5.11

0.999 10.70 10.37 10.11 9.89 9.72 9.57

10 0.900 2.41 2.38 2.35 2.32 2.30 2.28

0.950 3.14 3.07 3.02 2.98 2.94 2.91

0.975 3.95 3.85 3.78 3.72 3.66 3.62

0.990 5.20 5.06 4.94 4.85 4.77 4.71

0.999 9.52 9.20 8.96 8.75 8.59 8.45

11 0.900 2.34 2.30 2.27 2.25 2.23 2.21

0.950 3.01 2.95 2.90 2.85 2.82 2.79

0.975 3.76 3.66 3.59 3.53 3.47 3.43

0.990 4.89 4.74 4.63 4.54 4.46 4.40

0.999 8.66 8.35 8.12 7.92 7.76 7.63

12 0.900 2.28 2.24 2.21 2.19 2.17 2.15

0.950 2.91 2.85 2.80 2.75 2.72 2.69

0.975 3.61 3.51 3.44 3.37 3.32 3.28

0.990 4.64 4.50 4.39 4.30 4.22 4.16

0.999 8.00 7.71 7.48 7.29 7.14 7.00

13 0.900 2.23 2.20 2.16 2.14 2.12 2.10

0.950 2.83 2.77 2.71 2.67 2.63 2.60

0.975 3.48 3.39 3.31 3.25 3.20 3.15

0.990 4.44 4.30 4.19 4.10 4.02 3.96

0.999 7.49 7.21 6.98 6.80 6.65 6.52

14 0.900 2.19 2.15 2.12 2.10 2.07 2.05

0.950 2.76 2.70 2.65 2.60 2.57 2.53

0.975 3.38 3.29 3.21 3.15 3.09 3.05

0.990 4.28 4.14 4.03 3.94 3.86 3.80

0.999 7.08 6.80 6.58 6.40 6.26 6.13
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Table D.5 F nd f dd f Quantiles (continued)
nd f

dd f P 15 20 30 60 120 10000

8 0.900 2.46 2.42 2.38 2.34 2.32 2.29

0.950 3.22 3.15 3.08 3.01 2.97 2.93

0.975 4.10 4.00 3.89 3.78 3.73 3.67

0.990 5.52 5.36 5.20 5.03 4.95 4.86

0.999 10.84 10.48 10.11 9.73 9.53 9.34

9 0.900 2.34 2.30 2.25 2.21 2.18 2.16

0.950 3.01 2.94 2.86 2.79 2.75 2.71

0.975 3.77 3.67 3.56 3.45 3.39 3.33

0.990 4.96 4.81 4.65 4.48 4.40 4.31

0.999 9.24 8.90 8.55 8.19 8.00 7.82

10 0.900 2.24 2.20 2.16 2.11 2.08 2.06

0.950 2.85 2.77 2.70 2.62 2.58 2.54

0.975 3.52 3.42 3.31 3.20 3.14 3.08

0.990 4.56 4.41 4.25 4.08 4.00 3.91

0.999 8.13 7.80 7.47 7.12 6.94 6.76

11 0.900 2.17 2.12 2.08 2.03 2.00 1.97

0.950 2.72 2.65 2.57 2.49 2.45 2.41

0.975 3.33 3.23 3.12 3.00 2.94 2.88

0.990 4.25 4.10 3.94 3.78 3.69 3.60

0.999 7.32 7.01 6.68 6.35 6.18 6.00

12 0.900 2.10 2.06 2.01 1.96 1.93 1.90

0.950 2.62 2.54 2.47 2.38 2.34 2.30

0.975 3.18 3.07 2.96 2.85 2.79 2.73

0.990 4.01 3.86 3.70 3.54 3.45 3.36

0.999 6.71 6.40 6.09 5.76 5.59 5.42

13 0.900 2.05 2.01 1.96 1.90 1.88 1.85

0.950 2.53 2.46 2.38 2.30 2.25 2.21

0.975 3.05 2.95 2.84 2.72 2.66 2.60

0.990 3.82 3.66 3.51 3.34 3.25 3.17

0.999 6.23 5.93 5.63 5.30 5.14 4.97

14 0.900 2.01 1.96 1.91 1.86 1.83 1.80

0.950 2.46 2.39 2.31 2.22 2.18 2.13

0.975 2.95 2.84 2.73 2.61 2.55 2.49

0.990 3.66 3.51 3.35 3.18 3.09 3.01

0.999 5.85 5.56 5.25 4.94 4.77 4.61
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Table D.5 F nd f dd f Quantiles (continued)
nd f

dd f P 1 2 3 4 5 6

15 0.900 3.07 2.70 2.49 2.36 2.27 2.21

0.950 4.54 3.68 3.29 3.06 2.90 2.79

0.975 6.20 4.77 4.15 3.80 3.58 3.41

0.990 8.68 6.36 5.42 4.89 4.56 4.32

0.999 16.59 11.34 9.34 8.25 7.57 7.09

20 0.900 2.97 2.59 2.38 2.25 2.16 2.09

0.950 4.35 3.49 3.10 2.87 2.71 2.60

0.975 5.87 4.46 3.86 3.51 3.29 3.13

0.990 8.10 5.85 4.94 4.43 4.10 3.87

0.999 14.82 9.95 8.10 7.10 6.46 6.02

30 0.900 2.88 2.49 2.28 2.14 2.05 1.98

0.950 4.17 3.32 2.92 2.69 2.53 2.42

0.975 5.57 4.18 3.59 3.25 3.03 2.87

0.990 7.56 5.39 4.51 4.02 3.70 3.47

0.999 13.29 8.77 7.05 6.12 5.53 5.12

60 0.900 2.79 2.39 2.18 2.04 1.95 1.87

0.950 4.00 3.15 2.76 2.53 2.37 2.25

0.975 5.29 3.93 3.34 3.01 2.79 2.63

0.990 7.08 4.98 4.13 3.65 3.34 3.12

0.999 11.97 7.77 6.17 5.31 4.76 4.37

120 0.900 2.75 2.35 2.13 1.99 1.90 1.82

0.950 3.92 3.07 2.68 2.45 2.29 2.18

0.975 5.15 3.80 3.23 2.89 2.67 2.52

0.990 6.85 4.79 3.95 3.48 3.17 2.96

0.999 11.38 7.32 5.78 4.95 4.42 4.04

10000 0.900 2.71 2.30 2.08 1.95 1.85 1.77

0.950 3.84 3.00 2.61 2.37 2.21 2.10

0.975 5.03 3.69 3.12 2.79 2.57 2.41

0.990 6.64 4.61 3.78 3.32 3.02 2.80

0.999 10.83 6.91 5.43 4.62 4.11 3.75
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Table D.5 F nd f dd f Quantiles (continued)
nd f

dd f P 7 8 9 10 11 12

15 0.900 2.16 2.12 2.09 2.06 2.04 2.02

0.950 2.71 2.64 2.59 2.54 2.51 2.48

0.975 3.29 3.20 3.12 3.06 3.01 2.96

0.990 4.14 4.00 3.89 3.80 3.73 3.67

0.999 6.74 6.47 6.26 6.08 5.94 5.81

20 0.900 2.04 2.00 1.96 1.94 1.91 1.89

0.950 2.51 2.45 2.39 2.35 2.31 2.28

0.975 3.01 2.91 2.84 2.77 2.72 2.68

0.990 3.70 3.56 3.46 3.37 3.29 3.23

0.999 5.69 5.44 5.24 5.08 4.94 4.82

30 0.900 1.93 1.88 1.85 1.82 1.79 1.77

0.950 2.33 2.27 2.21 2.16 2.13 2.09

0.975 2.75 2.65 2.57 2.51 2.46 2.41

0.990 3.30 3.17 3.07 2.98 2.91 2.84

0.999 4.82 4.58 4.39 4.24 4.11 4.00

60 0.900 1.82 1.77 1.74 1.71 1.68 1.66

0.950 2.17 2.10 2.04 1.99 1.95 1.92

0.975 2.51 2.41 2.33 2.27 2.22 2.17

0.990 2.95 2.82 2.72 2.63 2.56 2.50

0.999 4.09 3.86 3.69 3.54 3.42 3.32

120 0.900 1.77 1.72 1.68 1.65 1.63 1.60

0.950 2.09 2.02 1.96 1.91 1.87 1.83

0.975 2.39 2.30 2.22 2.16 2.10 2.05

0.990 2.79 2.66 2.56 2.47 2.40 2.34

0.999 3.77 3.55 3.38 3.24 3.12 3.02

10000 0.900 1.72 1.67 1.63 1.60 1.57 1.55

0.950 2.01 1.94 1.88 1.83 1.79 1.75

0.975 2.29 2.19 2.11 2.05 1.99 1.95

0.990 2.64 2.51 2.41 2.32 2.25 2.19

0.999 3.48 3.27 3.10 2.96 2.85 2.75
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Table D.5 F nd f dd f Quantiles (continued)
nd f

dd f P 15 20 30 60 120 10000

15 0.900 1.97 1.92 1.87 1.82 1.79 1.76

0.950 2.40 2.33 2.25 2.16 2.11 2.07

0.975 2.86 2.76 2.64 2.52 2.46 2.40

0.990 3.52 3.37 3.21 3.05 2.96 2.87

0.999 5.54 5.25 4.95 4.64 4.47 4.31

20 0.900 1.84 1.79 1.74 1.68 1.64 1.61

0.950 2.20 2.12 2.04 1.95 1.90 1.84

0.975 2.57 2.46 2.35 2.22 2.16 2.09

0.990 3.09 2.94 2.78 2.61 2.52 2.42

0.999 4.56 4.29 4.00 3.70 3.54 3.38

30 0.900 1.72 1.67 1.61 1.54 1.50 1.46

0.950 2.01 1.93 1.84 1.74 1.68 1.62

0.975 2.31 2.20 2.07 1.94 1.87 1.79

0.990 2.70 2.55 2.39 2.21 2.11 2.01

0.999 3.75 3.49 3.22 2.92 2.76 2.59

60 0.900 1.60 1.54 1.48 1.40 1.35 1.29

0.950 1.84 1.75 1.65 1.53 1.47 1.39

0.975 2.06 1.94 1.82 1.67 1.58 1.48

0.990 2.35 2.20 2.03 1.84 1.73 1.60

0.999 3.08 2.83 2.55 2.25 2.08 1.89

120 0.900 1.55 1.48 1.41 1.32 1.26 1.19

0.950 1.75 1.66 1.55 1.43 1.35 1.26

0.975 1.94 1.82 1.69 1.53 1.43 1.31

0.990 2.19 2.03 1.86 1.66 1.53 1.38

0.999 2.78 2.53 2.26 1.95 1.77 1.55

10000 0.900 1.49 1.42 1.34 1.24 1.17 1.03

0.950 1.67 1.57 1.46 1.32 1.22 1.03

0.975 1.83 1.71 1.57 1.39 1.27 1.04

0.990 2.04 1.88 1.70 1.48 1.33 1.05

0.999 2.52 2.27 1.99 1.66 1.45 1.06
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D.6 Binomial Distribution Probabilities
If X Binomial n p then Table D.6 contains entries computing

P X k
n
k

pk 1 p n k

for various values of n k and p
Note that if X Binomial n p then P X k P Y n k where

Y n X Binomial n 1 p

Table D.6 Binomial Probabilities
p

n k .01 .02 .03 .04 .05 .06 .07 .08 .09
2 0 .9801 .9604 .9409 .9216 .9025 .8836 .8649 .8464 .8281

1 .0198 .0392 .0582 .0768 .0950 .1128 .1302 .1472 .1638
2 .0001 .0004 .0009 .0016 .0025 .0036 .0049 .0064 .0081

3 0 .9703 .9412 .9127 .8847 .8574 .8306 .8044 .7787 .7536
1 .0294 .0576 .0847 .1106 .1354 .1590 .1816 .2031 .2236
2 .0003 .0012 .0026 .0046 .0071 .0102 .0137 .0177 .0221
3 .0001 .0001 .0002 .0003 .0005 .0007

4 0 .9606 .9224 .8853 .8493 .8145 .7807 .7481 .7164 .6857
1 .0388 .0753 .1095 .1416 .1715 .1993 .2252 .2492 .2713
2 .0006 .0023 .0051 .0088 .0135 .0191 .0254 .0325 .0402
3 .0001 .0002 .0005 .0008 .0013 .0019 .0027
4 .0001

5 0 .9510 .9039 .8587 .8154 .7738 .7339 .6957 .6591 .6240
1 .0480 .0922 .1328 .1699 .2036 .2342 .2618 .2866 .3086
2 .0010 .0038 .0082 .0142 .0214 .0299 .0394 .0498 .0610
3 .0001 .0003 .0006 .0011 .0019 .0030 .0043 .0060
4 .0001 .0001 .0002 .0003
5

6 0 .9415 .8858 .8330 .7828 .7351 .6899 .6470 .6064 .5679
1 .0571 .1085 .1546 .1957 .2321 .2642 .2922 .3164 .3370
2 .0014 .0055 .0120 .0204 .0305 .0422 .0550 .0688 .0833
3 .0002 .0005 .0011 .0021 .0036 .0055 .0080 .0110
4 .0001 .0002 .0003 .0005 .0008
5
6

7 0 .9321 .8681 .8080 .7514 .6983 .6485 .6017 .5578 .5168
1 .0659 .1240 .1749 .2192 .2573 .2897 .3170 .3396 .3578
2 .0020 .0076 .0162 .0274 .0406 .0555 .0716 .0886 .1061
3 .0003 .0008 .0019 .0036 .0059 .0090 .0128 .0175
4 .0001 .0002 .0004 .0007 .0011 .0017
5 .0001 .0001
6
7

8 0 .9227 .8508 .7837 .7214 .6634 .6096 .5596 .5132 .4703
1 .0746 .1389 .1939 .2405 .2793 .3113 .3370 .3570 .3721
2 .0026 .0099 .0210 .0351 .0515 .0695 .0888 .1087 .1288
3 .0001 .0004 .0013 .0029 .0054 .0089 .0134 .0189 .0255
4 .0001 .0002 .0004 .0007 .0013 .0021 .0031
5 .0001 .0001 .0002
6
7
8
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Table D.6 Binomial Probabilities (continued)
p

n k .10 .15 .20 .25 .30 .35 .40 .45 .50
2 0 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500

1 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000
2 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

3 0 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250
1 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750
2 .0270 .0574 .0960 .1406 .1890 .2389 .2880 .3341 .3750
3 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

4 0 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625
1 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500
2 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750
3 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500
4 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625

5 0 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0313
1 .3280 .3915 .4096 .3955 .3602 .3124 .2592 .2059 .1563
2 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125
3 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125
4 .0004 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1562
5 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312

6 0 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156
1 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938
2 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344
3 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125
4 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344
5 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0937
6 .0001 .0002 .0007 .0018 .0041 .0083 .0156

7 0 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078
1 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547
2 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641
3 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734
4 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734
5 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641
6 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547
7 .0001 .0002 .0006 .0016 .0037 .0078

8 0 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039
1 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0313
2 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094
3 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188
4 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734
5 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188
6 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094
7 .0001 .0004 .0012 .0033 .0079 .0164 .0312
8 .0001 .0002 .0007 .0017 .0039
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Table D.6 Binomial Probabilities (continued)
p

n k .01 .02 .03 .04 .05 .06 .07 .08 .09
9 0 .9135 .8337 .7602 .6925 .6302 .5730 .5204 .4722 .4279

1 .0830 .1531 .2116 .2597 .2985 .3292 .3525 .3695 .3809
2 .0034 .0125 .0262 .0433 .0629 .0840 .1061 .1285 .1507
3 .0001 .0006 .0019 .0042 .0077 .0125 .0186 .0261 .0348
4 .0001 .0003 .0006 .0012 .0021 .0034 .0052
5 .0001 .0002 .0003 .0005
6
7
8
9

10 0 .9044 .8171 .7374 .6648 .5987 .5386 .4840 .4344 .3894
1 .0914 .1667 .2281 .2770 .3151 .3438 .3643 .3777 .3851
2 .0042 .0153 .0317 .0519 .0746 .0988 .1234 .1478 .1714
3 .0001 .0008 .0026 .0058 .0105 .0168 .0248 .0343 .0452
4 .0001 .0004 .0010 .0019 .0033 .0052 .0078
5 .0001 .0001 .0003 .0005 .0009
6 .0001
7
8
9

10

12 0 .8864 .7847 .6938 .6127 .5404 .4759 .4186 .3677 .3225
1 .1074 .1922 .2575 .3064 .3413 .3645 .3781 .3837 .3827
2 .0060 .0216 .0438 .0702 .0988 .1280 .1565 .1835 .2082
3 .0002 .0015 .0045 .0098 .0173 .0272 .0393 .0532 .0686
4 .0001 .0003 .0009 .0021 .0039 .0067 .0104 .0153
5 .0001 .0002 .0004 .0008 .0014 .0024
6 .0001 .0001 .0003
7
8
9

10
11
12

15 0 .8601 .7386 .6333 .5421 .4633 .3953 .3367 .2863 .2430
1 .1303 .2261 .2938 .3388 .3658 .3785 .3801 .3734 .3605
2 .0092 .0323 .0636 .0988 .1348 .1691 .2003 .2273 .2496
3 .0004 .0029 .0085 .0178 .0307 .0468 .0653 .0857 .1070
4 .0002 .0008 .0022 .0049 .0090 .0148 .0223 .0317
5 .0001 .0002 .0006 .0013 .0024 .0043 .0069
6 .0001 .0003 .0006 .0011
7 .0001 .0001
8
9

10
11
12
13
14
15
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Table D.6 Binomial Probabilities (continued)
p

n k .10 .15 .20 .25 .30 .35 .40 .45 .50
9 0 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020

1 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176
2 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703
3 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641
4 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461
5 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461
6 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641
7 .0003 .0012 .0039 .0098 .0212 .0407 .0703
8 .0001 .0004 .0013 .0035 .0083 .0176
9 .0001 .0003 .0008 .0020

10 0 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010
1 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098
2 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439
3 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172
4 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051
5 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461
6 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051
7 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172
8 .0001 .0004 .0014 .0043 .0106 .0229 .0439
9 .0001 .0005 .0016 .0042 .0098

10 .0001 .0003 .0010

12 0 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002
1 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029
2 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161
3 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537
4 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208
5 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934
6 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256
7 .0006 .0033 .0115 .0291 .0591 .1009 .1489 .1934
8 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208
9 .0001 .0004 .0015 .0048 .0125 .0277 .0537

10 .0002 .0008 .0025 .0068 .0161
11 .0001 .0003 .0010 .0029
12 .0001 .0002

15 0 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001
1 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005
2 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032
3 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139
4 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417
5 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916
6 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527
7 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964
8 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964
9 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527

10 .0001 .0007 .0030 .0096 .0245 .0515 .0916
11 .0001 .0006 .0024 .0074 .0191 .0417
12 .0001 .0004 .0016 .0052 .0139
13 .0001 .0003 .0010 .0032
14 .0001 .0005
15
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Table D.6 Binomial Probabilities (continued)
p

n k .01 .02 .03 .04 .05 .06 .07 .08 .09
20 0 .8179 .6676 .5438 .4420 .3585 .2901 .2342 .1887 .1516

1 .1652 .2725 .3364 .3683 .3774 .3703 .3526 .3282 .3000
2 .0159 .0528 .0988 .1458 .1887 .2246 .2521 .2711 .2818
3 .0010 .0065 .0183 .0364 .0596 .0860 .1139 .1414 .1672
4 .0006 .0024 .0065 .0133 .0233 .0364 .0523 .0703
5 .0002 .0009 .0022 .0048 .0088 .0145 .0222
6 .0001 .0003 .0008 .0017 .0032 .0055
7 .0001 .0002 .0005 .0011
8 .0001 .0002
9

10
11
12
13
14
15
16
17
18
19
20

Table D.6 Binomial Probabilities (continued)
p

n k .10 .15 .20 .25 .30 .35 .40 .45 .50
20 0 .1216 .0388 .0115 .0032 .0008 .0002

1 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001
2 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002
3 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011
4 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046
5 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148
6 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370
7 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739
8 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201
9 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602

10 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762
11 .0005 .0030 .0120 .0336 .0710 .1185 .1602
12 .0001 .0008 .0039 .0136 .0355 .0727 .1201
13 .0002 .0010 .0045 .0146 .0366 .0739
14 .0002 .0012 .0049 .0150 .0370
15 .0003 .0013 .0049 .0148
16 .0003 .0013 .0046
17 .0002 .0011
18 .0002
19
20



Appendix E

Answers to OddNumbered
Exercises

Answers are provided here to oddnumbered exercises that require a computation.
No details of the computations are given. If the Exercise required that something be
demonstrated, then a significant hint is provided.

1.2.1 (a) P 1 2 5 6 (b) P 1 2 3 1 (c) P 1 P 2 3 1 2

1.2.3 P 2 1 6

1.2.5 P s 0 for any s [0 1]

1.2.7 This is the subset A Bc Ac B

1.2.9 P 1 1 12 P 2 1 12 P 3 1 6 P 4 2 3

1.2.11 P 2 5 24 P 1 3 8 P 3 5 12
1.3.1 (a) P 2 3 4 100 0 9 (b) 0 1

1.3.3 P late or early or both 25%

1.3.5 (a) 1 32 0 03125. (b) 0 96875

1.3.7 10%

1.4.1 (a) 1 6 8 1 1,679,616 (b) 1 6 7 1 279,936 (c) 8 1 6 8 1 209,952

1.4.3 1 5051 2100

1.4.5 (a) 4
1

13
13

39
13 13 13

52
13 13 13 13 (b) 4

1
4
4

48
9

39
13 13 13

52
13 13 13 13

1.4.7 48
10

52
10 246 595 0 4134

1.4.9 5 6 2 1 6 25 216

1.4.11 5
3

12
3

6
3

18
3

7
3

12
3

12
3

18
3

1.4.13 2
1

1
22

3
2

1
23

4
2

1
24

2
1

1
22

3
0

1
23

4
3

1
24

11
128 0 0859

1.5.1 (a) 3 4 (b) 16 21

1.5.3 (a) 1 8 (b) 1 8 1 2 1 4 (c) 0 1 2 0

1.5.5 1

1.5.7 0 074

729
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1.5.9 (a) No (b) Yes (c) Yes (d) Yes (e) No

1.5.11 (a) 0 1667 (b) 0 3125

1.6.1 1 3

1.6.3 An A 1 2 3 S

1.6.5 1

1.6.7 Suppose there is no n such that P [0 n] 0 9 and then note this implies
1 P [0 limn P [0 n] 0 9

1.6.9 No

2.1.1 (a) 1 (b) Does not exist (c) Does not exist (d) 1

2.1.3 (a) X s s and Y s s2 for all s S. (b) For this example, Z 1
2 Z 2 18 Z 3 84 Z 4 260 Z 5 630
2.1.5 Yes, for A B.

2.1.7 (a) W 1 2 (b) W 2 0 (c) W 3 1 (d) W Z is not true.

2.1.9 (a) Y 1 1 (b) Y 2 4 (c) Y 4 0

2.2.1 P X 0 P X 2 1 4 P X 1 1 2 P X x 0 for
x 0 1 2

2.2.3 (a) P Y y 0 for y 2 3 4 5 6 7 8 9 10 11 12, P Y 2
1 36 P Y 3 2 36 P Y 4 3 36 P Y 5 4 36 P Y 6
5 36 P Y 7 6 36 P Y 8 5 36 P Y 9 4 36 P Y 10
3 36 P Y 11 2 36 P Y 12 1 36 (b) P Y B 1 36 IB 2
2 36 IB 3 3 36 IB 4 4 36 IB 5 5 36 IB 6 6 36 IB 7 5 36 IB 8
4 36 IB 9 3 36 IB 10 2 36 IB 11 1 36 IB 12

2.2.5 (a) P X 1 0 3 P X 2 0 2 P X 3 0 5 and P X x 0
for all x 1 2 3 (b) P Y 1 0 3 P Y 2 0 2 P Y 3 0 5 and
P Y y 0 for all y 1 2 3 (c) P W 2 0 09 P W 3 0 12
P W 4 0 34 P W 5 0 2 P W 6 0 25 and P W 0 for all
other choices of

2.2.7 P X 25 0 45 P X 30 0 55 and P X x 0 otherwise

2.3.1 pY 2 1 36 pY 3 2 36 pY 4 3 36 pY 5 4 36 pY 6 5 36
pY 7 6 36 pY 8 5 36 pY 9 4 36 pY 10 3 36 pY 11 2 36
pY 12 1 36 and pY y 0 otherwise

2.3.3 pZ 1 pZ 5 1 4 pZ 0 1 2 and pZ z 0 otherwise

2.3.5 pW 1 1 36 pW 2 2 36 pW 3 2 36 pW 4 3 36 pW 5
2 36 pW 6 4 36 pW 8 2 36 pW 9 1 36 pW 10 2 36 pW 12
4 36 pW 15 2 36 pW 16 1 36 pW 18 2 36 pW 20 2 36 pW 24
2 36 pW 25 1 36 pW 30 2 36 and pW 36 1 36, with pW 0
otherwise

2.3.7 11 12

2.3.9 53 512

2.3.11 10

2.3.15 (a) 10
3 0 35 3 0 65 7 (b) 0 35 0 65 9 (c) 9

1 0 35 2 0 65 8
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2.3.17 (a) Hypergeometric 9 4 2 (b) Hypergeometric 9 5 2

2.3.19 P X 5 100 1000 5 5! exp 100 1000

2.4.1 (a) 0 (b) 0 (c) 0 (d) 2 3 (e) 2 3 (f) 1 (g) 1

2.4.3 (a) e 20 (b) 1 (c) e 12 (d) e 4 25 1 4

2.4.5 No

2.4.7 c 3 M3

2.4.9 2
1 f x dx 2

1 g x dx

2.4.11 Yes

2.4.13 P Y 3 3 2 1 2 exp y 1 2 2 dy 2 2 1 2 exp u2 2
du P X 2

2.5.1 Properties (a) and (b) follow by inspection. Properties (c) and (d) follow since
FX x 0 for x 1 6, and FX x 1 for x 1.

2.5.3 (a) No (b) Yes (c) Yes (d) No (e) Yes (f) Yes (g) No

2.5.5 Hence: (a) 0 933 (b) 0 00135 (c) 1 90 10 8

2.5.7 (a) 1 9 (b) 3 16 (c) 12 25 (d) 0 (e) 1 (f) 0 (g) 1 (h) 0

2.5.9 (b) No

2.5.11 (b) Yes

2.5.13 (b) The function F is nondecreasing, limx F x 0 and limx F x
1. (c) P X 4 5 0, P 1 X 1 2 3 4, P X 2 5 5 12, P X
4 5 1 4

2.5.15 (a) P Z 4 5 2e 16 25 3 (b) P 1 Z 1 2 11 12 2e 1 2 3 (c)
P Z 2 5 5 36 (d) P Z 4 5 1 12 (e) P Z 0 1 9 (f) P Z 1 2
11 12 2e 1 2 3

2.6.1 fY y equals 1 R L c for L y d c R and otherwise equals 0

2.6.3 fY y e [y d c ]2 2c2 2
c 2

2.6.5 fY y equals 3 y 2 3e y1 3
for y 0 and otherwise equals 0

2.6.7 fY y 1 6y1 2 for 0 y 9

2.6.9 (a) fY y y 8 (b) fZ z z7 2 for 0 z 2

2.6.11 fY y y 1 2 sin y1 2 4 for 0 y 2 and 0 otherwise

2.6.13 fY y 2 1 2 3 y 2 3 1 exp y 2 3 2

2.7.1

FX Y x y
0 min[x y 2 4] 0
1 3 0 min[x y 2 4] 1
1 min[x y 2 4] 1

2.7.3 (a) pX 2 pX 3 pX 3 pX 2 pX 17 1 5, with pX x 0
otherwise (b) pY 3 pY 2 pY 2 pY 3 pY 19 1 5, with pY y
0 otherwise (c) P Y X 3 5 (d) P Y X 0 (e) P XY 0 0

2.7.5 X x Y y X x and X x Y y Y y
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2.7.7 (a) fX x c 1 cos 2x x for 0 x 1 and 0 otherwise (b) fY y
c 1 cos y y for 0 y 2 and 0 otherwise

2.7.9 (a) fX x 4 3x2 2x3 8 for x 0 2 and 0 otherwise (b) fY y
y3 3y2 12 for y 0 2 and 0 otherwise (c) P Y 1 5 48

2.8.1 (a) pX 2 1 4 pX 9 1 4 pX 13 1 2 otherwise, pX x 0 (b)
pY 3 2 3, pY 5 1 3 otherwise, pY y 0 (c) Yes

2.8.3 (a) fX x 18x 49 40 49 for 0 x 1 and fX x 0 otherwise (b)
fY y 48y2 6y 30 49 for 0 y 1 and fY y 0 otherwise (c) No

2.8.5 (a) P Y 4 X 9 1 6 (b) P Y 2 X 9 1 2 (c) P Y 0 X
4 0 (d) P Y 2 X 5 1 (e) P X 5 Y 2 1 3

2.8.7 (a) fX x x2 2 3 fY y 4y5 2y 3 for 0 x 1 and 0 y 1,
fY X y x 2x2y 4y5 x2 2 3 (otherwise, fY X y x = 0), thus, X and
Y are not independent. (b) fX x C x5 6 x 2 fY y C y5 6 y 2 for
0 x 1 and 0 y 1, fY X y x xy x5y5 x5 6 x 2 (other
wise, fY X y x = 0) X and Y are not independent. (c) fX x C 500,000x5 3
50x fY y C 2048y5 3 8y for 0 x 4 and 0 y 10, fY X y x
xy x5y5 500,000x5 3 50x (otherwise, fY X y x = 0), thus, X and Y are not

independent. (d) fX x C 500,000x5 3 and fY y C 2048y5 3 for 0 x 4
and 0 y 10, fY X y x 3y5 500,000 (otherwise, fY X y x = 0), X and Y
are independent.

2.8.9 P X 1 Y 1 P X 1 Y 2 P X 2 Y 1 P X 3 Y
3 1 4

2.8.11 If X C is constant, then P X B1 IB1 C and P X B1 Y B2
IB1 C P Y B2

2.8.13 (a)

pY X y x y 1 y 2 y 4 y 7 Others
x 3 1 4 1 4 1 4 1 4 0
x 5 1 4 1 4 1 4 1 4 0

(b)
pX Y x y x 3 x 5 Others

y 1 1 2 1 2 0
y 2 1 2 1 2 0
y 4 1 2 1 2 0
y 7 1 2 1 2 0

(c) X and Y are independent.

2.8.15 fY X y x 2 x2 y 4 3x2 2x3 for x y 2, and 0 otherwise (b)
fX Y x y 3 x2 y y3 3y2 for 0 x y and 0 otherwise (c) Not independent

2.9.1 h1
u1

cos 2 u2 u1 2 log 1 u1
h1
u2

2 sin 2 u2 2 log 1 u1
h2
u1

sin 2 u2 u1 2 log 1 u1
h2
u2

2 cos 2 u2 2 log 1 u1

2.9.3 (b) h x y x2 y2 x2 y2 (c) h 1 z z 2 z 2 ,
at least for z 0 and z 0 (d) fZ W z e z 2 2 z2 2 for
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z 2 0 and 1 z 2 4, i.e., for z 4 and max z z 64
z 4, and 0 otherwise

2.9.5 (b) h x y y4 x4 (c) h 1 z 1 4 z1 4 (d) fZ W z e
1 4

for 1 4 0 and 1 z1 4 4, i.e., for 0 and 1 z 256, and 0 otherwise

2.9.7 pZ 2 1 18 pZ 4 1 12 pZ 5 1 18 pZ 7 1 24 pZ 8 1 72
pZ 9 1 4 pZ 11 3 8 pZ 12 1 8 pZ z 0 otherwise

2.9.9
(a)

z ( 8,16) ( 7,19) ( 3,11) ( 2,14) (0,6) otherwise
P Z z W 1 5 1 5 1 5 1 5 1 5 0

(b) pZ z 1 5 for z 8 7 3 2 0, and otherwise pZ z 0 (c) pW
1 5 for 6 11 14 16 19, and otherwise pW 0

2.10.1 Z 7 if U 1 2, Z 2 if 1 2 U 5 6, and Z 5 if U 5 6

2.10.3 Y Exponential 3

2.10.5 c1 3 2 and c2 5

2.10.7 (a) For x 1 FX x 0, for 1 x 2, FX x 1 3, for 2 x 4,
FX x 1 2, for x 4, FX x 1 (b) The range of t must be restricted on 0 1]
because F 1

X 0 . F 1
X t 1 for t 0 1 3], F 1

X t 2 for t 1 3 1 2],
and F 1

X t 4 for t 1 2 1]. (c) For y 1, FY y 0, for 1 y 2,
FY y 1 3, for 2 y 4, FY y 1 2, for y 4, FY y 1.

2.10.9 Y F 1
Z U U 1 4

3.1.1 (a) E X 8 7 (b) E X 1 (c) E X 8

3.1.3 (a) E X 1 (b) E Y 11 (c) E X2 19 (d) E Y 2 370 3 (e) E X2

Y 2 427 3 (f) E XY 4Y 113 2

3.1.5 E 8X Y 12 8 1 p p 12

3.1.7 E XY 30

3.1.9 E X 6

3.1.11 (a) E Z 7 (b) E W 49 4

3.1.13 E Y 7 4

3.2.1 (a) C 1 4 E X 7 (b) C 1 16 E X 169 24 (c) C 5 3093,
E X 8645 2062

3.2.3 (a) E X 17 24 (b) E Y 17 8 (c) E X2 11 20 (d) E Y 2 99 20 (e)
E Y 4 216 7 (f) E X2Y 3 27 4

3.2.5 E 5X 6Y 77 3

3.2.7 E Y Z 17 72

3.2.9 Let k E Xk then 1 39 25, 2 64 25, 3 152 35

3.2.11 334

3.2.13 E Y 214 1

3.2.15 Yes
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3.3.1 (a) Cov X Y 2 3 (b) Var X 2, Var Y 32 9 (c) Corr X Y 1 4

3.3.3 Corr X Y 0 18292

3.3.5 E XY E X E Y

3.3.7 (a) Cov X Z 1 9 (b) Corr X Z 1 46

3.3.9 E X X 1 E X2 E X , when X Binomial n E X X 1
n n 1 2

3.3.11 E X 7 2 E Y 7 E XY 329 12 Cov X Y 35 12

3.3.13 Cov Z W 0 Corr Z W 0

3.3.15 Cov X Y 35 24

3.4.1 (a) rZ t t 2 t rZ t 2 2 t 2 rZ t 4 t 2 3 (b) E Z 2,
Var Z 2, mZ t et 2 et m Z t 2et 2 et 2 m Z t 2et 2 et 2 et

3.4.3 mY s e es 1 , mY s ese es 1 , so mY s , mY s es

2e2s e es 1 , so mY s 2, Var Y 2 2

3.4.5 mY s e4sm X 3s

3.4.7 mY s e es 1 es 1 3es e2s 2 E Y 3 mY 0 1 3 2

3.5.1 (a) E X Y 3 5 2 (b) E Y X 3 22 3 (c) E X Y 2
5 2 E X Y 17 3 (d) E Y X 2 5 2 E Y X 3 22 3

3.5.3 (a) E Y X 6 25 4 (b) E Y X 4 36 7 (c) E Y X 25 4
whenever X 6 and E Y X 36 7 whenever X 4.

3.5.7 E Z W 4 14 3 (b) E W Z 4 10 3

3.5.9 (a) E X Y 0 1 (b) E X Y 1 2 (c) E Y X 0 0 (d) E Y X
1 1 3 (e) E Y X 2 2 3 (f) E Y X 3 1 (g) E Y X X 3

3.5.11 (a) E X 27
19 (b) E Y 52

95 (c) E X Y y 3 2 y3 4 3y3 (d)

E Y X x x2 2 1 5 x2 1 4 (e) E[E X Y ] 1
0

3 2 y3

4 3y3
4

19 4

3y3 dy 27
19 (f) E[E Y X ] 2

0
x2 2 1 5
x2 1 4

6
19 x2 1

4 dx 52
95

3.6.1 3 7

3.6.3 (a) 1 9 (b) 1 2 (c) 2 (d) The upper bound in part (b) is smaller and thus more
useful than that in part (c).

3.6.5 1 4

3.6.7 (a) 10,000 (b) 12,100

3.6.9 (a) 1 (b) 1 4

3.6.11 (a) E Z 8 5 (b) 32 75

3.6.13 7 16

3.7.1 E X1 3 E X2 0 E Y 3 5

3.7.3 P X t 0 for t 0, while P X t 1 for 0 t C and P X t 0
for t C

3.7.5 E X 2

3.7.7 E W 1 5
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3.7.9 E W 21 2

4.1.1 P Y3 1 1 8 P Y3 2 1 64 P Y3 3 1 64 P Y3 21 3

3 16 P Y3 31 3 3 16 P Y3 41 3 3 32 P Y3 91 3 3 32 P Y3
121 3 3 64 P Y3 181 3 3 64 P Y3 61 3 3 16

4.1.3 If Z is the sample mean, then P Z 0 p2, P Z 0 5 2p 1 p , and
P Z 1 1 p 2.

4.1.5 For 1 j 6, P max j j 6 20 j 1 6 20.

4.1.7 If W XY then

P W

1 36 if 1 9 16 25 36
1 18 if 2 3 5 8 10 15 18 20 24 30
1 12 if 4
1 9 if 6 12
0 otherwise.

4.1.9 pY y 1 2 for y 1 2 otherwise, pY y 0

4.2.1 Note that Zn Z unless 7 U 7 1 n2. Hence, for any 0, P Zn Z
P 7 U 7 1 n2 1 5n2 0 as n .

4.2.3 P W1 Wn n 2 1 P W1 Wn n 2 1 P 1
n W1

Wn
1
3 1 6

4.2.5 P X1 Xn 9n P X1 Xn n 8 1

4.2.7 For all 0 and n 2 ln , P Xn Y P e Hn P Hn
ln P Hn n 2 n 2 ln n .

4.2.9 By definition, Hn 1 Fn Hn and P Xn Yn Z P Hn
Fn Hn 1 P 1 Hn 1 P Hn 1 1 P Hn n 2
1 1 n 2 P Hn n 2 1 n 2 1

4.2.11 r 9 2

4.3.1 Note that Zn Z unless 7 U 7 1 n2. Also, if U 7, then Zn Z
whenever 1 n2 7 U , i.e., n 1 7 U . Hence, P Zn Z P U 7 .

4.3.3 W1 Wn n 1 3 n W1 Wn n 1 2
n W1 Wn n 2

4.3.5 P Xn X and Yn Y 1 P Xn X or Yn Y 1 P Xn
X P Yn Y

4.3.7 m 5

4.3.9 r 9 2

4.3.11 (a) Suppose there is no such m and from this get a contradiction to the strong
law of large numbers. (b) No

4.4.1 limn P Xn i 1 3 P X i for i 1 2 3

4.4.3 Here, P Zn 1 1, for 0 z 1, P Zn z zn 1, and P Z z 1
for z 1.

4.4.5 P S 540 1 2 0 6915

4.4.7 P S 2450 0 51 0 3050
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4.4.9 (a) For 0 y 1, P Z y y2. (b) For 1 m n, P Xn m n
m m 1 [n n 1 ]. (c) For 0 y 1, let m ny , the biggest integer not greater
than ny. Since there is no integer in m ny , P m n Xn y P m n Xn
m 1 n 0. Thus, P Xn y m m 1 [n n 1 ] where m ny .

(d) For 0 y 1 let mn ny , show mn n y as n . Then show
P Xn y y2 as n .

4.4.11 3

4.4.13 The yearly output, Y , is approximately normally distributed with mean 1300
and variance 433. So, P Y 1280 0 1685.

4.5.1 The integral equals 2 E cos2 Z , where Z N 0 1 .

4.5.3 This integral equals 1 5 E e 14Z2
, where Z Exponential 5 .

4.5.5 This sum is approximately equal to e5 E sin Z2 , where Z Poisson 5 .

4.5.7 6 1404 3 8596

4.5.9 0 354 0 447

4.5.11 (a) C 1
0

1
0 g x y dx dy 1 (b) Generate Xi ’s from fX x 3x2 for 0

x 1 a and Yi ’s from fY y 4y3 for 0 y 1. Set Di sin Xi Yi cos Xi Yi
exp X2

i Yi 12 and Ni Xi Di for i 1 n. 5. Estimate E X by Mn

N D N1 Nn D1 Dn .

4.5.13 (a) J 1
0 0 ey h x y I[0 y e y dy I[0 1] x dx (b) Generate Xi and Yi

appropriately, set Ti eYi h X i Yi and estimate J by Mn T1 Tn n.
(c) J 1

0 0 e5y h x y I[0 y 5e 5y dy I[0 1] x dx (d) As in part (b). (e) The
estimator having smaller variance is better. So use sample variances to choose between
them.

4.6.1 (a) U N 43 629 V N 18 8C 144 25C2 (b) C 24 125

4.6.3 C1 1 5 C2 3 C3 1 2 C4 7 C5 2

4.6.5 Let Z1 Zn W1 Wm N 0 1 be i.i.d. and set X Z1
2 Zn

2

and Y W1
2 Wn

2.

4.6.7 C n

4.6.9 C1 2 5 C2 3 C3 2 C4 7 C5 2 C6 1 C7 1

4.6.11 (a) m 60 K 61 (b) y 1 671 (c) a 61 b 1 c 60 (d) 4 00

5.1.1 The mean survival times for the control group and the treatment group are 93.2
days and 356.2 days, respectively.

5.1.3 For those who are still alive, their survival times will be longer than the recorded
values, so these data values are incomplete.

5.1.5 x 0 1375

5.1.7 Use the difference x y.

5.2.1 In Example 5.2.1, the mode is 0 In Example 5.2.2, the mode is 1

5.2.3 The mixture has density 5 2 exp x 4 2 2 5 2 exp x 4 2

2 for x

5.2.5 x 10



Appendix E: Answers to OddNumbered Exercises 737

5.2.7 The mode is 1 3.

5.2.9 The mode is x 0.

5.3.1 The statistical model for a single response consists of three probability functions
Bernoulli 1 2 Bernoulli 1 3 Bernoulli 2 3

5.3.3 The sample X1 Xn is a sample from an N 2 distribution, where
2 10 2 8 3 . Both the population mean and variance uniquely

identify the population distribution.

5.3.5 A single observation is from an Exponential distribution, where
[0 . We can parameterize this model by the mean or variance but not by the coeffi
cient of variation.

5.3.7 (a) A B (b) The value X 1 is observable only when A. (c) Both
A and B are possible.

5.3.9 P1

5.4.1

FX x

0 x 1
4
10 1 x 2
7
10 2 x 3
9
10 3 x 4

1 4 x

fX x

4
10 x 1
3

10 x 2
2

10 x 3
1

10 x 4

X
4
x 1 x fX x 2 2

X
4
x 1 x2 fX x 22 1

5.4.3 (a) Yes (b) Use Table D.1 by selecting a row and reading off the first three single
numbers (treat 0 in the table as a 10). (c) Using row 108 of Table D.1 (treating 0 as
10): First sample — we obtain random numbers 6 0 9 and so compute X 6
X 10 X 9 3 3 0 Second sample — we obtain random numbers 4 0 7 and
so compute X 6 X 10 X 9 3 2 666 7 Third sample — we obtain
random numbers 2 0 2 (note we do not skip the second 2), and so compute X 6
X 10 X 9 3 2 0

5.4.5 (c) The shape of a histogram depends on the intervals being used.

5.4.7 It is a categorical variable.

5.4.9 (a) Students are more likely to lie when they have illegally downloaded music, so
the results of the study will be awed. (b) Under anonymity, students are more likely
to tell the truth, so there will be less error. (c) The probability a student tells the truth
is p 0 625. Let Yi be the answer from student i . Then Y 1 p 2p 1 is
recorded as an estimate of the proportion of students who have ever downloaded music
illegally.

5.5.1 (a) fX 0 0 2667 fX 1 0 2 fX 2 0 2667 fX 3 fX 4 0 1333
(b) FX 0 0 2667 FX 1 0 4667 FX 2 0 7333 FX 3 0 8667 FX 4
1 000 (d) The mean x 1 667 and the variance s2 1 952 (e) The median is 2 and
the I Q R 3. According to the 1.5 I QR rule, there are no outliers.

5.5.3 (a) fX 1 25 82 fX 2 35 82 fX 3 22 82 (b) No
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5.5.5 The sample median is 0, first quartile is 1 150, third quartile is 0 975, and the
I Q R 2 125. We estimate FX 1 by FX 1 17 20 0 85

5.5.7 0z0 25 where z0 25 satisfies z0 25 0 25

5.5.9 3 0

5.5.11 2 3

5.5.13 2 1

5.5.15 0
2

6.1.1 The appropriate statistical model is Binomial(n, , where [0 1] is the
probability of having this antibody in the blood. The likelihood function is L 3

10
3

3 1 7

6.1.3 L x1 x20
20 exp 20x and x is a sufficient statistic.

6.1.5 c 10
4

9
3

6.1.7 L x1 xn
n
i 1

xi e xi ! nxe n xi ! and x is a minimal
sufficient statistic.

6.1.9 L 1 0 L 2 0 4 4817, the distribution f1 is 4 4817 times more likely than f2.

6.1.11 No

6.1.13 No

6.2.1 1 a 2 b 3 b 4 a

6.2.3 2 is 1–1, and so x1 xn x2 is the MLE.

6.2.5 0 x

6.2.7 n n
i 1 ln xi

6.2.9 n n
i 1 ln 1 xi

6.2.11 3 32 768 cm3 is the MLE

6.2.13 A likelihood function cannot take negative values.

6.2.15 Equivalent loglikelihood functions differ by an additive constant.

6.3.1 Pvalue 0 592 and 0.95confidence interval is 4 442 5 318 .

6.3.3 Pvalue 0 000 and 0.95confidence interval is 63 56 67 94 .

6.3.5 Pvalue 0 00034 and 0.95confidence interval is [47 617 56 383]. The mini
mum required sample size is 2.

6.3.7 Pvalue 0 1138 so not statistically significant and the observed difference of
1 05 1 0 05 is well within the range of practical significance.

6.3.9 Pvalue 0 527

6.3.11 Pvalue 0 014

6.3.13 (a) n
i 1 xi x 2 n

i 1 x2
i nx2 (b) The plugin estimator is 2 x 1 x

so 2 s2 n 1 n (c) bias 2 2 n 0 as n

6.3.15 (a) Yes (b) No

6.3.17 The Pvalue 0 22 does not imply the null hypothesis is correct. It may be that
we have just not taken a large enough sample size to detect a difference.
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6.4.1 m3 z 1 2s3 n 26 027 151 373

6.4.3 The method of moments estimator is m2 m2
1 m1 If Y cX then E Y

cE X and Var Y c2 Var X

6.4.5 From the mgf, mX 0 3 2 3. The plugin estimator is 3 3 m2 m2
1

m1 m3
1 while the method of moments estimator of 3 is m3

1
n x3

i

6.4.7 The sample median is estimated by 0 03 and the estimate of the first quartile is
1 28 and for the third quartile is 0 98. Also F 2 F 1 36 0 90

6.4.9 The bootstrap procedure is sampling from a discrete distribution and by the CLT
the distribution of the bootstrap mean is approximately normal when n and m are large.
The delta theorem justifies the approximate normality of functions of the bootstrap
mean under conditions.

6.4.11 The maximum number of possible values is 1 n
2 1 n n 1 2. Here, 0

is obtained when i j . The bootstrap sample range y n y 1 has the largest possible
value x n x 1 and smallest possible value of 0. If there are many repeated xi values
in the bootstrap sample, then the value 0 will occur with high probability for y n y 1
and so the bootstrap distribution of the sample range will not be approximately normal.

6.5.1 n 2 4

6.5.3 n 2

6.5.5 2 x 2 x z0 95 2n 9 5413 10 4 1 5045 10 3

6.5.7 n z 1 2 0 18123 0 46403 as a 0 95confidence interval, and
this does not contain 1 1 25 1 04

6.5.9 [0 min 1 x 1 n 1 2 1 x 1 x 1 x 1z 1 ]

7.1.1 Based on m 1 1 1 20 2 45 18 80 23 72 m 1 2 1 20 4 45
6 80 77 360 m 2 1 m 1 2 m 2 2 1 20 8 45 2 80 91 360 the
posterior probability distributions for each of the four possible samples are as follows:

sample 1 1 1 2
1 1 4 1 5 m 1 1 18 115 1 4 1 5 m 1 2 18 77
2 1 9 2 5 m 1 1 16 115 2 9 2 5 m 1 2 32 77
3 9 16 2 5 m 1 1 81 115 3 16 2 5 m 1 2 27 77

sample 2 1 2 2
1 1 4 1 5 m 2 1 18 77 1 4 1 5 m 2 2 18 91
2 2 9 2 5 m 2 1 32 77 4 9 2 5 m 2 2 64 91
3 3 16 2 5 m 2 1 27 77 1 16 2 5 m 2 2 9 91

7.1.3 The prior probability that is positive is 0.5, and the posterior probability is
0 9992

7.1.5 n 1e I[x n x n

n 1e d

7.1.7 2 x1 xn N 5 5353 4
81

2 1 2 x1 xn Gamma 11 41 737

7.1.9 (a) n 1 n I[0 4 0 6] 0 6n 1 0 4n 1 (b) No (c) The prior must be greater
than 0 on any parameter values that we believe are possible.

7.1.11 (a) 0 1 6 1 1 3 2 1 3 3
1 6, so is not uniformly distributed on 0 1 2 3 . (b) No
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7.2.1 n nx m
nx n m

7.2.3 E 1 2 x1 xn 0 n 2 x and the posterior mode is 1 2

0 n 2 1 x

7.2.5 As in Example 7.2.4, the posterior distribution of 1 is Beta f1 1 f2
fk 2 k so E 1 x1 xn n k

i 1 i f1 1 1 f1

1 n k
i 1 i 1 and maximizes ln 1

f1 1 1 1 1
k
i 2 fi i 1 for the

posterior mode.

7.2.7 Recall that the posterior distribution of 1 in Example 7.2.2 is Beta f1 1 f2
fk 2 k . Find the second moment and use Var 1 x1 xn

E 2
1 x1 xn E 1 x1 xn

2 Now 0 f1 n 1, so Var 1 x1 xn

f1 n 1
k
i 2 fi n i n 1 k

i 1 i n 1 n 1 k
i 1 i n 2 0

as n

7.2.9 The posterior predictive density of xn 1 is obtained by averaging the N x 1 2
0

n 2
0

1 2
0 density with respect to the posterior density of so we must have that

this is also the posterior predictive distribution.

7.2.11 The posterior predictive distribution of t xn 1 is nx 0 Pareto n 0
So the posterior mode is t 0 the posterior expectation is nx 0 n 0 1
and the posterior variance is nx 0

2 n 0 [ n 0 1 2 n 0 2 ].

7.2.13 (a) The posterior distribution of 2 is inverse Gamma n 2 0 x where

x n 1 s2 2 n x 0
2 2 0 (b) E 2 x1 xn x n 2 0

1 (c) To assess the hypothesis H0 : 2 2
0 compute the probability 1 2

1 2
0 x1 xn 1 G 2 x

2
0 2 0 n where G 2 0 n is the 2 2 0 n

cdf.

7.2.15 (a) The odds in favor of A 1 odds in favor of Ac (b) BF A 1 B F Ac

7.2.17 Statistician I’s posterior probability for H0 is 0 0099. Statistician II’s posterior
probability for H0 is 0 0292. Hence, Statistician II has the bigger posterior belief in
H0.

7.2.19 The range of a Bayes factor in favor of A ranges in [0 If A has posterior
probability equal to 0, then the Bayes factor will be 0.

7.3.1 3 2052 4 4448

7.3.3 The posterior mode is nt 2
0 0

2
0 n 2

0 1 2
0 and 2 x1 xn

n 2
0 1 2

0
1 Hence, the asymptotic credible interval is z 1 2

z 1 2

7.3.5 For a sample x1 xn the posterior distribution is N x 1 n restricted to
[0 1]. A simple Monte Carlo algorithm for the posterior distribution is 1. Generate
from N x 1 n 2. Accept if it is in [0 1] and return to step 1 otherwise. If the true
value is not in [0 1], then the acceptance rate will be very small for large n

7.4.1 The posterior density is proportional to n 1 exp ln 1 xi .
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7.4.3 (a) The maximum value of the prior predictive is obtained when 1 (b) The
posterior of given 1 is

1 1 1 3
1 2 1 3 3

59 1728
32
59 a

1 2 1 2 2 1 8
59 1728

27
59 b

7.4.5The prior predictive is given by m x1 xn
nx n 1 x

n
Based on the prior predictive, we would select the prior given by 1 1

7.4.7 Jeffreys’ prior is n 1 2 1 1 2 The posterior distribution of is Beta nx
1 2 n 1 x 1 2 .

7.4.9 The prior distribution is N 66 2 with 2 101 86.

7.4.11 Let the prior be Exponential with 0 092103.

8.1.1 L 1 3 2 L 2 so by Section 6.1.1 T is a sufficient statistic. The condi
tional distributions of s are as follows.

s 1 s 2 s 3 s 4
fa s T 1 1 3

1 3 1 6
2
3

1 6
1 3 1 6

1
3 0 0

fb s T 1 1 2
1 2 1 4

2
3

1 4
1 2 1 4

1
3 0 0

s 1 s 2 s 3 s 4
fa s T 3 0 0 1 0
fb s T 3 0 0 1 0

s 1 s 2 s 3 s 4
fa s T 4 0 0 0 1
fb s T 4 0 0 0 1

8.1.3 x2 1 1 n 2
0

8.1.5 UMVU for 5 2

8.1.7 x 0

8.1.9 n 1 n
i 1 I 1 1 X i

8.1.11 Yes

8.2.1 When 0 1 c0 3 2 and 1 10 1 12 1 2 1 30 The
power of the test is 23 120 When 0 05 c0 2 and 1 20 0 1 12
3 5 The power of the test is 1 10

8.2.3 By (8.2.6) the optimal 0 01 test is of the form

0 x

1 x 1 2
10

2 3263

0 x 1 2
10

2 3263

1 x 2 0404

0 x 2 0404

8.2.5 (a) 0 (b) Suppose 1. The power function is 1 1 .

8.2.7 n 4
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8.2.9 The graph of the power function of the UMP size test function lies above the
graph of the power function of any other size test function.

8.3.1 1 2 2 5 2 2 3 5 so 2 2 1 2 and
we accept H0 : 2

8.3.3 The Bayes rule is given by 1 2
0 n 2

0
1

0
2
0 nx 2

0 which converges
to x as 0

8.3.5 The Bayes rule is given by n 0 0 nx 0 and by the weak law of large
numbers this converges in probability to as n

8.3.7 The Bayes rule rejects whenever

B FH0

exp n
2 2

0
x 0

2

1
0

n
2
0

1
2
0

1 2

exp 1
2

1
2
0

n
2
0

1
0
2
0

n
2
0
x

2
1
2

2
0
2
0

nx2

2
0

is less than 1 p0 p0 As 2
0 the denominator converges to 0, so in the limit

we never reject H0

8.4.1 The model is given by the collection of probability functions nx 1 n nx :
[0 1] on the set of all sequences x1 xn of 0’s and 1’s. The action space is
[0 1] the correct action function is A and the loss function is L a
a 2 The risk function for T is RT Var x 1 n

8.4.3 The model is the set of densities 2 2
0

1 2 exp n
i 1 xi

2 2 2
0 :

R1 on Rn . The action space is R1 the correct action function is A
and the loss function is L a a 2 The risk function for T is RT
Var x 2

0 n

8.4.5 (a) Rd a 1 2 Rd b 3 4 (b) No. Consider the risk function of the decision
function d given by d 1 b d 2 a d 3 b d 4 a

9.1.1 The observed discrepancy statistic is given by D r 22 761 and the Pvalue is
P D R 22 761 0 248 which doesn’t suggest evidence against the model.

9.1.3 (c) The plots suggest that the normal assumption seems reasonable.

9.1.5 The observed counts are given in the following table.

Interval Count
0 0 0 2] 4
0 2 0 4] 7
0 4 0 6] 3
0 6 0 8] 4
0 8 1] 2

The chisquared statistic is equal to 3.50 and the Pvalue is given by (X2 2 4 )
P X2 3 5 0 4779 Therefore, we have no evidence against the Uniform model
being correct.

9.1.7 (a) The probability of the event s 3 is 0 based on the probability measure P
having S as its support. The most appropriate Pvalue is 0. (b) 0 729
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9.1.9 No

9.1.11 (a) The conditional probability function of x1 xn is

nx 1 n 1 x n

nx
nx 1 n 1 x 1

n

nx

(b) Hypergeometric n n 2 nx0 (c) 0 0476

9.2.1 (a) No (b) Pvalue is 1 10 so there is little evidence of a prior–data conict. (c)
Pvalue is 1 300 so there is some evidence of a prior–data conict.

9.2.3 We can write x z where z N 0 2
0 n is independent of

N 0
2
0

9.2.5 The Pvalue for checking prior–data conict is 0 Hence, there is definitely a
prior–data conict.

10.1.1 For any x1 x2 (that occur with positive probability) and y we have P Y
y X x1 P Y y X x2 Thus P X x1 Y y P X x2 Y
y P X x1 P X x2 and summing this over x1 leads to P X x2 Y y
P X x2 P Y y For the converse, show P Y y X x P Y y

10.1.3 X and Y are related.

10.1.5 The conditional distributions P Y y X x will change with x whenever
X is not degenerate.

10.1.7 If the conditional distribution of lifelength given various smoking habits changes,
then we can conclude that these two variables are related, but we cannot conclude that
this relationship is a cause–effect relationship due to the possible existence of con
founding variables.

10.1.9 The researcher should draw a random sample from the population of voters
and ask them to measure their attitude toward a particular political party on a scale
from favorably disposed to unfavorably disposed. Then the researcher should randomly
select half of this sample to be exposed to a negative ad, while the other half is exposed
to a positive ad. They should all then be asked to measure their attitude toward the
particular political party on the same scale. Next compare the conditional distribution
of the response variable Y (the change in attitude from before seeing the ad to after),
given the predictor X (type of ad exposed to), using the samples to make inference
about these distributions.

10.1.11 (a) 0 100 1 100 (b) A sample has not been taken from the population
of interest. The individuals involved in the study have volunteered and, as a group,
they might be very different from the full population. (c) We should group the indi
viduals according to their initial weight W into homogenous groups (blocks) and then
randomly apply the treatments to the individuals in each block.

10.1.13 (a) The response variable could be the number of times an individual has
watched the program. A suitable predictor variable is whether or not they received
the brochure. (b) Yes, as we have controlled the assignment of the predictor variable.

10.1.15 W has a relationship with Y and X has a relationship with Y

10.1.17 (a)
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X 0 X 1 Sum
Rel. Freq. 0.5 0.5 1.0

(b)

Y 0 Y 1 Sum
Rel. Freq. 0.7 0.3 1.0

(c)

Rel. Freq. X 0 X 1 Sum
Y 0 0.3 0.4 0.7
Y 1 0.2 0.1 0.3
sum 0.5 0.5 1.0

(d)

P Y y X x y 0 y 1 Sum
x 0 0.6 0.4 1.0
x 1 0.8 0.2 1.0

(e) Yes

10.1.19 X and Y are related. We see that only the variance of the conditional distribu
tion changes as we change X

10.1.21 The correlation is 0 but X and Y are related.

10.2.1 The chisquared statistic is equal to X2
0 5 7143 and, with X2 2 2 , the P

value equals P X2 5 7143 0 05743. Therefore, we don’t have evidence against
the null hypothesis of no difference in the distributions of thunderstorms between the
two years, at least at the 0 05 level.

10.2.3 The chisquared statistic is equal to X2
0 0 10409 and, with X2 2 1 the

Pvalue equals P X2 4 8105 0 74698. Therefore, we have no evidence against
the null hypothesis of no relationship between the two digits.

10.2.5 (a) The chisquared statistic is equal to X2
0 10 4674 and, with X2 2 4

the Pvalue equals P X2 10 4674 0 03325. Therefore, we have some evidence
against the null hypothesis of no relationship between hair color and gender. (c) The
standardized residuals are given in the following table. They all look reasonable, so
nothing stands out as an explanation of why the model of independence does not fit.
Overall, it looks like a large sample size has detected a small difference.

Y fair Y red Y medium Y dark Y jet black
X m 1 07303 0 20785 1 05934 0 63250 1 73407
X f 1 16452 0 22557 1 14966 0 68642 1 88191

10.2.7 We should first generate a value for X1 Dirichlet 1 3 . Then generate U2
from the Beta 1 2 distribution and set X2 1 X1 U2 Next generate U3 from the
Beta 1 1 distribution and set X3 1 X1 X2 U3 Finally, set X4 1 X1
X2 X3
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10.2.9 Then there are 36 possible pairs i j for i j 1 6. Let fi j denote
the frequency for i j and compute chisquared statistic, X2 6

i 1
6
j 1 fi j

fi f j n 2 fi f j n . Compute the Pvalue P 2 25 X2 .

10.2.11 We look at the differences fi j f i f j n to see how big these are.

10.3.1 x

10.3.3 x

10.3.5 (b) y 29 9991 2 10236x (e) The plot of the standardized residuals against X
indicates very clearly that there is a problem with this model. (f) Based on part (e), it is
not appropriate to calculate confidence intervals for the intercept and slope. (g) Nothing
can be concluded about the relationship between Y and X based on this model, as we
have determined that it is inappropriate. (h) R2 486 193 7842 01 0 062 which
is very low.

10.3.7 (b) b2 1 9860 and b1 58 9090
(d) The standardized residual of the ninth week departs from the other residuals in part
(c). This provides some evidence that the model is not correct. (e) The confidence inter
val for 1 is [44 0545 72 1283] and the confidence interval for 2 is [0 0787 3 8933]
(f) The ANOVA table is as follows.

Source Df Sum of Squares Mean Square
X 1 564 0280 564 0280

Error 10 1047 9720 104 7972
Total 11 1612 0000

So the Fstatistic is F 5 3821 and P F 1 10 5 3821 0 05 from Table
D.5. Hence, we conclude there is evidence against the null hypothesis of no linear
relationship between the response and the predictor. (g) R2 0 3499 so, almost 35%
of the observed variation in the response is explained by changes in the predictor.

10.3.9 In general, E Y X exp 1 2 X is not a simple linear regression model
since it cannot be written in the form E Y X 1 2V where V is an observed
variable and the i are unobserved parameter values.

10.3.11 We can write E Y X E Y X2 in this case and E Y X2
1 2 X2

so this is a simple linear regression model but the predictor is X2 not X

10.3.13 R2 0 05 indicates that the linear model explains only 5% of the variation in
the response, so the model will not have much predictive power.

10.4.1 (b) Both plots look reasonable, indicating no serious concerns about the correct
ness of the model assumptions. (c) The ANOVA table for testing H0 : 1 2 3
is given below.

Source Df SS MS
A 2 4.37 2.18

Error 9 18.85 2.09
Total 11 23.22

The F statistic for testing H0 is given by F 2 18 2 09 1 0431 with Pvalue
P F 1 0431 0 39135 Therefore, we don’t have evidence against the null hy
pothesis of no difference among the conditional means of Y given X . (d) Since we
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did not find any relationship between Y and X there is no need to calculate these
confidence intervals.

10.4.3 (b) Both plots indicate a possible problem with the model assumptions. (c) The
ANOVA table for testing H0 : 1 2 is given below.

Source Df SS MS
Cheese 1 0.114 0.114
Error 10 26.865 2.686
Total 11 26.979

The F statistic for testing H0 is given by F 0 114 2 686 0 04 and with the P
value P F 04 0 841. Therefore, we do not have any evidence against the null
hypothesis of no difference among the conditional means of Y given Cheese.

10.4.5 (b) Both plots look reasonable, indicating no concerns about the correctness of
the model assumptions. (c) The ANOVA table for testing H0 : 1 2 3 4
follows.

Source Df SS MS
Treatment 3 19.241 6.414

Error 20 11.788 0.589
Total 23 31.030

The F statistic for testing H0 is given by F 6 414 0 589 10 89 and with P
value P F 10 89 0 00019 Therefore, we have strong evidence against the null
hypothesis of no difference among the conditional means of Y given the predictor. (d)
The 0.95confidence intervals for the difference (column level mean)(row level mean)
between the means are given in the following table.

1 2 3
2 3913 1 4580
3 2 2746 0 4254 2 8080 0 9587
4 2 5246 0 6754 3 0580 1 2087 1 1746 0 6746

10.4.7 (b) Treating the marks as separate samples, the ANOVA table for testing any
difference between the mean mark in Calculus and the mean mark in Statistics follows.

Source Df SS MS
Course 1 36.45 36.45
Error 18 685.30 38.07
Total 19 721.75

The F statistic for testing H0 : 1 2 is given by F 36 45 38 07 0 95745
with the Pvalue equal to P F 0 95745 0 3408 Therefore, we do not have any
evidence against the null hypothesis of no difference among the conditional means of
Y given Course.

Both residual plots look reasonable, indicating no concerns about the correctness
of the model assumptions. (c) Treating these data as repeated measures, the mean
difference between the mark in Calculus and the mark in Statistics is given by d
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2 7 with standard deviation s 2 00250 The Pvalue for testing H0 : 1 2
is 0 0021, so we have strong evidence against the null. Hence, we conclude that there
is a difference between the mean mark in Calculus and the mean mark in Statistics.
A normal probability plot of the data does not indicate any reason to doubt model
assumptions. (d) rxy 0 944155

10.4.9 When Y1 and Y2 are measured on the same individual, we have that Var Y1
Y2 2 Var Y1 Cov Y1 Y2 2Var Y1 since Cov Y1 Y2 0 If we had mea
sured Y1 and Y2 on independently randomly selected individuals, then we would have
that Var Y1 Y2 2Var Y1

10.4.11 The difference of the two responses Y1 and Y2 is normally distributed, i.e.,
Y1 Y2 N 2

10.4.13 (1) The conditional distribution of Y given X1 X2 depends on X1 X2
only through E Y X1 X2 and the error Z Y E Y X1 X2 is independent of
X1 X2 (2) The error Z Y E Y X1 X2 is normally distributed. (3) X1 and X2

do not interact.

10.5.1 F x x e t 1 e t 2 dt 1 e t 1 x 1 e x 1 1 as
x and p F x implies x ln p 1 p .

10.5.3 Let l l p ln p 1 p be the log odds so el p 1 p 1 1 p 1 .
Hence, el 1 el p and substitute l 1 2x

10.5.5 P Y 1 X1 x1 Xk xk 1 2 arctan 1x1 k xk

11.1.1 (a) 0 (b) 0 (c) 1 3 (d) 2 3 (e) 0 (f) 4 9 (g) 0 (h) 1 9 (i) 0 (j) 0 (k) 0 00925 (l) 0
(m) 0 0987

11.1.3 (a) 5 108 (b) 5 216 (c) 5 72 (d) By the law of total probability, P X3 8
P X1 6 X3 8 P X1 8 X3 8

11.1.5 (a) Here, P c 0 0 89819. That is, if you start with $9 and repeatedly
make $1 bets having probability 0 499 of winning each bet, then the probability you
will reach $10 before going broke is equal to 0 89819 (b) 0 881065 (c) 0 664169 (d)
0 0183155 (e) 4 10 18 (f) 2 10 174

11.1.7 We use Theorem 11.1.1. (a) 1 4 (b) 3 4 (c) 0 0625 (d) 1 4 (e) 0 (f) 1 (g) We
know that the initial fortune is 5, so to get to 7 in two steps, the walk must have been
at 6 after the first step.

11.1.9 (a) 18 38 (b) 0 72299 (c) 0 46056 (d) 0 (e) In the long run, the gambler loses
money.

11.2.1 (a) 0 7 (b) 0 1 (c) 0 2 (d) 1 4 (e) 1 4 (f) 1 2 (g) 0 3
11.2.3 (a) P0 X2 0 0 28 P0 X2 1 0 72 P1 X2 0 0 27 P1 X2
1 0 73 (b) P0 X3 1 0 728

11.2.5 (a) 1 2 (b) 0 (c) 1 2 (d) 1 2 (e) 1 10 (f) 2 5 (g) 37 100 (h) 11 20 (i) 0 (j) 0 (k)
0 (l) 0 (m) No

11.2.7 This chain is doubly stochastic, i.e., has i pi j 1 for all j . Hence, we must
have the uniform distribution ( 1 2 3 4 1 4) as a stationary distribution.

11.2.9 (a) By either increasing or decreasing one step at a time, we see that for all
i and j , we have p n

i j 0 for some n d. (b) Each state has period 2. (c) If i
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and j are two or more apart, then pi j p ji 0. If j i 1, then i pi j
1 2d d 1 ! i ! d i 1 ! , while j p j i 1 2d d 1 ! i! d i 1 ! .

11.2.11 (a) This chain is irreducible. (b) The chain is aperiodic. (c) 1 2 9 2
3 9 3 4 9 (d) limn P1 Xn 2 2 3 9 1 3 so P1 X500 2 1 3.

11.2.13 P1 X1 X2 5 0 54

11.2.15 (a) The chain is irreducible. (b) The chain is not aperiodic.

11.3.1 First, choose any initial value X0. Then, given Xn i , let Yn 1 i 1 or i 1,
with probability 1 2 each. Let j Yn 1 and let i j min 1 e j 13 4 i 13 4

.
Then let Xn 1 j with probability i j , otherwise let Xn 1 i with probability
1 i j .

11.3.3 First, choose any initial value X0. Then, given Xn i , let Yn 1 i 1
with probability 7 9 or Yn 1 i 1 with probability 2 9. Let j Yn 1 and, if
j i 1 let i j min 1 e j4 j6 j8

2 9 e i4 i6 i8
7 9 or, if j i 1

then let i j min 1 e j4 j6 j8
7 9 e i4 i6 i8

2 9 Then let Xn 1 j with
probability i j , otherwise let Xn 1 i with probability 1 i j .

11.3.5 Let Zn be i.i.d. N 0 1 . First, choose any initial value X0. Then, given
Xn x , let Yn 1 Xn 10 Zn 1. Let y Yn 1 and let xy min 1 exp y4

y6 y8 x4 x6 x8 . Then let Xn 1 y with probability xy , otherwise let
Xn 1 x with probability 1 xy .

11.4.1 C 12 5

11.4.3 p 1 3

11.4.5 P Xn 4 5 8

11.4.7 (a) Here, E Xn 1 Xn 1 4 3Xn 3 4 Xn 3 Xn. (b) T is non
negative, integervalued, and does not look into the future, so it is a stopping time. (c)
E XT X0 27. (d) P XT 1 27 40

11.5.1 (a) 1 2 (b) 0 (c) 1 4 (d) We have P Y M
1 1 P Y M

M M M M .

Hence, P Y 1
1 1 1 2 P Y 2

1 1 1 4 P Y 3
1 1 3 8 P Y 4

1 1
5 16

11.5.3 (a) P B2 1 1 2 (b) P B3 4 4 3 (c) P B9 B5
2 4 1 2 4 2 (d) P B26 B11 9 8 9 8 15 (e) P B26 3

6 6 26 3 (f) P B26 3 0 0 26 3 1 2

11.5.5 E B13 B8 8
11.5.7 (a) 3 4 (b) 1 4 (c) The answer in part (a) is larger because 5 is closer to B0 0
than 15 is, whereas 15 is farther than 5 is. (d) 1 4 (e) We have 3 4 1 4 1, which
it must since the events in parts (a) and (d) are complementary events.

11.5.9 E X3 X5 61 75

11.5.11 (a) P X10 250 20 1 10 (b) P X10 250 20 4 10 (c)
P X10 250 20 10 10 (d) P X10 250 20 100 10

11.6.1 (a) e 141413 13! (b) e 35353 3! (c) e 424220 20! (d) e 350350340 340! (e) 0
(f) e 141413 13! e 21217 7! (g) 0

11.6.3 P N2 6 e 2 3 2 3 6 6! P N3 5 e 3 3 3 3 5 5!
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11.6.5 P N2 6 2 N2 9 2 2 6 2 9 2





Index

0–1 loss function, 467

a priori, 374
abs command, 685
absolutely continuous

jointly, 85
absolutely continuous random variable, 52
acceptance probability, 644
action space, 464
additive, 5
additive model, 593
adjacent values, 287
admissible, 470
admissiblity, 470
alternative hypothesis, 448
analysis of covariance, 595
analysis of variance (ANOVA), 545
analysis of variance (ANOVA) table, 545
ancillary, 481
anova command, 690
ANOVA (analysis of variance), 545
ANOVA test, 548
aov command, 690
aperiodicity, 635

balance, 520
ball, 626
bar chart, 288
barplot command, 688
basis, 559
batching, 414
Bayes factor, 397
Bayes risk, 471
Bayes rule, 460, 471
Bayes’ Theorem, 22
Bayesian decision theory, 471
Bayesian model, 374

Bayesian Pvalue, 395
Bayesian updating, 383
bellshaped curve, 56
Bernoulli distribution, 42, 131
bestfitting line, 542
beta command , 686
beta distribution, 61
beta function, 61
bias, 271, 322
binom command, 686
binomial coefficient, 17
binomial distribution, 43, 116, 131, 162,

163, 167
binomial theorem, 131
birthday problem, 19
bivariate normal distribution, 89
blinding, 521
blocking variable, 523, 594
blocks, 523
bootstrap mean, 353
bootstrap percentile confidence interval, 355
bootstrap samples, 353
bootstrap standard error, 353
bootstrap t confidence interval, 355
bootstrapping, 351, 353
Borel subset, 38
boxplot, 287
boxplot command, 688
Brown, R., 657
Brownian motion, 657, 659

properties, 659
Buffon’s needle, 234
burnin, 643

calculus, 675
fundamental theorem of, 676

categorical variable, 270

751
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Cauchy distribution, 61, 240
Cauchy–Schwartz inequality, 186, 197
cause–effect relationship, 516
cbind command, 698
cdf (cumulative distribution function), 62

inverse, 120
ceiling command, 685
ceiling (least integer function), 295
census, 271
central limit theorem, 215, 247
chain rule, 676
characteristic function, 169
Chebychev’s inequality, 185
Chebychev, P. L., 2
chisquared distribution, 236
chisquared goodness of fit test, 490, 491
chisquared statistic, 491
chisquared n , 236

2 n , 236
chisq command, 686
chisq.test command, 688
classification problems, 267
coefficient of determination (R2), 546
coefficient of variation, 267, 360
combinatorics, 15
complement, 7, 10
complement of B in A, 7
complementing function, 315
completely crossed, 522
completeness, 438
composite hypothesis, 466
composition, 676
conditional density, 96
conditional distribution, 94, 96
conditional expectation, 173
conditional probability, 20
conditional probability function, 95
conditionally independent, 184
confidence interval, 326
confidence level, 326
confidence property, 326
confidence region, 290
confounds, 517
conjugate prior, 422
consistency, 325
consistent, 200, 325

constant random variable, 42
continuity properties, 28
continuous random variable, 51–53
continuoustime stochastic process, 658,

666
control, 254
control treatment, 521
convergence

almost surely , 208
in distribution, 213
in probability, 204, 206, 210, 211, 246
with probability 1, 208, 210, 211, 246

convolution, 113
correct action function, 464
correction for continuity, 219, 358
correlation, 89, 156
cos command, 685
countably additive, 5
counts, 102
covariance, 152, 153
covariance inequality, 440
Cramer–Rao inequality, 441
Cramer–von Mises test, 495
craps (game), 27
credible interval, 391
credible region, 290
critical value, 446, 448
cross, 587
crossratio, 537
crosstabulation, 687
crossvalidation, 495
cumulative distribution function

inverse, 120
joint, 80
properties of, 63

cumulative distribution function (cdf), 62

data reduction, 303
decision function, 467
decision theory model, 464
decreasing sequence, 28
default prior, 425
degenerate distribution, 42, 131
delta theorem, 351
density

conditional, 96
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proposal, 646
density function, 52

joint, 85
density histogram function, 274
derivative, 675

partial, 678
descriptive statistics, 282
design, 519
det command, 698
diag command, 698
diffusions, 661
Dirichlet distribution, 93
discrepancy statistic, 480
discrete random variable, 41
disjoint, 5
distribution

F , 241
t , 239
Bernoulli, 42, 131
beta, 61
binomial, 43, 116, 131, 162, 163, 167
Cauchy, 61
chisquared, 236
conditional, 94, 96
degenerate, 42, 131
exponential, 54, 61, 142, 165, 166
extreme value, 61
gamma, 55, 116
geometric, 43, 132
hypergeometric, 47
joint, 80
Laplace, 61
lognormal, 79
logistic, 61
mixture, 68
negativebinomial, 44, 116
normal, 57, 89, 116, 142, 145, 234
Pareto, 61
point, 42
Poisson, 45, 132, 162, 164
proposal, 644
standard normal, 57
stationary, 629
uniform, 7, 53, 141, 142
Weibull, 61

distribution function, 62

joint, 80
properties of, 63

distribution of a random variable, 38
distributionfree, 349
Doob, J., 2, 37
double ’til you win, 618
double blind, 521
double expectation, 177
double use of the data, 507
doubly stochastic matrix, 631, 632
drift, 662
dummy variables, 578

ecdf command, 688
Ehrenfest’s urn, 625
empirical Bayesian methods, 423
empirical distribution function, 271
empty set, 5
error sum of squares (ESS), 545
error term, 516
ESS (error sum of squares), 545
estimation, 290
estimation, decision theory, 465
estimator, 224, 434
event, 5
exact size test function, 449
exp command, 686
expectation, 173
expected value, 129, 130, 141, 191

linearity of, 135, 144, 192
monotonicity of, 137, 146, 192

experiment, 518
experimental design, 520
experimental units, 519
exponential distribution, 54, 142, 165, 166

memoryless property of, 61
extrapolation, 543
extreme value distribution, 61

F , 62
f command, 686
F distribution, 241
FX , 62
FX a , 63
fX , 59
F m n , 241
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Fstatistic, 546
factor, 519
factorial, 16, 677
fair game, 617
family error rate, 581
Feller, W., 2, 37
Fermat, P. de, 2
finite population correction factor, 280
first hitting time, 618
Fisher information, 365
Fisher information matrix, 372
Fisher signed deviation statistic, 363
Fisher’s exact test, 484
Fisher’s multiple comparison test, 581
fitted values, 560
floor command, 685
oor (greatest integer function), 119
for command, 691
fortune, 615
frequentist methods, 374
frog, 626, 641
function

Lipschitz, 665
fundamental theorem of calculus, 676

gambler’s ruin, 618
gambling, 615
gambling strategy

double ’til you win, 618
gamma command (function), 685
gamma command (distribution), 686
gamma distribution, 55, 116
gamma function, 55

confidence interval, 326
generalized hypergeometric distribution, 51
generalized likelihood ratio tests, 455
generating function

characteristic function, 169
moment, 165
probability, 162

geom command, 686
geometric distribution, 43, 132
geometric mean, 200
Gibbs sampler, 647
Gibbs sampling, 413
glm command, 690

greatest integer function (oor), 119
grouping, 274

Hall, Monty, 27, 28
hierarchical Bayes, 424
higherorder transition probabilities, 628
highest posterior density (HPD) intervals,

392
hist command, 687
hitting time, 618
HPD (highest posterior density) intervals,

392
hyper command, 686
hypergeometric distribution, 47
hyperparameter, 422
hyperprior, 424
hypothesis assessment, 290, 332
hypothesis testing, 446
hypothesis testing, decision theory, 466

i.i.d. (independent and identically distrib
uted), 101

identity matrix, 560
if command, 691
importance sampler, 233
importance sampling, 233
improper prior, 425
inclusion–exclusion, principle of, 12, 14
increasing sequence, 28
independence, 24, 98, 101, 137

pairwise, 24
independent and identically distributed (i.i.d.),

101
indicator function, 35, 210
indicator function, expectation, 131
individual error rate, 581
inequality

Cauchy–Schwartz, 186, 197
Chebychev’s, 185
Jensen’s, 187
Markov’s, 185

inference, 258
infinite series, 677
information inequality, 441
initial distribution, 623
integral, 676
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intensity, 666
interaction, 522, 587
intercept term, 562
interpolation, 543
interquartile range (IQR), 286
intersection, 7
inverse cdf, 120
inverse Gamma, 380
inverse normalizing constant, 376
inversion method for generating random

variables, 121
IQR (interquartile range), 286
irreducibility, 634

Jacobian, 110
Jeffreys’ prior, 426
Jensen’s inequality, 187
joint cumulative distribution function, 80
joint density function, 85
joint distribution, 80
jointly absolutely continuous, 85

kth cumulant, 173
Kolmogorov, A. N., 2
Kolmogorov–Smirnov test, 495
kurtosis statistic, 483

Laplace distribution, 61
large numbers

law of, 206, 211
largestorder statistic, 104
latent variables, 414, 415
law of large numbers

strong, 211
weak, 206

law of total probability, 11, 21
least integer function (ceiling), 295
least relative suprise estimate, 406
leastsquares estimate, 538, 560
leastsquares line, 542
leastsquares method, 538
leastsquares principle, 538
Lehmann–Scheffé theorem, 438
length command, 685
levels, 520
lgamma command, 685

likelihood, 298
likelihood function, 298
likelihood principle, 299
likelihood ratios, 298
likelihood region, 300
Likert scale, 279
linear independence property, 559
linear regression model, 558
linear subspace, 559
linearity of expected value, 135, 144, 192
link function, 603
Lipschitz function, 665
lm command, 689
location, 136
location mixture, 69
log command, 685
log odds, 603
loggamma function, 383
loglikelihood function, 310
lognormal distribution, 79
logistic distribution, 61, 606
logistic link, 603
logistic regression model, 603
logit, 603
loss function, 465
lower limit, 287
ls command, 686
lurking variables, 518

macro, 700
MAD (mean absolute deviation), 469
margin of error, 329
marginal distribution, 82
Markov chain, 122, 623
Markov chain Monte Carlo, 643
Markov’s inequality, 185
Markov, A. A., 2
martingale, 650
matrix, 559, 678
matrix inverse, 560
matrix product, 560
max command, 685
maximum likehood estimator, 308
maximum likelihood estimate (MLE), 308
maximum of random variables, 104
mean command, 688
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mean absolute deviation (MAD), 469
mean value, 129, 130
meansquared error (MSE), 321, 434, 469
measurement, 270
measuring surprise (Pvalue), 332
median, 284
median command, 688
memoryless property, 61
Méré, C. de, 2
method of composition, 125
method of least squares, 538
method of moments, 349
method of moments principle, 350
method of transformations, 496
Metropolis–Hastings algorithm, 644
min command, 685
minimal sufficient statistic, 304
minimax decision function, 471
Minitab, 699
mixture distribution, 68

location, 69
scale, 70

MLE (maximum likelihood estimate), 308
mode of a density, 260
model checking, 266, 479
model formula, 688
model selection, 464
moment, 164
momentgenerating function, 165
monotonicity of expected value, 137, 146,

192
monotonicity of probabilities, 11
Monte Carlo approximation, 225
Monty Hall problem, 27, 28
MSE (meansquared error), 321, 434, 469
multicollinearity, 515
multinomial coefficient, 18
multinomial distributions, 102
multinomial models, 302, 305
multiple comparisons, 510, 581
multiple correlation coefficient, 565
multiplication formula, 21
multiplication principle, 15
multivariate measurement, 271
multivariate normal, 500

N 0 1 , 57
N 2 , 57
NA (not available in R), 686
nbinom command, 686
ncol command, 698
negativebinomial distribution, 44, 116
Neyman–Pearson theorem, 450
noninformative prior, 425
nonrandomized decision function, 467
nonresponse error, 277
norm command, 686
normal distribution, 57, 89, 116, 142, 145,

234
normal probability calculations, 66
normal probability plot, 488
normal quantile plot, 488
normal score, 488
nrow command, 698
nuisance parameter, 338
null hypothesis, 332

observational study, 269
observed Fisher information, 364
observed relative surprise, 406
odds in favor, 397
onesided confidence intervals, 347
onesided hypotheses, 347
onesided tests, 337
onetoone function, 110
oneway ANOVA, 577
optimal decision function, 470
optimal estimator, 434
optional stopping theorem, 653
order statistics, 103, 284
ordered partitions, 17
orthogonal rows, 236
outcome, 4
outliers, 288
overfitting, 481

pX , 42
Pvalue, 332
paired comparisons, 585
pairwise independence, 24
parameter, 262
parameter space, 262
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Pareto distribution, 61
partial derivative, 678
partition, 11
Pascal’s triangle, 2, 632
Pascal, B., 2
pen, 626
percentile, 283
period of Markov chain, 635
permutations, 16

, 66
Pi , 627
placebo effect, 521
plot command, 688
plugin Fisher information, 366
plugin MLE, 315
point distribution, 42
point hypothesis, 466
point mass, 42
pois command, 686
Poisson distribution, 45, 132, 162, 164
Poisson process, 50, 666
polling, 276
pooling, 593
population, 270
population cumulative distribution , 270
population distribution, 270
population interquartile range, 286
population mean, 285
population relative frequency function, 274
population variance, 285
posterior density, 376
posterior distribution, 376
posterior mode, 387
posterior odds, 397
posterior predictive, 400
posterior probability function, 376
power, 341
power function, 341, 449, 469
power transformations, 496
practical significance, 335
prediction, 258, 400
prediction intervals, 576
prediction region, 402
predictor variable, 514
principle of conditional probability, 259
principle of inclusion–exclusion, 12, 14

prior elicitation, 422
prior odds, 397
prior predictive distribution, 375
prior probability distribution, 374
prior risk, 471
prior–data conict, 503
probability, 1

conditional, 20
law of total, 11, 21

probability function, 42
conditional, 95

probability measure, 5
probability model, 5
probability plot, 488
probabilitygenerating function, 162
probit link, 603
problem of statistical inference, 290
process

Poisson, 666
random, 615
stochastic, 615

proportional stratified sampling, 281
proposal density, 646
proposal distribution, 644
pseudorandom numbers, 2, 117
pth percentile, 283
pth quantile, 283

q command, 683
qqnorm command, 688
quantile, 283
quantile command, 688
quantile function, 120
quantiles, 284
quantitative variable, 270
quartiles, 284
queues, 50
quintile, 362

R , 265
R2 (coefficient of determination), 546
random numbers, 710
random process, 615
random variable, 34, 104

absolutely continuous, 52
constant, 42
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continuous, 51–53
discrete, 41
distribution, 80
expected value, 129, 130, 141, 191
mean, 130
standard deviation, 150
unbounded, 36
variance, 149

random walk, 615, 616
on circle, 625

randomization test, 363
randomized block design, 594
rank command, 688
Rao–Blackwell theorem, 436
Rao–Blackwellization, 436
rate command, 686
rbind command, 698
reduction principles, 470
reference prior, 425
regression assumption, 515
regression coefficients, 541
regression model, 516, 540
regression sum of squares (RSS), 545
reject, 448
rejection region, 448
rejection sampling, 122, 125
related variables, 513
relative frequency, 2

relative surprise region, 406
rep command, 684
reparameterization, 265
reparameterize, 309
repeated measures, 584
resamples, 353
resampling, 353
residual plot, 486
residuals, 481, 560
response, 4
response curves, 588
response variable, 514
reversibility, 632
rightcontinuous, 74
risk, 3
risk function, 467
rm command, 686
RSS (regression sum of squares), 545

sample, 101
sample command, 687
sample trimmed mean, 355
sample average, 206
sample correlation coefficient, 190, 547
sample covariance, 190, 547
sample interquartile range

I Q R, 287
sample mean, 206, 266
sample median, 284
sample moments, 350
sample pth quantile, 284
sample range, 361
sample space, 4
sample standard deviation, 286
sample variance, 221, 266, 286
samplesize calculation, 273, 340
sampling

importance, 233
Monte Carlo, 122
rejection, 122, 125

sampling distribution, 199
sampling study, 273
sampling with replacement, 48
sampling without replacement, 47, 48
scale mixture, 70
scan command, 684
scatter plot, 542, 551
score equation, 310
score function, 310
sd command, 688
seed values, 492
selection effect, 271
series

Taylor, 677
series, infinite, 677
set.seed command, 687
sign statistic, 357
sign test statistic, 357
simple hypothesis, 466
simple linear regression model, 540
simple random sampling, 271, 272
simple random walk, 615, 616
Simpson’s paradox, 183
sin command, 685
size rejection region, 448
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size test function, 449
skewed

skewness, 286
skewness statistic, 483
SLLN (strong law of large numbers), 211
smallestorder statistic, 104
solve command, 698
sort command, 688
source command, 691
sqrt command, 685
squared error loss, 466
St. Petersburg paradox, 133, 134, 141
standard bivariate normal density, 89
standard deviation, 150
standard error, 221, 325
standard error of the estimate, 323
standard normal distribution, 57
standardizing a random variable, 215
state space, 623
stationary distribution, 629
statistical inference, 262
statistical model, 262
statistical model for a sample, 263
statistically significant, 335
stochastic matrix, 624

doubly, 631, 632
stochastic process, 615

continuoustime, 658, 666
martingale, 650

stock prices, 662
stopping theorem, 653
stopping time, 652
stratified sampling, 281
strength of a relationship, 513
strong law of large numbers (SLLN), 211
Student n , 239
subadditivity, 12
subfair game, 617
sufficient statistic, 302
sugar pill, 521
sum command, 685
summary command, 689
superfair game, 617
surprise (Pvalue), 332
survey sampling, 276

t command, 686
t distribution, 239
t n , 239
tconfidence intervals, 331
tstatistic, 331
ttest, 337
t.test command, 688
table command, 687
tables

binomial probabilities, 724
2 quantiles, 713

F distribution quantiles, 715
random numbers, 710
standard normal cdf, 712
t distribution quantiles, 714

tail probability, 259
tan command, 685
Taylor series, 677
test function, 449, 469
test of hypothesis, 332
test of significance, 332
theorem of total expectation, 177
total expectation, theorem of, 177
total probability, law of, 11, 21
total sum of squares, 544
training set, 495
transition probabilities, 623

higherorder, 628
transpose, 560
treatment, 520
twosample tconfidence interval, 580
twosample tstatistic, 580
twosample ttest, 580
twosided tests, 337
twostage systems, 22
twoway ANOVA, 586
type I error, 448
type II error, 448
types of inferences, 289

UMA (uniformly most accurate), 460
UMP (uniformly most powerful), 449
UMVU (uniformly minimum variance un

biased), 437
unbiased, 437
unbiased estimator, 322, 436
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unbiasedness, hypothesis testing, 453
unbounded random variable, 36
underfitting, 481
unif command, 686
uniform distribution, 7, 53, 141, 142
uniformly minimum variance unbiased (UMVU),

437
uniformly most accurate (UMA), 460
uniformly most powerful (UMP), 449
union, 8
upper limit, 287
utility function, 134, 141
utility theory, 134, 141

validation set, 495
var command, 688
variance, 149
variance stabilizing transformations, 362
Venn diagrams, 7
volatility parameter, 662
von Savant, M., 28

weak law of large numbers (WLLN), 206
Weibull distribution, 61
whiskers, 287
Wiener process, 657, 659
Wiener, N., 2, 657
WLLN (weak law of large numbers), 206

zconfidence intervals, 328
zstatistic, 328
ztest, 333


