DEPARTMENT OF MATHEMATICS <u>Programme Outcome</u>

On completion of the B.Sc-Mathematics, (CBCS) programme, the student will be able to:

- Communicate mathematics effectively by oral, written, computational and graphic means.
- Create mathematical ideas from basic axioms.
- Utilize mathematics to solve theoretical and applied problems.
- Identify applications of requirement of Mathematics in other disciplines and in real world.
- Appreciate the requirement of lifelong learning through continued education.
- Ability to learn and apply the computer programming in C.
- Ability to undertake project work.

BSc Mathematics (Honours) Syllabus (CBCS)

1st Semester (Honours)

Paper Name: Calculus Paper Code: MAT-HC-1016

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course will enable the students to:	UNIT 1:	Remember, Understand,
i) Learn first and second order	Higher order	apply, evaluate
derivative tests for relative	derivatives and its	
extrema and apply the knowledge	application, geometrical	
in problems in business,	interpretation.	
economics and lifesciences.	UNIT 2:	Remember, Understand,
ii) Sketch curves in a plane using its	Reduction formulas for	apply, evaluate
mathematical properties in the	integration and	
different coordinate systems of	application of	
reference.	integration in geometry	
iii) Compute area of surfaces of		
revolution and the volume of	UNIT 3:	Remember, Understand,
solids by integrating over cross-	Vector functions and its	apply, evaluate
sectional areas.	applications	
iv) Understand the calculus of vector		
functions and its use to develop the		
basic principles of planetary		
motion.		

Paper Name: Algebra Paper Code: MAT-HC-1026

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course will enable the students	Unit1:	Remember, Understand,
	Generalization of complex	evaluate
to:	numbers	
i) Employ De-Moivre's theorem		
in a number of applications to	Unit 2:	Remember, Understand,
solve numerical problems.	Statements and Logic,	evaluate
ii) Learn about equivalent classes	Functions	
and cardinality of a set.	Unit 3:	Remember, Understand,
iii) Use modular arithmetic and	Relations Induction	evaluate
basic, properties of	Principle and number	
	system	

iv) v)	Recognize consistent and inconsistent systems of linear	Unit 4: System of linear equations and matrix operations	Remember, Understand, evaluate
-----------	---	--	-----------------------------------

2nd Semester (Honours)

Paper Name: Real Analysis Paper Code: MAT-HC-2016

Course Outcome	Unit No. And Name	Bloom's Taxonomy Level
This course will enable the	UNIT 1: Algebraic and	Remember, Understand,
students to:	order properties of R,	evaluate
i) Understand many properties		
of the real line <i>R</i> , including		
completeness and Archime-		
dean properties.		
ii) Learn to define sequences in	UNIT-2: Real sequences	Remember, Understand,
terms of functions from N to a		evaluate
subset of <i>R</i> .		
iii) Recognize bounded, conver-		
gent, divergent, Cauchy and		
monotonic sequences and to		
calculate their limit superior,		
limit inferior, and the limit of		
a bounded sequence. Apply	UNIT 3: Infinite series	Remember, Understand,
the ratio, root, alternating		evaluate
series and limit comparison		
tests for convergence and		
absolute convergence of an		
infinite series of real numbers.		

Paper Name: Differential Equation Paper Code: MAT-HC-2026

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course will enable the students	UNIT 1: Differential	Remember, Understand,
to:	equations and mathematical	apply, evaluate
i) Learn basics of differential equations and mathematical mode-lling.ii) Formulate differential equations	models UNIT 2: Application of	Remember, Understand,
for various mathematical models. iii)Solve first order non-linear	differential equations in Modelling	apply, evaluate

 differential equations and linear differential equations of higher order using various techniques. iv)iv) Apply these techniques to solve and analyse various mathematical models. 	UNIT 3: Solutions and properties of Differential equations.	Remember, Understand, apply, evaluate
---	---	---------------------------------------

3rd Semester (Honours)

PAPER NAME: Theory of Real Functions

PAPER CODE: MAT-HC-3016

	Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This	s course will enable the students to:	Unit1: Limits of a	Remember, Understand,
i)	Have a rigorous understanding of the concept of limit of a function.	Function.	evaluate
ii)	Learn about continuity and uniform continuity of functions defined on intervals.		
	Understand geometrical properties of continuous functions on closed and bounded intervals. Learn extensively about the concept	UNIT 2: Continuous functions	Remember, Understand, evaluate
1.)	of differentiability using limits,		
	leading to a better understanding for applications.	UNIT 3: Differentiability of a	Remember, Understand, evaluate
v)	Know about applications of mean value theorems and Taylor's theorem	function and related properties.	

Paper Name: Group Theory Paper Code: MAT-HC-3026

	Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This	s course will enable the students to:	Unit1: Introduction to	Remember, Understand,
i)	Recognize the mathematical objects	symmetry and different	evaluate
	that are groups, and classifythem as	forms of groups and its	
	abelian, cyclic and permutation	different properties.	
	groups, etc.		
ii)	Link the fundamental concepts of		
	groups and symmetrical figures.		
iii)	Analyze the subgroups of cyclic	Unit2: Quotient groups	Remember, Understand,
	groups and classify subgroups of	and related properties	evaluate
	cyclic groups.	and related properties	evaluate
iv)	Explain the significance of the		
	notion of cosets, normal subgroups		
	and factor groups.	Unit3: Group	Remember, Understand,
v)	Learn about Lagrange's theorem	Homomorphisms, its	evaluate
	and Fermat's Little theorem.	properties and related	Cvaruate
vi)	Know about group homomorphisms	theorems.	
	and group isomorphisms.		

Paper Name: Analytic Geometry Paper Code: MAT-HC-3036

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course will enable the students	UNIT 1: Transformation of coordinates, Conic sections.	Remember, Understand, evaluate
 to: i) Learn conic sections and transform co-ordinate systems ii) Learn polar equation of a conic 	coordinates, Come sections.	evaluate
 ii) Learn polar equation of a conic, tangent, normal and properties iii) Have a rigorous understanding of the concept of three- 	Unit2: Study of Planes	Remember, Understand, evaluate
dimensional coordinates systems		

4th Semester (Honours)

Paper Name: Multivariate Calculus Paper Code: MAT-HC-4016

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course will enable the students	UNIT 1: Functions of	Remember, Understand,
to:	several variables,	evaluate
i) Learn the conceptual variations		
when advancing in calculus from	UNIT 2: Extrema of	Remember, Understand,
one variable to multivariable	functions of two variables,	apply, evaluate
discussion.	Method of Lagrange	
ii) Understand the maximization	multipliers	
and minimization of		
multivariable functions subject	UNIT 3: Double	Remember, Understand,
to the given constraints on	integration over	evaluate
variables.	rectangular and	
iii) Learn about inter-relationship	nonrectangular regions,	
amongst the line integral, double		
and triple integral formulations.	UNIT 4: Line integrals and	Remember, Understand,
iv) Familiarize with Green's, Stokes'	its applications	apply, evaluate
and Gauss divergence theorems		

Paper Name: Numerical Method Paper Code: MAT-HC-4026

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course will enable the students to:	Unit1: Algorithms,	Remember, Understand,
i) Learn some numerical methods to	Convergence, Bisection	apply, evaluate
find the zeroes of nonlinear	method, False position	
functions of a single variable and	method, Fixed point	
solution of a system of linear	iteration method,	
equations, up to a certain given	Newton's method, Secant	
level of precision.	method, LU	
ii) Know about methods to solve	decomposition	
system of linear equations, such as	UNIT 2: Lagrange and	Remember, Understand,
False position method, Fixed point	Newton interpolation:	evaluate
iteration method, Newton's	linear and higher order,	
method, Secant method, LU	finite difference	
decomposition.	operators.	

iii)	Interpolation techniques to	UNIT 3: Numerical	Remember, Understand,
	compute the values for a tabulated	differentiation: forward	evaluate
	function at points not in the table.	difference, backward	
iv)	iv) Applications of numerical	difference and central	
	differentiation and integration to	difference. Integration:	
	convert differential equations into	trapezoidal rule,	
	difference equations for numerical	Simpson's rule, Euler's	
	solutions.	method.	

Paper Name: Ring Theory Paper Code: MAT-HC-4036

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course will enable the students to:	Unit1: Rings, field, Ideals	Remember, Understand
i) Appreciate the significance of unique factorization in rings and	and their properties.	
integral domains.	Unit 2: Polynomial Rings,	Remember, Understand,
ii) Learn about the fundamental	PID, homomorphism	evaluate
concept of rings, integral domains and fields.	isomorphism and related theorems	
iii) Know about ring homomorphisms		
and isomorphisms theorems of		
rings.		
iv) Learn about the polynomial rings over commutative rings, integral		
domains, Euclidean domains, and		
UFD.		

5th Semester (Honours)

Paper Name: Complex Analysis Paper Code: MAT-HC-5016

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
The completion of the Course will enable the students to:i) Learn the significance of differentiability of complex	UNIT 1: Properties of Complex Numbers	Remember, Understand
functions leading to the understanding of Cauchy–Riemann equations.	UNIT 2: Analytic Functions	Remember, Understand, Evaluate
 (ii) Learn some elementary functions and valuate the contour integrals. (iii) Expand some simple functions as Taylor and Laurent series, classify the nature of 	UNIT 3: Contours, Contour Integrals and Its Examples	Remember, Understand, Evaluate
singularities,find residues and apply Cauchy residue theorem to evaluate integrals.	UNIT 4: Anti-derivatives,Proof of Anti-derivative Theorem and Other Related Theorems	Remember, Understand, Apply, Evaluate

Paper Name: Linear Algebra Paper Code: MAT-HC-5026

(Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course	e will enable the students to:	Unit 1: Vector spaces and	Remember, Understand
indepe field, a	about the concept of linear endence of vectors over a and the dimension of a space.	subspaces	
ii) Basic transfo	concepts of linear ormations, dimension m, matrix representation of	Unit 2: Eigenvectors and eigenvalues of a matrix, the characteristic	Remember, Understand, evaluate
change iii) Comp polyne	ar transformation, and the e of coordinate matrix. ute the characteristic omial, eigenvalues, vectors, and eigenspaces, as	equation, diagonalization, eigen-vectors of a linear transformation, complex eigenvalues,	

	well as the geometric and the	Unit 3: Inner product,	Remember, Understand,
	algebraic multiplicities of an	length, and orthogonality,	apply, evaluate
	eigenvalue and apply the basic	orthogonal sets,	11 57
• •	diagonalization result.	orthogonal projections,	
iv)	Compute inner products and	the Gram–Schmidt	
	determine orthogonality on vector spaces, including Gram–Schmidt	process, inner product	
	orthogonalization to obtain	spaces; Diagonalization	
	orthonormal basis.	of symmetric matrices,	
v)	Find the adjoint, normal, unitary	the Spectral Theorem	
	and orthogonal operators.	the spectral metrem	

Paper Name: Number Theory Paper Code: MAT-HE-5016

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course will enable the students to:	Unit 1: Linear	Remember, Understand,
i) Learn about some fascinating	Diophantine equation,	evaluate
discoveries related to the	prime counting function	
properties of prime numbers, and	and related theorems	
number theory, viz., Goldbach		
conjecture etc.	Unit 2: Number theoretic	Remember, Understand,
	functions, sum and	evaluate
	number of divisors,	
ii) Know about number theoretic	totally multiplicative	
functions and modular arithmetic.	functions and other	
iii)Solve linear, quadratic and	functions	
System of linear congruence		
equations.		

PAPER NAME: Programming in C (Including Practical) PAPER CODE: MAT-HE-5066

Unit No. and Name	Bloom's Taxonomy Level
Unit 1: Variables,	Remember, Understand,
constants, reserved	evaluate
words, library functions,	
structure of a C program,	
input/output functions	
and statements	
Unit 2: Control	Remember, Understand,
Statements	apply, evaluate
	Unit 1: Variables, constants, reserved words, library functions, structure of a C program, input/output functions and statements Unit 2: Control

 iii) Use of containers and templates in various applications in algebra. iv) Use mathematical libraries for computational objectives. v) Represent the outputs of programs visually in terms of well formatted text and plots. vi) In practical students learn about the roots of a quadratic equation, solution of an equation using N-R algorithm, sin(x), cos(x) with the help of functions 	Unit 3: Arrays and subscripted variables, Functions	Remember, Understand, apply, evaluate
---	---	---------------------------------------

6th Semester (Honours)

PAPER NAME: Riemann Integration and Metric Space PAPER CODE: MAT-HC-5016

	Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This	s course will enable the students to:	Unit 1: Riemann	Remember, Understand,
i)	Learn about some of the classes and properties of Riemann integrable functions, and the applications of the Fundamental theorems of integration.	integration	evaluate
ii)	Know about improper integrals including, beta and gamma functions.		
iii)iv)v)	Learn various natural and abstract formulations of distance on the sets of usual or unusual entities. Become aware one such formulations leading to metric spaces. Analyse how a theory advances from a particular frame to a general frame. Appreciate the mathematical understanding of various	Unit 2: Metric spaces and their properties	Remember, Understand, evaluate
	geometrical concepts, viz. Balls or connected sets etc. in an abstract setting. Know about Banach fixed point theorem, whose far-reaching consequences have resulted into an independent branch of study in analysis, known as fixed point theory. vii) Learn about the two important	Unit 3: Continuous mappings in metric spaces and other mappings related to metric spaces	Remember, Understand, evaluate
	topological properties, namely connectedness and compactness of metric spaces.		

Paper Name: Partial Differential Equations Paper Code: MAT-HC-6026

Course Outcome	Unit No. and Name	Bloom's Taxonomy Level
This course will enable the students	Unit 1: Introduction,	Remember, Understand,
 to: i) Formulate, classify and transform first order PDEs into canonical form. ii) Learn about method of 	Construction of first order partial differential equations (PDE). Cauchy's problem for first order equations and related	evaluate
 characteristics and separation of variables to solve first order PDE's. iii) Classify and solve second order linear PDEs. iv) Learn about Cauchy problem for 	methods Unit 2: Canonical form of first order PDE, Method of separation of variables for first order PDE.	Remember, Understand, evaluate
second order PDE and homogeneous and non- homogeneous wave equations. i) Apply the method of separation of variables for solving many well-known second order PDEs.	Unit 3: Reduction to canonical forms, Equations with constant coefficients, General solution.	Remember, Understand, evaluate

Paper Name: Mathematical Modelling Paper Code: MAT-HE-6036

Course Outcome	Unit No. And Name	Bloom's Taxonomy Level
This course will enable the students	Unit 1: Power series	Remember, Understand,
to:	solution of a differential	evaluate
i) Know about power series solution	equation about an ordinary	
of a differential equation and learn	point, solution about a	
about Legendre's and Bessel's	regular singular point, The	
equations.	method of Frobenius;	
ii) Use of Laplace transform and	Legendre's and Bessel's	
inverse transform for solving	equation.	
initial value problems.	Unit2: Laplace transform	Remember, Understand,
ii) iii) Learn about various models	and inverse transform,	evaluate
such as Monte Carlo simulation	application to initial value	
models, queuing models, and	problem up to second	
linear programming models.	order.	
	Unit 3: Monte Carlo	Remember, Understand,
	Simulation Modelling,	apply, evaluate
	Generating Random	
	Numbers	