BACHELOR OF COMPUTER APPLICATIONS (BCA)

One of the most important benefits of taking computer courses is that the students will have more jobs available to them. The types of new jobs that will be available depend on what kind of courses they take, but every group of courses will open up new opportunities. Almost all jobs require that a worker has some computer skills. The number of positions available to those who aren't comfortable using computers gets smaller each day.

Bachelor of Computer Applications (B.C.A, Honours) Programme: (CBCS System under Gauhati University):

Program Outcome (PO)

- **PO 1. Disciplinary Knowledge**: Demonstrate comprehensive knowledge and understanding of one or more disciplines that form a part of an undergraduate programme of study.
- **PO 2. Social Interaction**: express thoughts and ideas effectively in writing and orally; listen and communicate with others using appropriate media. Work effectively and respectfully with diverse teams; act together as a group or a team in the interests of a common cause; Elicit views of others, mediate disagreements and help reach conclusions in group settings.
- **PO 3. Effective Citizenship**: Demonstrate empathetic social concern and equity centred national development, and act with an informed awareness of issues and participate in civic life through volunteering; embrace moral/ ethical values in conducting one's life, possess knowledge of the values and beliefs of multiple cultures and a global perspective; engage in a multicultural society and interact respectfully with diverse groups.
- **PO 4. Environment and Sustainability**: Understand the issues of environmental contexts and sustainable development.
- **PO 5.** Information and Digital Literacy: Use ICT in a variety of learning situations; demonstrate ability to access, evaluate and use a variety of relevant information sources; and use appropriate software for analysis of data.
- **PO 6. Research–related skills**: Critically evaluate practices, policies and theories by following scientific approach to knowledge development. Have a sense of inquiry and capability for asking relevant/ appropriate questions, problematizing, synthesizing and articulating; ability to recognize cause- and-

Program Specific Outcomes (PSOs)	The completion of the BCA Programme (under CBCS) shall enable a student to:—
	PSO 1. Understand the core theoretical concept of Computer Applications: Understand the core theoretical principles of Computer Applications.
	PSO 2. Acquire analytical and logical skill for higher Education: Acquire the ability to analyses critical problems logically.
	PSO 3. Excel in the field of Computer Science & Applications and learn good laboratory practices particularly in terms of Programming and security of data: Learn to handle Computer Programming experiments to solve certain mathematical and logical problems perfectly, accurately and safely.
	PSO 4. Take up jobs in allied fields: Use the knowledge of Computer Science & Application to seek opportunities in other allied fields (i.e., sister concerns) like Mathematics, Physics, Statistics, Commerce and Management.

SEMESTER I (CORE PAPERS) CBCS SYSTEM

NAME: INTRODUCTION TO C PROGRAMMING

UNIT	COURSE OUTCOME	BLOOM'S
		TAXONOMY
UNIT 1: Overview of C	CO1:	Rememberin
	Understand the history and importance of the C prog	g, Understan
	ramming language; master basic syntax and structure	ding
UNIT 2: Decision Maki	CO2:	Applying, An
ng and Branching Stat	Implement conditional statements and loops for deci	alyzing
ement	sion making; employ branching techniques for efficie	
	nt control flow.	
UNIT 3: Arrays	CO3: Manipulate single-dimensional and multi-	Applying, Un
	dimensional arrays; develop algorithms using arrays.	derstanding

UNIT 4: Functions	CO4:	Applying, An
	Create and use functions for modular programming;	alyzing
	understand scope, recursion, and parameter passing.	
UNIT 5: Structures an	CO5:	Understandi
d Unions	Define and utilize structures for data organization; dif	ng, Analyzing
	ferentiate and apply structures and unions.	
UNIT 6: Pointers	CO6:	Applying, An
	Utilize pointers for dynamic memory allocation; imple	alyzing
	ment pointer arithmetic and understand its applicatio	
	ns.	
UNIT 7: File Managem	CO7:	Applying, An
ent in C	Handle file operations (read/write) in C; implement fil	alyzing
	e handling techniques for data storage and retrieval.	

Mapping	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	Н		L	L	М	М	Н	М	L	L
CO2	Н	М	М	L	М	Н	М	Н	М	L
CO3	Н			L	М	Н	М	Н	М	L
CO4	Н	М	М	L	М	Н	М	Н	М	L
CO5	Н		L	L	М	М	Н	Н	М	L
CO6	Н	L	L		М	Н	М	Н	Н	L
CO7	Н	L	М	М	М	Н	Н	Н	Н	М

NAME: COMPUTER FUNDAMENTALS & ICT HARDWARE

Unit	Course Outcome	Bloom's Taxon omy Level
UNIT 1: Overview of Computer	Illinderstand the evolution of computer systems, component	Remembering, Understanding
UNIT 2: Hard Disk	CO2: Understand the logical structure and file systems of hard disks; utilize hard disk tools.	Applying, Unde rstanding

Unit	Course Outcome	Bloom's Taxon omy Level
UNIT 3: Optical Me	iUngerstang the operation and maintenance of optical megi-	Applying, Unde rstanding
UNIT 4: Processor	Il Inderstand processor types and trends: comprehend moth	Remembering, Understanding
IUNIT 5: Networkin	lUnderstand SMPS. BIOS. NIC. network cabling, and IP addre	Remembering, Applying

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L	L	М	M	Н	М	L	L
CO2	Н	M	M	L	M	Н	М	Н	М	
соз	Н		L	L	M	Н	М	Н	М	L
CO4	Н	M	M	L	M	Н	М	Н	M	
CO5	Н	L	L	L	M	Н	M	Н	Н	L

SEMESTER II (CORE PAPERS) CBCS SYSTEM

NAME: MATHEMATICS -I

Unit	Course Outcome	Bloom's Taxonomy Level
UNIT 1: Determin	CO1:	Remembering, Und
ants and Matrice	Understand definitions, types, and operations on matrice	erstanding, Applyin
S	s; solve linear equations using matrix methods.	g

Unit	Course Outcome	Bloom's Taxonomy Level
UNIT 2: Complex	CO2: Understand the properties and representations of complex numbers; solve equations involving complex numbers.] ,,,,
UNIT 3: Limits an		Remembering, Und erstanding, Applyin g
UNIT 4: Calculus	lannly theorems and techniques to find limits, derivatives	Understanding, App lying, Analyzing

Course Outcomes (Co	Os) PO	1 PO	2 PO	3 PO	4 PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L	L	M	M	Н	М	М	L
CO2	Н		L	L	М	M	Н	М	M	L
соз	Н		L	L	M	M	Н	М	M	L
CO4	Н	L	L	L	M	M	Н	М	M	

NAME: DIGITAL LOGIC FUNDAMENTALS

Unit	Course Outcome	Bloom's Taxonomy Level
_		Remembering, Understanding, Applying
	Understand and implement combinational circuits li ke adders, subtractors, and multiplexers.	Remembering, Understanding, Applying
-		Remembering, Understandi ng, Applying, Analyzing
UNIT 4: Counters		Remembering, Understandi ng, Applying, Analyzing
UNIT 5: Registers	Understand and implement various types of register s and their applications.	Remembering, Understanding, Applying

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L		М	М	Н	М	М	L
CO2	Н	L	L		М	М	Н	М	М	L
CO3	Н	L	L		М	М	Н	М	М	L
CO4	Н	L	L		М	М	Н	М	М	L
CO5	Н	L	L		М	М	Н	М	М	L

SEMESTER III (CORE PAPERS) CBCS SYSTEM

NAME: SOFTWARE ENGINEERING

Unit	Course Outcome	Bloom's Taxonomy Le vel			
UNIT 1: Introduction	lUnderstand software processes, life cycle models, and r	Remembering, Unders tanding, Applying			
UNIT 2: Software Project	lUnderstand and apply project planning techniques incl	Remembering, Unders tanding, Applying			
UNIT 3: Software Design	lUnderstand and implement software design principles	Understanding, Applyi ng, Analyzing			
UNIT 4: Software Testing and Maintenance	lUnderstand and apply software testing, maintenance p	Understanding, Applyi ng, Analyzing			

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L		М	М	Н	М	М	L
CO2	Н	L	L		М	М	Н	М	М	L
CO3	Н	L	L		М	М	Н	М	М	L
CO4	Н	L	L		М	М	Н	М	М	L

NAME: DATA STRUCTURE AND ALGORITHMS

Unit	Course Outcome	Bloom's Taxonomy Level
UNIT 1: Definitio	lUnderstand data types, elementary structures, and me	Remembering, Understandin g, Applying
UNIT 2: Linked St ructure	Illinderstand and manipulate singly and doubly linked list	Remembering, Understandin g, Applying, Analyzing
UNIT 3: Stacks a nd Queues	llinderstand and apply stacks and queues in various appl	Remembering, Understandin g, Applying
UNIT 4: Binary Tr ees	iUnderstand binary trees, properties, traversal algorithm	Remembering, Understandin g, Applying, Analyzing
UNIT 5: Searchin	llmplement and analyze linear and binary search algorith	Remembering, Understandin g, Applying, Analyzing
UNIT 6: Sorting	Il Inderstand and anniv various sorting algorithms, their c	Remembering, Understandin g, Applying, Analyzing
UNIT 7: Analysis of Algorithm	Analyze time and space complexity, perform average an	Understanding, Applying, Ana lyzing, Evaluating

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
UNIT 1: Definition	Н	L	L	L	M	М	Н	M	М	L
UNIT 2: Linked Structure	Н	L	L	L	М	М	Н	М	М	L
UNIT 3: Stacks and Queues	Н	L		L	М	М	Н	М	М	L
JNIT 4: Binary Trees	Н		L	L	M	М	Н	М	М	L
UNIT 5: Searching	Н	L	L		М	М	Н	М	М	
UNIT 6: Sorting	Н	L	L	L	М	М	Н	М	М	
UNIT 7: Analysis of Algorithm	Н	L	L	L	М	М	Н	М	М	L

NAME: DATABASE MANAGEMENT SYSTEM

Unit	Course Outcome	Bloom's Taxonomy Level
UNIT 1: File S tructure	ll inderstand record storage tile organization, and issues	Remembering, Understan ding, Applying
	 Understand the differences between traditional file ap	Remembering, Understan ding
UNIT 3: Relati onal Models	II Inderstand relational models, integrity rules, and SOI \cdot	Remembering, Understan ding, Applying, Analyzing
UNIT 4: Data base Design	Understand database design concepts. ER models, nor	Remembering, Understan ding, Applying, Analyzing

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L	L	М	М	Н	М	М	L
CO2	Н		L		М	М	Н	М	М	
соз	Н	L		L	М	M	Н	М	М	
CO4	Н	L	L	L	M	M	Н	М	М	L

SEMESTER IV (CORE PAPERS) CBCS SYSTEM

NAME: COMPUTER ORGANIZATION AND ARCHITECTURE

Unit	Course Outcome	Bloom's Taxonomy Level
UNIT 1: Introduc	lUnderstand functional units of a computer, basic instructi	Remembering, Understandi ng, Applying
UNIT 2: Register	CO2: Understand and implement interregister transfers, arithmetic and logic microoperations, and design a simple computer.	Remembering, Understandi ng, Applying, Analyzing
UNIT 3: Processo	CO3: Understand processor organization and design arithmetic and logic circuits.	Understanding, Applying, A nalyzing
UNIT 4: Control	iprogrammed control, and design a micro-	Remembering, Understandi ng, Applying, Analyzing
		Remembering, Understandi ng, Applying
UNIT 6: Memory Subsystem	CO6: Understand semiconductor memory, SRAM, DRAM, ROM, cache memory, and mapping functions.	Remembering, Understandi ng, Applying

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L	L	М	М	Н	М	М	L
CO2	Н	L	L	L	М	М	Н	М	М	L
CO3	Н	L	L	L	М	М	Н	М	М	L
CO4	Н	L	L	L	М	М	Н	М	М	L
CO5	Н	L	L	L	М	М	Н	М	М	L
CO6	Н	L	L	L	М	М	Н	М	М	L

NAME: MATHEMATICS-II

Unit	Course Outcome	Bloom's Taxonomy Level
UNIT 1: Sets, Relat ions and Functions	lUnderstand sets, relations, properties, functions, a	Remembering, Understa nding, Applying
UNIT 2: Graph The ory	CO2: Understand basic graph concepts, algorithms, and tree structures.	Remembering, Understa nding, Applying, Analyzin g
UNIT 3: Combinat orics	CO3: Understand counting principles, pigeonhole principle, permutations, and combinations.	Remembering, Understa nding, Applying, Analyzin g
	CO4: Understand matrices, determinants, inverse, rank, and solve simultaneous linear equations.	Remembering, Understa nding, Applying, Analyzin g
UNIT 5: Logic	CO5: Understand connectives, truth tables, normal form s, propositional calculus, and Boolean algebra.	Remembering, Understa nding, Applying, Analyzin g
UNIT 6: Vector Spa ce	CO6: Understand vector spaces, basis, dimension, and properties of linearly independent/dependent sets.	

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L	L	М	М	Н	М	M	L
CO2	Н		L	L	М	М	Н	М	M	L
СОЗ	Н		L	L	М	М	Н	М	M	
CO4	Н	L	L	L	М	М	Н	М	M	
CO5	Н		L	L	М	М	Н	М	M	L
CO6	Н	L	L	L	М	М	Н	М	M	L

NAME: OBJECT ORIENTED PROGRAMMINF IN C++

Unit	Course Outcome	Bloom's Taxonomy Leve
UNIT 1: Introduction to object- oriented programmi ng	CO1: Understand the origins, basic concepts, benefits, and structure of C++ programs.	Remembering, Understa nding, Applying
UNIT 2: Classes and objects	CO2: Understand and implement classes, objects, cons tructors, destructors, and memory allocation in C ++.	Remembering, Understa nding, Applying, Analyzi ng
UNIT 3: Function an d operator overloading	Understand and apply concepts of function and o	Remembering, Understa nding, Applying, Analyzi ng
UNIT 4: Inheritance	CO4: Understand and implement various types of inhe ritance, polymorphism, and virtual functions in C ++.	Remembering, Understa nding, Applying, Analyzi ng
UNIT 5: Streams	CO5: Understand C++ stream classes, formatted I/O op erations, and user-defined manipulators.	Remembering, Understa nding, Applying
UNIT 6: Files	CO6: Understand and implement file handling operations in C++, including reading, writing, and random -access files.	_

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L	L	М	М	Н	М	М	L
CO2	Н	L	L	L	М	М	Н	М	М	L
CO3	Н	L	L	L	М	М	Н	М	М	L
CO4	Н	L	L	L	М	М	Н	М	М	L
CO5	Н	L	L	L	М	М	Н	М	М	L
CO6	Н	L	L	L	М	М	Н	М	М	L

SEMESTER V (CORE PAPERS) CBCS SYSTEM

NAME: JAVA PROGRAMMING

Unit	Course Outcome	Bloom's Taxonomy Level
UNIT 1: JAVA languag e basics	iUngerstang Java pasics. JVIVI concepts, primitive gata t	Remembering, Understan ding, Applying
UNIT 2: Operators an d Control Statements	CO2: Understand and apply Java operators and control state ments.	Remembering, Understan ding, Applying
UNIT 3: Classes and Methods	lUnderstand and implement classes, objects, construct	Remembering, Understan ding, Applying, Analyzing
UNIT 4: Inheritance	Understand and implement inheritance, polymorphis	Remembering, Understan ding, Applying, Analyzing
UNIT 5: Exception ha	CO5: Understand and implement exception handling, I/O op erations, applet basics, and event handling in Java.	Remembering, Understan ding, Applying

Course Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
CO1	Н	L	L		М	М	Н	M	M	L
CO2	Н	L	L		М	М	Н	M	М	L
соз	Н		L		М	М	Н	M	M	
CO4	Н	L	L		М	М	Н	M	M	L
CO5	Н		L		М	М	Н	M	M	L

NAME: OPERATING SYSTEM

Unit	Course Outcome	Bloom's Taxonomy Lev el
UNIT 1: Introd uction	CO1: Understand the basics of operating systems, their gene rations, and types.	Remembering, Underst anding
UNIT 2: Proces ses	CO2: Understand process concepts, states, creation, termina tion, context switching, and multithreading basics.	Remembering, Underst anding, Applying
	CO3: Understand interprocess communication, race conditions, mutual exclusion, and classical IPC problems.	Remembering, Underst anding, Applying, Analy zing
UNIT 4: Schedu ling		Remembering, Underst anding, Applying, Analy zing
UNIT 5: Deadlo cks	CO5: Understand deadlock concepts, characteristics, prevent ion, detection, recovery, and avoidance using algorithm s.	Remembering, Underst anding, Applying, Analy zing
	Understand memory management, virtual memory, pa	Remembering, Underst anding, Applying, Analy zing
UNIT 7: File sys tem	CO7: Understand file concepts, types, attributes, operations, access methods, directories, and file system layouts.	Remembering, Underst anding, Applying
	CO8: Understand the principles and structure of I/O manage ment subsystems, device controllers, and I/O software I ayers.	- -

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L		M	М	Н	М	М	L
CO2	Н	L	L		М	М	Н	M	М	L
CO3	Н	L	L		М	М	Н	M	М	L
CO4	Н	L			М	М	Н	M	М	L
CO5	Н		L		М	М	Н	М	М	L
CO6	Н	L	L		М	М	Н	M	М	
CO7	Н	L	L		М	М	Н	M	М	L
CO8	Н	L	L		М	М	Н	М	М	L

SEMESTER VI (CORE PAPERS) CBCS SYSTEM

NAME: SYSTEM ADMINISTRATION USING LINUX

Unit	Course Outcome	Bloom's Taxonomy Lev el
UNIT 1: Introduc	CO1: Understand the role and power of a system administr ator, Linux OS basics, and common Linux distributions .	<u> </u>
UNIT 2: Linux file system	ll Inderstand Linux file systems, file types, file affribute	Remembering, Underst anding, Applying
UNIT 3: Basic Lin	CO3: Understand and use basic Linux commands, file and d irectory handling, shell scripts, and user/group permi ssions.	<u> </u>
IUNIT 4: Process	Understand and manage processes, background jobs,	Remembering, Underst anding, Applying, Analy zing
User Administrat	lUnderstand user management, system monitoring, lo	Remembering, Underst anding, Applying
UNIT 6: Networki ng in Linux	Understand IP addressing, network configuration, an	Remembering, Underst anding, Applying, Analy zing

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L		М	М	Н	М	М	L
CO2	Н		L		М	M	Н	М	М	
соз	Н	L			М	M	Н	М	М	L
CO4	Н		L		М	M	Н	М	М	L
CO5	Н	L	L		М	M	Н	М	М	
CO6	Н	L	L		М	M	Н	М	М	L

NAME: COMPUTER NETWORKS

Unit	Course Outcome	Bloom's Taxonomy L evel
UNIT 1: Physical La yer	CO1: Understand the basics of data communications, network criteria, physical structures, and network models.	Remembering, Unde rstanding
UNIT 2: Digital Tra nsmission	CO2: Understand and apply concepts of digital and analog t ransmission, multiplexing, and transmission media.	Remembering, Unde rstanding, Applying
UNIT 3: Data Link L ayer	CO3: Understand and implement error correction and dete ction methods, data link control protocols, and multiple access techniques.	Remembering, Unde rstanding, Applying, Analyzing
UNIT 4: Network L ayer	Understand wired and wireless LANs, network layer pr	Remembering, Unde rstanding, Applying, Analyzing
=	CO5: Understand routing protocols, transport layer concept s, and techniques for congestion control and quality o f service.	Remembering, Unde rstanding, Applying, Analyzing

Unit	Course Outcome	Bloom's Taxonomy L evel
-	Understand DNS email architecture file transfer prot	Remembering, Unde rstanding, Applying

Course Outcomes (COs)	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PSO 1	PSO 2	PSO 3	PSO 4
CO1	Н	L	L		М	M	Н	М	М	L
CO2	Н	L	L		М	M	Н	М	М	L
CO3	Н	L			М	M	Н	М	М	
CO4	Н		L		М	M	Н	М	М	L
CO5	Н	L			М	M	Н	М	М	L
CO6	Н	L	L		М	M	Н	М	М	